用户名: 密码: 验证码:
爆破地震波作用下建筑结构的动力响应及安全判据研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在爆破技术广泛应用的同时,随着爆破环境的复杂化和人们环保意识的日益增强,工程爆破所诱发的一系列负面效应尤其是作为爆破公害之首的爆破地震效应问题,受到普遍的关注和重视。研究爆破地震效应的危害机制,尤其是爆破地震波作用下周围建筑物的地震响应机理及安全判据,是爆破地震效应研究领域中的重点和难点课题,同时是爆破安全技术研究的重要内容。
     本文结合国家自然科学基金“爆破震动特性与爆破震动对结构危害机制研究”(编号:50778107)和高等学校博士学科点专项科研基金“爆破震动特性与结构爆破震动安全控制理论研究”(编号:20060424002),在大量查阅和深入研究国内外相关文献的背景下,在爆炸动力学、结构动力学、数值分析、信号分析技术、动力有限元理论等相关理论和分析方法的有力支撑下,本文采用数值计算、有限元模拟和现场试验为主要研究手段,对爆破地震波传播特性和爆破地震波作用下建筑结构的动力响应及安全判据进行了深入系统的探讨。得出的主要研究成果有:
     (1)在利用数值计算结果讨论爆破震动影响区域划分的基础上,基于大量的现场监测数据,研究了不同爆破震动区域内爆破地震波幅值、主频随比例距离的衰减规律及不同震动区域爆破地震波信号的频谱与能量特征。
     (2)采用集中冲量法,通过在一个多自由度弹性结构体系基底施加不同特性参数的爆破地震波速度荷载,并求解出不同情况下的该结构体系的各动力响应,在分析各动力响应幅值变化的基础上来探讨爆破地震波幅值、频率和持续时间对多自由度弹性体系动力响应的具体影响。
     (3)利用Matlab编写了一套Newmark时程分析法与刚度退化二线型恢复力模型相结合求解多层砌体结构体系弹塑性地震响应的程序。以一具体的四层砌体结构为分析对象,输入荷载采用不同特性参数的实测及人工模拟爆破地震波信号,根据所求出的结构各弹塑性地震响应幅值结果,分别讨论了爆破地震波幅值、主频和持续时间对多层砌体结构弹塑性地震响应幅值的具体影响。
     (4)通过在隧道爆破开挖过程中下穿的多层钢筋混凝土建筑沿高度和水平方向上布设测点,采集了大量的钢筋混凝土建筑的爆破地震响应信号。采用小波分析和快速傅立叶变换相结合的方法,研究各方向爆破地震波作用下钢筋混凝土建筑沿高度和水平方向的结构响应频谱、能量分布特性及幅值变化规律。
     (5)本文采用小波包分解和重构的方法,将复杂的实测爆破地震波速度信号转化为多个简谐波的叠加,将爆破速度荷载作用下结构的动力响应问题转化为一系列简谐荷载作用下的动力响应问题。通过提出速度因子的新概念并将其反映在爆破地震效应计算模型中,考虑了结构动力响应中瞬态响应的影响。同时爆破地震效应计算模型中又融入了归一化的能量比例,在考虑爆破荷载频率的影响时仅需考虑占有相当能量比例的优势频率的综合作用。然后,在该计算模型基础上提出了一个新的爆破地震效应安全判据。该判据能反映出爆破激励荷载作用下结构速度响应大小与结构特性、爆破地震波幅值、频率(包括多个优势频率)、持续时间及能量比例等参数的关系。
     (6)采用动力有限元方法,参照爆区现场的一实际三层砌体房屋结构,建立三维空间实体模型,并将底层的爆破地震波监测信号加载到砌体结构模型的基底,求解出有限元模拟的砌体结构其它各层的爆破震动响应值,并与监测结果进行了比较分析。对常见的2-4层砌体结构房屋,各取一种典型结构在基底节点垂直方向上施加不同主频的爆破地震波进行动力有限元建模并模拟开裂过程,通过定义结构单元的临界失效状态来寻求典型砌体结构房屋的爆破震动安全标准值,并给出了2-4层典型砌体结构房屋在各主频段爆破地震波作用下的爆破震动安全标准。
     本文取得的研究成果为科学地预测与控制爆区周围建筑物的爆破地震效应危害,改进和完善现有的爆破震动安全判据有着重要的理论价值和现实意义。
At the meantime of widespread application of the blasting technology, a series of negative effects induced by engineering blasting especially blasting vibration effect which is regarded as head of blasting hazards has been commonly focused with the increasing of complication of blasting surroundings and people's consciousness for environmental protection. To study the damaging mechanism of blasting vibration effect especially to study the mechanism of dynamic response of surrounding buildings induced by blasting vibration waves is the key and difficult subject in research field for blasting vibration effect, which is also the important content for blasting safety technique.
     Combining National Natural Science Foundation of China named "Study on Characteristics of Blasting Vibration and Structural Damaging Mechanism Induced by Blasting Vibration" (No:50778107)and Research Fund for the Doctoral Program of Higher Education of China named "Study on Characteristics of Blasting Vibration and Safety Control Theory of Structural Blasting Vibration" (No:20060424002), on the background of consulting and lucubrating on a great many domestic and overseas references related and with the support of related theories and analytical methods such as explosion dynamics, structural dynamics, numerical analysis, signal analytical technology, dynamic finite element theory and etc., characteristics of propagation of blasting vibration waves and structural dynamic response induced by blasting vibration waves and its corresponding safety standard were discussed deeply and systematically by the main studying means of numerical calculation, finite element simulation and field tests in this dissertation. The main research findings are as follows:
     (1) Based on discussing the influence-zone division of blasting vibration by numerical calculation and a large number of data obtained by field monitoring, the attenuation laws of the amplitude and basic frequency of blasting vibration waves versus scaled distance and spectrum and energy characteristics of blasting vibration waves in different vibration zone were studied.
     (2) Velocity loads of blasting vibration waves of different characteristic parameters were applied to the foundation base of a multi-freedom elastic structural system, and dynamic responses of the structural system under different conditions were calculated in central impulse method. By analyzing changes of peak values of all the structural dynamic responses, effects of the amplitude, frequency and duration of blasting vibration waves on dynamic response of the multi-freedom elastic structure were discussed.
     (3) A set of programs for solving elastic-plastic seismic response of multi-storey masonry buildings was written by Matlab, which combined Newmark time-history method with two-linear model of stiffness degradation. A four-storey masonry building was taken as the analyzed object, and the actual and artificial-simulated blasting vibration waves of different characteristic parameters were used as the input loads. According to the calculated results of amplitude for all structural elastic-plastic seismic response, effects of the amplitude, basic frequency and duration of blasting vibration waves on elastic-plastic seismic response of multi-storey masonry buildings were discussed respectively.
     (4) A large number of blasting vibration response signals of a reinforced concrete building were monitored by locating monitoring points on the multi-storey reinforced concrete building along the height and horizontal direction, which was under-drilled through in the course of blasting excavation of a tunnel. Distribution characteristics of the spectrum, energy and amplitude variation laws of structural response of the reinforced concrete building to the blasting vibration waves in all directions along the height and horizontal direction of the building were studied with the method of wavelet analysis combined with FFT.
     (5) Complex monitoring velocity signals of blasting vibration waves were transformed to superposition of several simple harmonic waves by the means of decomposition and reconstruction of wavelet packet. In this way, the problem of structural dynamic response under the action of blasting velocity loads became the problem of that under a series of simple harmonic loads. By introducing a new concept of velocity factor and bringing it into the calculation model of blasting vibration effect, the contribution of structural transient response was considered into structural dynamic response. At the meantime, normalized energy proportion was added to the calculation model, and only dominant frequencies of relatively large energy proportions could be included when considering the influence of frequencies of blasting loads. Then, a new safety criterion of blasting vibration effect was put forward on the model above, which can reflect the relation among value of structural velocity response under stimulation of blasting loads and parameters of structural characteristics, amplitude, frequencies (including several dominant frequencies), duration and energy proportion of blasting vibration waves.
     (6) A three-dimensional solid model was built for an actual three-storey masonry building in blasting filed with dynamic finite element method. Monitoring signals of blasting vibration waves at the bottom of the building were loaded onto the foundation base of the masonry model, and values of blasting vibration response of the other masonry storey calculated with dynamic finite element method were compared with the monitoring results. One representative structure was separately selected among common masonry buildings of 2~4 storeys to build finite element model, and blasting vibration waves of different basic frequencies were loaded on its base nodes in vertical direction and cracking course of the model was simulated. Safety standards of blasting vibration for representative masonry buildings of 2-4 storeys under blasting vibration waves of different basic-frequency bands were given, which were obtained by defining critical failure state of structural element.
     The research findings obtained in this dissertation are of important theoretical values and practical significance for scientifically forecasting and controlling hazards of blasting vibration effect of surrounding buildings and improving and consummating the existing safety criterion of blasting vibration.
引文
[1]R. James Brown. Blast vibration analysis[J], Engineering Geology,1984,20(3):267-268
    [2]Wheeler R. M. How millisecond delay periods may enhance or deduce blast vibration effects[J], Mining Engineering,1988,40(10):969-973
    [3]M. Z. Sunu. The effect of blast-and-plant-induced vibration on stability in surface mining operations[J], Mining Science and Technology,1991,12(2):167-178
    [4]Charles H. D. Monitoring and control of blast effect[J], Mining Engineering,1990,42(7): 746-760
    [5]P. Pal Roy. Vibration control in an opencast mine based on improved blast vibration predictors[J], Mining Science and Technology,1991,12(2):157-165
    [6]Siskind D. E, Stagg M S. Surface mine blasting near transmission pipelines[J], Mining Engineering,1994,46(12):1357-1360
    [7]Yu T. R, Vongpaisal S. New blast criteria for underground blasting[J], CIM Bulletin,1996, 89(998):139-145
    [8]李宏男,王炳乾,林皋.爆炸地震效应若干问题的探讨[J],爆炸与冲击,1996,16(1):1-63
    [9]Roy P. P. Characteristic of ground vibration and structural response to surface and underground blasting[J], Geotechnical and Geological Engineering,1998,16(2):151-166
    [10]Rudenko D. Understanding blast vibration[J], Pit & Quarry,1998,91(2):30-33
    [11]Hinzen K. G. Comparison of seismic and explosive energy in five smooth blasting test rounds[J], International Journal of Rock Mechanics and Mining-Sciences,1998,35(7): 957-967
    [12]Hao H, Wu Y, Ma G, et al. Characteristics of surface ground motions induced by blasts in jointed rock mass[J], Soil Dyn Earthquake Eng,2001,21(2):85-98
    [13]P. K. Singh. Blast vibration damage to underground coal mines from adjacent open-pit blasting[J], International Journal of Rock Mechanics and Mining Sciences,2002,39(8): 959-973
    [14]钱七虎,陈士海.爆破地震效应[J],爆破,2004,21(2):1-5
    [15]李德林,方向.爆破震动效应对建筑物的影响[J],工程爆破,2004,10(2):66-69
    [16]彭德红.露天矿边坡开挖爆破震动动力响应分析[J],煤炭学报,2005,30(6):705-709
    [17]Kuzu C, Ergin H. An assessment of environmental impacts of quarry-blasting operation:a case study in Istanbul, Turkey[J], Environ Geol,2005,48(2):211-217
    [18]郑峰,段卫东,钟冬望等.爆破震动研究现状及存在问题的探讨[J],爆破,2006,23(1):92-94
    [19]Umit Ozer. Environmental impacts of ground vibration induced by blasting at different rock unit on the Kadikoy-Kartal metro tunnel[J], Engineering Geology,2008,100(1-2): 82-90
    [20]C. H. Dowding. Suggested method for blast vibration monitoring[J], International Journal of Rock Mechanics and Mining Sciences,1992,29(2):145-156
    [21]孟吉复,惠鸿斌.爆破震动测试技术[M],北京:冶金工业出版社,1992,80-138
    [22]李夕兵,古德生.岩石在不同加载波下能量耗散的理论探讨[J],爆炸与冲击,1994,14(2):129-139
    [23]徐全军,毛志远,张庆民.深孔微差爆破震动预报浅析[J],爆炸与冲击,1998,18(2):182-186
    [24]Ma G. W, Hao H, Zhou YX, et al. Modeling of wave propagation induced by underground explosion[J], Computers and Geotechnics,1998,22(3-4):283-303
    [25]Wu YK, Hao H, Zhou YX, et al. Propagation characteristics of blast-induced shock waves in a jointed rock mass[J], Soil Dyn Earthquake Eng,1998,17(6):407-412
    [26]李的林,高振儒,朱立新.爆破震动危害中几个重要因素分析[J],工程爆破,1999,5(3):64-67
    [27]朱继梅.非稳态震动信号分析[J],振动与冲击,2000,19(1):86-87
    [28]Guowei Ma, Hong Hao, Yingxin Zhou. Assessment of structure damage to blasting induced ground motions[J], Engineering Structures,2001,22(1):1378-1389
    [29]Tripathy GR, Gupta ID. Prediction of ground vibration due to construction blasts in different types of rock[J], Rock Mech Rock Eng,2002,35(3):195-204
    [30]庄金钊,杨仁树,李孝林等.结构物爆破振动安全标准的探讨[J],矿冶工程,2003,23(2):11-13,17
    [31]陈士海.爆破地震动作用下结构震动响应研究现状与发展[J],爆破,2003,20(增):96-101
    [32]Khandelwal M, Singh TN. Evaluation of blast-induced ground vibration predictors[J], Soil Dyn Earthquake Eng,2007,27(2):116-125
    [33]Yun XY, Yang XL, Mitri HS. Blast vibration control in highway construction near a cultural heritage site[J], Int J Min Reclamation Environ,2007,21(1):75-84
    [34]阳生权,廖先葵,刘宝琛.爆破地震安全判据的缺陷与改进[J],爆炸与冲击,2001,21(3):223-227
    [35]许红涛,卢文波.几种爆破震动安全判据[J],2002,19(1):8-10
    [36]李彬峰.爆破地震效应及其控制措施分析[J],爆破,2003,20(2):83-85
    [37]汪旭光,于亚伦.关于爆破震动安全判据的几个问题[J],工程爆破,2001,7(2):88-91
    [38]中华人民共和国国家标准编写组.爆破安全规程(GB6722-2003)[S],北京:中国标准出版社,2003
    [39]Carlos Lopez. Drilling and blasting of rocks[M], Netherlands:Taylor & Francis Group, 1995,1-150
    [40]Attewell P. B, Farmer I. W, Haslam D. Prediction of ground vibration parameters from major quarry blasts[J], Mining and Mineral Engineering,1965,621-626
    [41]Devine J. R. Avoiding damage to residences from blasting vibrations[J], Highway Research Record,1966,35-42
    [42]Hendron A J. Specification for controlled blasting and civil engineering projects[A]. Lane, Garfield. Proc. North American Rapid Excavation and Tunneling Conference[C], Chicago:AIME,1585-1609
    [43]Ambraseys N R, Hendron A J. Dynamic behavior of rock masses[A].K G Stagg, O C Zienkiewicz. Rock Mechanics in Engineering Practices[C]. London Wiley,1968,203-227
    [44]萨道夫斯基(陈英方译).地震预报[M],北京:地震出版社,1996,1-200
    [45]龚亚莉.爆破引起地面震动及其衰减规律[J],爆炸与冲击,1981,(2):79-88
    [46]卢文波,王进攻.爆破中远区的爆破振动场模拟[J],爆破,1996,13(3):8-11
    [47]张永哲.爆破地震波传播特性研究[J],爆破,2000,17(suppl.1):6-10
    [48]叶洲元,马建军,蔡陆军等.利用振动监测数据优化预测爆破质点振动速度[J],矿业研究与开发,2003,23(4):48-51
    [49]吕涛,石永强,黄诚等.非线性回归法求解爆破振动速度衰减公式参数[J],岩土力学,2007,28(9):1871-1878
    [50]闫鸿浩,李晓杰,曲艳东等.爆破振动速度测试精细分析[J],岩土力学,2007,28(10):2091-2094
    [51]宗绮,汪海波,周胜兵.爆破地震效应的监测和控制技术研究[J],岩石力学与工程学报,2008,27(5):938-945
    [52]李保珍,王迪安.高程差与爆破振动强度及衰减规律之间关系的探讨[A].第六届全国工程爆破学术会议论文集,深圳:海天出版社,1997,58-62
    [53]周同岭,杨秀甫,翁家杰.爆破地震高程效应的实验研究[J],建井技术,1997,18(suppl):31-35
    [54]吴从师,高晓初.大区微差爆破的地震效应[J],岩石力学与工程学报,1996,15(suppl):529-532
    [55]吴腾芳,王凯.微差爆破间隔时间计算模型的探讨[J],工程爆破,1997,4(3):59-63
    [56]史太禄,李保珍.微差间隔时间、药量分布及测距对爆破振动的影响[J],工程爆破,2003,9(4):10-14
    [57]M Ramulu, AK Chakraborty, AH Reddy. Influence of burden on the intensity of ground vibration in a limestone quarry[A]. The 7th international symposium on rock fragmentation by blasting, Beijing,2002,617-624
    [58]许海亮,张继春,杨红等.钻孔爆破振动速度计算公式及其简化的探讨[J],同济大学学报,2007,35(7):899-903,914
    [59]陈星明,肖正学,蒲传金.自由面对爆破地震强度影响的试验研究[J],爆破,2009,26(4):38-40,56
    [60]沈蔚,徐全军,季茂荣等.中深孔爆破振动参数的BP神经网络预报[J],爆炸与冲击,2002,22(4):353-357
    [61]周志华,张金山.基于人工神经网络的爆破震动速度峰值的预报[J],西部探矿工程,2003,(10):101-102
    [62]夏梦会,董香山,张力民等.神经网络模型在爆破震动强度预测中的应用研究[J],有色金属,2004,56(3):25-27
    [63]Manoj Khandelwal, T. N. Singh. Prediction of blast induced ground vibrations and frequency in opencast mine:A neural network approach[J], Journal of Sound and Vibration,2006,289(4-5):711-725
    [64]Manoj Khandelwal, T. N. Singh. Prediction of blast-induced ground vibration using artificial neural network[J], International Journal of Rock Mechanics and Mining Sciences,2009,46(7):1214-1222
    [65]文建华,李新平,张文成等.复合遗传算法在爆破震动测试参数确定中的研究[J],岩土力学,2005,26(1):160-162
    [66]许红涛,卢文波.遗传算法在工程爆破参数优化中的应用[J],中国工程科学,2005,7(1):76-80
    [67]张红亮,王水林,吕颖慧等.爆破震动效应的支持向量机分析预测[J],矿业研究与开发,2007,27(4):57-58,75
    [68]Manoj Khandelwal. Evaluation and prediction of blast-induced ground vibration using support vector machine, International Journal of Rock Mechanics and Mining Sciences, 2010(in press)
    [69]王民寿,郭庆海.用双随机变量回归改进爆破振速回归分析[J],爆炸与冲击,1998,18(3):283-288
    [70]苏国韶,宋咏春,燕柳斌.岩体爆破效应预测的一种新方法[J],岩石力学与工程学报[J],2007,26(s1):3509-3514
    [71]Siskind E D. Frequency analysis and use of response spectra for blast vibration aseessments in mining[A]. Proceedings of the 22nd Annual Conference on Explosives and Blasting Technique[C], New Jersey USA,1996,176-183
    [72]张奇,白春华,刘庆明.爆破地震波频谱特性研究[J],北京理工大学学报,1999,19(3):306-308
    [73]范磊,沈蔚.爆破振动频谱特性实验研究[J],爆破,2001,18(4):18-20
    [74]郭学彬,肖正学.爆破地震波的频谱特性研究[J],化工矿物与加工,1999,28(7):18-20
    [75]阳生权,刘宝琛.小间距平行隧道爆破震动加速度测试[J],爆破器材,1999,28(6):1-4
    [76]李孝林,王少雄,高怀树.爆破振动频率影响因素分析[J],辽宁工程技术大学学报[J],2006,25(2):204-206
    [77]田运生,李战军,汪旭光等.爆破开挖基坑地震波的频谱特征[J],爆破,2005,22(4):29-31,50
    [78]Morlet J. Wave Propagation and sampling theory[J], Geophysics,1982,47(2):203-236
    [79]Daubechies I. The wavelet transform, time frequency localization and signal analysis[J], IEEE Transactions on Information Theory,1990,65(5):961-1006
    [80]Daubechies I. Orthonormal bases of compactly supported wavelets II:variations on a theme [J], SIAM Journal on Mathematical Analysis,1993,24(2):499-519
    [81]Mallat S G. A theory for multi-resolution signal decomposition:The wavelet representation[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1980, 11(7):674-693
    [82]何军,于亚伦,梁文基,爆破震动信号的小波分析[J],岩土工程学报,1998,20(1):47-50
    [83]宋光明,曾新吾,陈寿如等.爆破条件对爆破震动信号分析中小波包时频特征的影响[J],工程爆破,2002,8(3):5-12
    [84]娄建武,龙源,徐全军等.基于小波包技术的爆破地震波特征提取及预报[J],爆炸与冲击,2004,24(3):261-267
    [85]凌同华,李夕兵.爆破振动信号不同频带的能量分布规律[J],中南大学学报,2004,35(2):310-315
    [86]晏俊伟,龙源,方向等.基于小波包变换的爆破地震波时频特征提取及分析[J],振动与冲击,2007,26(4):25-29,167
    [87]徐国元,中国生,熊正明.基于小波变换的爆破地震安全能量分析法的应用研究[J],岩土工程学报,2006,28(1):24-28
    [88]王迪安.多层建筑对爆破地震波主频率的响应特性[J],矿业研究与开发,1999,19(s):10-12
    [89]娄建武,龙源,徐全军等.普通民房在爆破地震波作用下的振动破坏分析[J],解放军理工大学学报,2001,2(2):21-25
    [90]刘满堂,陈庆寿.建筑结构对爆破地震的动力响应特性研究[J],爆破,2005,22(4):23-27
    [91]曹孝君,张继春,吕和林.频率对爆破地震作用下结构的动力响应的影响研究[J],爆破,2006,23(2):14-19,73
    [92]G W Housner. Limit design of structures to resist earthquakes [A], Proc. Of the 1stWorld Conf. on Earthquake Engineering[C], Calif.:Oakland,1956,5,1-13
    [93]黄文华,徐全军,沈蔚等.小波变换在判断爆破地震危害中的应用[J],工程爆破, 2001,7(1):24-27,16
    [94]中国生,徐国元,熊正明.基于小波变换的爆破地震信号能量分析法的应用研究[J],爆炸与冲击,2006,26(3):222-227
    [95]李洪涛,卢文波,舒大强等.基于功率谱的爆破地震能量分析方法[J],爆炸与冲击,2009,29(5):492-496
    [96]张义平,李宝山,王永明等.基于Hilbert谱的爆破震动瞬时输入能量模型及计算[J],矿业研究与开发,2009,29(4):88-90
    [97]田运生,田会礼,于亚伦等.爆破地震波作用下民房破坏分析和破坏特征[J],爆破,2005,22(1):96-98
    [98]邹海清,宋光明.建筑物爆破震动危害机制及破坏判据的确定[J],采矿技术,2005,5(2):63-64,86
    [99]吕淑然,杨军,刘国振.高大建筑物定向爆破地震振动效应监测与控制研究[J],爆破,2003,20(3):71-74
    [100]李存国,王润生,王玲.爆破地震效应对临近建筑物的影响[J],云南冶金,2006,35(3):10-11,17
    [101]李铁英.高层建筑结构在地震作用下的竖向振动研究[J],太原工业大学学报,1997,28(supp.):86-90
    [102]刘满堂,陈庆寿,李子富.单质点弹性体系建筑结构的爆破地震动力响应分析研究[J],爆破,2005,22(3):112-114,119
    [103]刘满堂,陈庆寿.多质点弹性体系建筑结构的爆破地震动力响应分析探讨[J],爆破,2006,23(3):25-27,47
    [104]凌同华,李夕兵,王桂尧.单段爆破震动的动态响应分析[J],中南大学学报,2007,38(3):551-554
    [105]易方民,高小旺,张维嶽等.高层建筑钢结构在多维地震动输入作用下的反应[J],建筑结构学报,2003,24(3):33-34
    [106]魏文晖,李秀.爆破地震波作用下底框结构的非线性动力分析[J],武汉理工大学学报[J],2004,26(7):58-61
    [107]杨梅兰.竖向地震对框架结构水平抗震性能的影响[D],新疆乌鲁木齐:新疆大学,2005
    [108]申永康,绍建华,陈建锋.建筑结构爆破地震反应弹塑性精细时程分析[J],爆炸与 冲击,2008,28(1):92-96
    [109]张永兵,秦荣,李双蓓.3层钢结构非线性地震反应的变增益模糊控制[J],振动与冲击,2008,27(10):106-110,120
    [110]汪芳.框架结构在爆破地震波作用下的动力安全性分析[D],湖北武汉:武汉理工大学,2006
    [111]魏文晖,汪芳,李秀.深孔爆破对房屋结构的非线性动力反应[J],武汉理工大学学报,2006,28(9):72-75
    [112]陈士海,马方兴,魏海霞.爆破地震动三向荷载分量对结构动态响应研究[J],山东科技大学学报,2006,25(4):39-42,49
    [113]王功琴.爆破地震作用下造成建筑物损坏的安全性鉴定研究[D],贵州贵阳:贵州大学,2007
    [114]许三罗.爆炸荷载作用下砌体结构响应的有限元分析[J],防灾减灾工程学报,2007,27(3):357-362
    [115]Longerfors, Westerberg, Kihlstrom. Ground vibration in blasting[J], Water Power,1958, 335-421
    [116]Adwards A T, Northwood T D. Experimental studies of the effects of blasting on structures[J], The Engineering,1960,2(10):538-546
    [117]Duvalland W I, Fogelson D E. Review of criteria for estimating damage to residences from blasting vibration, Washington:U-S-Bureau of Mines Report Investigation,1962, 59-68
    [118]Northwood T D. Blasting vibration and building damage[J], Engineer,1963, (215): 973-978
    [119]波林格G A著,刘锡荟,熊建国译.爆炸震动分析[M],北京:科学出版社,1975,89-99
    [120]中华人民共和国国家标准编写组.爆破安全规程(GB6722-86)[S],北京:中国标准出版社,1986
    [121]魏晓林.爆破震动对邻近建筑物的危害影响[J],爆破,1998,15(1):48-54
    [122]叶海旺,房泽法,彭志刚.爆破地震对结构的影响[J],爆破,2000,17(1):86-91
    [123]唐飞勇,胡锐,赵明生等.双因素判据在爆破地震监测中的应用[J],爆破,2008,25(2):89-91
    [124]赵明生,梁开水,曹跃等.爆破地震作用下建(构)筑物安全标准探讨[J],爆破,2008,25(4):24-27
    [125]Siskind D E. Vibration from blasting[M], Cleveland:International Society of Explosives Engineers,2000
    [126]李端明,张志呈.爆破地震波的频率特征[J],西南工学院学报,1998,13(3):43-48
    [127]吴德伦,叶晓明.工程爆破安全振动速度综合研究[J],岩石力学与工程学报,1997,16(3):266-273
    [128]唐春海,于亚伦,王建宙.爆破地震动安全的初步探讨[J],有色金属,2001,53(1):1-4
    [129]言志信,王永和,江平等.爆破地震测试及建筑结构安全标准研究[J],岩石力学与工程学报,2003,22(11):1907-1911
    [130]Butt S D, Apel D B, Calder P N. Analysis of high frequency microseismicity recorded at an underground hardrock mine[J], Pure and Applied Geophysics,1997,150(3-4): 693-704
    [131]王德胜.爆破振动安全标准德研究.有色金属,1995,(3):43-48
    [132]朱传云,卢文波,董振华.岩质边坡爆破振动安全判据综述[J],爆破,1997,14(4):15-17
    [133]张志呈.浅谈评价爆破地震效应地方法和标准[J],爆破器材,1998,27(3):32-35
    [134]万元林,黄忆龙.工程爆破中的灾害及其控制[J],爆破器材,2001,30(5):30-34
    [135]张志呈.爆破地震参量与持续时间[J],四川冶金,2002,(3):1-4
    [136]G V Berg, S S Thomaids. Energy consumption by structures in strong-motion earthquake[A], Pro. of 2ndWCEE[C], Tokyo, Japan,1960,681-197
    [137]W E Mckevitt, D L Anderson, N D Nathan, et al. Hysteretic energy spectra in seismic design[A], Pro. of 7th WCEE[C], Istanbul, Turkey,1980,326-338
    [138]H Akiyama. Earthquake-resistant limit-state design for building[M], Tokyo:University of Press,1985
    [139]毛志远,徐全军.考虑频率影响的爆破震动安全判据的工程实践[J],2001,7(3):14,19-22
    [140]伍振志,胡国祥,邓宗伟.爆破地震安全判据若干问题探讨[J],安全与环境工程,2003,10(4):64-66
    [141]王先义,何学秋,邵军.岩土开挖爆破震动效应安全判据的探讨[J],煤炭科学技术,2003,31(7):54-56
    [142]何晓光,张敢生.爆破地震安全判据探讨[J],辽宁科技学院学报,2005,7(2):26-29
    [143]卢文波,李海波,陈明等.水电工程爆破振动安全判据及应用中的几个关键问题[J],2009,28(8):1513-1520
    [144]凌同华.爆破震动效应及其灾害的主动控制[D],湖南长沙:中南大学,2004
    [145]张义平.爆破震动信号的HHT分析与应用研究[D],湖南长沙:中南大学,2006
    [146]中国生.基于小波变换爆破振动分析的应用基础研究[D],湖南长沙:中南大学,2006
    [147]李洪涛.基于能量原理的爆破地震效应研究[D],湖北武汉:武汉大学,2007
    [148]唐飞勇,王家忠,崔正荣等.能量判据在爆破振动安全中的应用初探[J],爆破,2009,26(4):85-88
    [149]Charles K Chui. An introduction to wavelets[M], New York:Academic Press,1992, 297-333
    [150]胡昌华,张军波.基于MATLAB的系统分析与设计—小波分析[M],西安:西安电子科技大学出版社,2000,265-266
    [151]王宏禹.非平稳随机信号分析与处理[M],北京:国防工业出版社,1999,12-20
    [152]李洪涛,舒大强.爆破震动衰减规律的影响因素[J],武汉大学学报,2005,38(1):79-82
    [153]MA Guowei, HAO Hong, ZHOU Yingxin. Assessment of structure damage to blasting induced[J], Engineering Structures,2000 (22):1378-1389
    [154]林大超,施惠基,白春华等.爆炸地震效应的时频分析[J],爆炸与冲击,2003,23(1):31-36
    [155]凌同华,李夕兵.基于小波变换的时—能分布确定微差爆破的实际延迟时间[J],岩石力学与工程学报,2004,23(13):2266-2270
    [156]凌同华,李夕兵.地下工程爆破震动信号能量分布特征的小波包分析[J],爆炸与冲击,2004,24(1):63-68
    [157]北京大学数学力学系.地震勘探数字技术[M],北京:高等教育出版社,1977,8-9
    [158]B.H.库特乌佐夫著.刘清泉,刘学山,毕卫国译.爆破工程师手册[M],北京:煤炭工业出版社,1992,136-148
    [159]彭玉华.小波变换与工程应用[M],北京:科学出版社,1999,36-62
    [160]Chui C K. Wavelet—a tutorial in theory and application[M], New York:Academic Press, 1992,56-58
    [161]刘涛,曾祥利,曾军.实用小波分析入门[M],北京:国防工业出版社,2006,70-78
    [162]Kuzmenko A A. Seismic effects of blasting in rock [M], Rotterdam:A A Balkema,1993
    [163]Schneider L C. A survey of blasting vibration regulations[J], Fragblast,2001,5(3): 133-156
    [164]陈士海,逢焕东.爆破灾害预测与控制[M],北京:煤炭工业出版社,2006,37-38,66-82
    [165]贺国京,阎奇武,袁锦根.工程结构弹塑性地震反应[M],北京:中国铁道出版社,2005,27-46
    [166]陈乐育.高耸结构在竖向地震作用下的动力反应分析[D],西安:西安建筑科技大学,2007
    [167]John M Biggs(姚玲森,程翔云译).结构动力学[M],北京:人民交通出版社,1982,7-19
    [168]中国生,房营生,徐国元等.基于小波包分析的建(构)筑物爆破振动安全判据研究[J],岩土工程学报,2009,31(2):223-228
    [169]毕卫国,石崇.爆破地震波引起结构响应的频率因素分析[J].爆破,2004,21(3):87-89
    [170]陈玲莉.工程结构动力分析数值方法[M],西安:西安交通大学出版社,2006,134-138
    [171]Penizen J. Dynamic response of elasto-plastic frames[J], Journal of Structural Division, 1962,88(st7):1322-1340
    [172]Kent D C, Park R. Cyclic load behavior of reinforcing steel[J], Strain,1973,9(3): 256-264
    [173]Saiidi M. Hysteresis models for reinforced concrete[J], Journal of Structural Division, 1982,108(st5):1077-1087
    [174]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[J],土木工程学报,1982,15(2):53-64
    [175]王娴明,徐波,沈聚敏.反复荷载作用下钢筋的本构关系[J],建筑结构学报,1992, 13(6):41-47
    [176]王来,王铁成,陈倩.低周反复荷载下方钢管混凝土框架抗展性能的试验研究[J],地震工程与工程震动,2003,23(3):113-117
    [177]郭子雄,吕西林.高轴压比下RC框架柱恢复力模型试验研究[J],土木工程学报,2004,37(5):32-38
    [178]谢小军.混凝土小型空心砌块砌体力学性能及其配筋墙体抗震性能的研究[D],长沙:湖南大学,1998
    [179]郑山锁.底部框架砖房框剪层和砖混层的恢复力特性研究[J],西安建筑科技大学学报,1999,31(3):296-299
    [180]张新培.钢筋混凝土抗震结构非线性分析[M],北京:科学出版社,2003,23-26
    [181]徐赵东,郭迎庆.MATLAB语言在建筑抗震工程中的应用[M],北京:科学出版社,2004,166-188
    [182]R H Scanlan, M ASCE, K Sachs. Earthquake time histories and response spectra[J], Journal of the Engineering Mechanics Division,1974,100(4):635-655
    [183]李桂青,李秋胜.工程结构时变可靠度理论及其应用[M],北京:科学出版社,2001,37-39
    [184]Kiyoshi Kanai. An empirical formula for the spectrum of strong earthquake motions[J], Bulletin of the Earthquake Research Institute University of Tokyo,1961, (39):85-95
    [185]胡聿贤,周锡元.弹性体在平稳和平稳化地面运动下的反应[A].地震工程研究报告集第一集[C],北京:科学出版社,1962,33-50
    [186]欧进萍,牛荻涛.地震地面运动随机过程模型的参数及其结构效应[J],哈尔滨建筑工程学院学报,1990,23(2):24-34
    [187]Ray W Clough, Joseph Penzien. Dynamics of Structures[M], New York:Mc Graw-Hill Inc.,1993
    [188]张治勇,孙柏涛,宋天舒.新抗震规范地震动功率谱参数的研究[J],世界地震工程,2000,16(3):33-38
    [189]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J],土木工程学报,2003,36(5):5-10
    [190]陈国兴,金永彬,宰金珉.高层建筑随机地震反应的简捷计算[J],南京建筑工程学院学报,1999,(1):29-37
    [191]Nigam N C, Narayanan S. Applications of random vibration[M], Berlin:Springer-Verlag, 1994
    [192]曾德斌,林大超,白春华等.爆炸地震加速度幅值的包络函数模型[J],工程爆破,2001,7(3):1-4,41
    [193]Shinozuka M, Sato Y. Simulation of nonstationary random process[J], J Eng Mech Div ASCE,1967,93(EM4):11-40
    [194]林大超,白春华,张奇.爆炸地震地面运动峰值加速度的实验研究[J],工程爆破,2001,7(2):25-28
    [195]杜修力,胡晓,陈原群.强震地运动随机过程模拟[J],地震学报,1995,17(1):103-109
    [196]牛荻涛.基岩地震动的随机模型及其参数确定[J],地震学报,1995,17(1):128-131
    [197]Dowding C H. Construction Vibration [M], Prentice Hall,1996
    [198]吴立,陈建平,舒家华.论爆破地震效应[J],爆破器材,1999,28(5):24-27
    [199]林大超,施惠基,白春华等.爆破振动时频分布的小波包分析[J],工程爆破,2002,8(2):1-5
    [200]SONG Guang-min, CHEN Shou-ru, WU Cong-shi. Wavelet packets analysis models for the prediction of blasting vibration wave form[A]. The 7th international symposium on rock fragmentation by blasting[C]. Beijing, China,2002,311-320
    [201]刘晶波,杜修力.结构动力学[M],北京:机械工业出版社,2005,51-57
    [202]程正兴.小波分析算法与应用[M],西安:西安交通大学出版社,1998,156-177
    [203]焦永斌.爆破地震安全评定标准初探[J],爆破,1995,12(50):45-47
    [204]李宏男,张景玮,聂建国.多孔砖保温夹心墙体抗震性能试验与分析[J],建筑结构学报,2001,22(6):73-80
    [205]周抚生,郭迅,郑志华等.大开间小型混凝土砌块十层模型房屋抗震性能试验研究[J],地震工程与工程振动,2002,22(2):58-64
    [206]P B Lourenco. Anisotropic softening model for masonry plates and shells[J], Journal of Structural Engineering, ASCE,2000,126(9):1008-1016
    [207]G Milani, P B Lourenco, A Tralli. Homogenization approach for the limit analysis of out-of-plane loaded masonry walls[J], Journal of Structural Engineering,2006,132(10): 1650-1663
    [208]刘雁,邹筱静,钟文乐等.底部两层框架砖房1/5比例模型抗震试验研究[J],建筑结构学报,2004,22(1):33-38
    [209]P B Shing, T Manivannan. On the accuracy of implicit algorithm for pseudodynamic tests[J], Earthquake Engineering and Structural Dynamics,1990,19(5):761-775
    [210]J Donea, P M Jones. Pseudodynamic capabilities of the ELS A laboratory for earthquake testing of large structures[J], Earthquake Spectra,1996,12(1):163-180
    [211]S G Buonopane, R N White. Pseudodynamic testing of masonry infilled reinforced concrete frame[J], Journal of Structural Engineering,1999,125(6):578-589
    [212]G M Calvi, G R Kingsley. Problems and certainties in the experimental simulation of the response of MDOF structures [J], Engineering Structures,1996,18(3):213-226
    [213]J Paquette, M Bruneau. Pseudo-dynamic testing of unreinforced masonry building with flexible diaphragm[J], Journal of Structural Engineering,2003,129(6):708-716
    [214]朱本全,李暄.考虑弯曲变形影响时子结构拟动力试验方法的研究[J],工程力学,1996,(A02):646-655
    [215]田石柱,赵桐,赵雪峰.位移保护下力控制拟动力试验方法的原理[J],地震工程与工程振动,2002,22(3):37-41
    [216]黄靓.框支配筋砌块砌体剪力墙多自由度子结构拟动力试验研究及非线性地震反应分析[D],长沙:湖南大学,2005
    [217]邱法维.结构抗震试验方法进展[J],土木工程学报,2004,37(10):19-27
    [218]王小林,吴枫,徐书雷.建筑结构对爆破震动响应的动力学计算方法[J],西安科技学院学报,2002,22(4):411-413
    [219]郑山锁,王建平.底层框架砖房抗震性能分析[J],西安建筑科技大学学报,1999,31(3):304-306
    [220]黄尚安,邹银生.底部框剪配筋砌块砌体房屋弹塑性地震反应的数字模拟[J],建筑结构学报,2004,25(1):53-59
    [221]叶献国,徐勤,李康宁等.地震中受损钢筋混凝土建筑弹塑性时程分析与振动台试验研究[J],土木工程学报,2003,36(12):20-25
    [222]S C Kim, D W White. Nonlinear analysis of a one-story low-rise masonry building with a flexible diaphragm subjected to seismic excitation[J], Engineering Structures,2004, 26(14):2053-2067
    [223]A Brencich, L Gambarotta, S Lagomarsino. A macroelement approach to the three-dimensional seismic analysis of masonry buildings[A].11th European Conference on Earthquake Engineering[C], Balkema, Rotterdam,1998,1-9
    [224]G Milani, P B Lourenco, A Tralli. Homogenised limit analysis of masonry walls, Part Ⅱ: Structural examples[J], Computers and Structures,2006,84(3/4):181-195
    [225]M R Button, R L Mayes. Out-of-plain seismic response of reinforced masonry walls[J], Journal of Structural Engineering,1992,118(9):2495-2513
    [226]M Dhanasekar, W Haider. Explicit finite element analysis of lightly reinforced masonry shear walls[J], Computers and Structures,2008,86(1-2):15-26
    [227]Yan Zhuge, David Thambiratnam, John Corderoy. Nonlinear dynamic analysis of unreinforced masonry[J], Journal of Structural Engineering,1998,124(3):270-277
    [228]Antonella Cecchi, Karam Sab. Out of plane model for heterogeneous periodic materials: the case of masonry[J], Journal of Mechanics & Solids,2002, (21):715-746
    [229]E Y Sayed-Ahmed, N G Shrive. Nonlinear finite-element model of hollow masonry[J], Journal of Structural Engineering,1996,122(6):683-690
    [230]尚晓江,苏建宁.ANSYS/LS-DYNA动力分析方法与工程实例[M],北京:中国水利水电出版社,2006,2-15
    [231]白金泽.LS-DYNA3D理论基础与实例分析[M],北京:科学出版社,2005,1-11
    [232]李朝.基于ANSYS/LS-DYNA软件的配筋砌块墙体爆炸数值模拟[D],黑龙江哈尔滨:哈尔滨工业大学,2007
    [233]宋贞霞.LS-DYNA程序的二次开发及其在隔震结构中的应用[D],江苏苏州:苏州科技学院,2007
    [234]H R Lotfi, P B Shing. Interface model applied to fracture of masonry structures[J], Journal of Structural Engineering,1994,120(1):63-80
    [235]娄建武,龙源,方向.工程爆破中的建筑物振动监测[J],解放军理工大学学报,2000,1(5):58-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700