用户名: 密码: 验证码:
甘蓝型油菜品种细胞壁特性与硼效率关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜缺硼是普遍存在的生产制约因子。但其品种间的硼效率存在显著差异。因此通过对品种筛选获得硼高效品种,进而对其进行生理生化和遗传学研究,最终通过育种和分子生物学方法获得理想的硼高效品种,是缓解我国硼矿资源缺乏和减少环境污染、提高作物产量和品质的重要措施。本论文是在总结了本研究室多年来有关甘蓝型油菜品种硼效率基因型差异机理研究成果的基础上,利用王运华等筛选出的甘蓝型油菜硼高效品种(95090和9118)和硼低效品种(95105和9141),运用营养液培养和细胞培养技术,研究甘蓝型油菜品种细胞壁特性与硼效率的关系及硼与植物细胞壁的关系。主要研究结果如下:
     1.研究发现在Hoagland营养液培养体系中,0.001mg/L~0.005mg/L的硼浓度可作为在该体系中进行油菜硼效率苗期品种筛选和生理生化机制研究的硼临界浓度。同时发现油菜根系比地上部对缺硼更敏感,可作为鉴定品种硼效率的主要器官。
     2.探明了不同油菜品种及其不同器官细胞壁组成的差异:根系细胞壁纤维素含量高于叶片,果胶含量低于叶片;愈伤细胞细胞壁纤维素含量低于根系和叶片,半纤维素含量高于根系和叶片,果胶含量与根系差异不大。不同硼效率油菜品种在细胞壁果胶、半纤维素和纤维素含量上差异不大;但硼高效品种新生叶片螫合剂可溶性果胶含量显著高于低效品种,碱溶性果胶含量显著低于低效品种;缺硼处理一周对根和叶细胞壁组成的影响很小;但使愈伤细胞细胞壁纤维素和半纤维素含量显著降低,SDS(十二烷基磺酸钠)可提取物显著升高。
     3.证明了细胞壁及其果胶是硼、钙在油菜体内的主要结合位点,镁在细胞壁中的含量很低。这一结论丰富了前人的研究结果。
     3.1.正常供硼条件下,不同油菜品种根系中均有约50%以上的硼结合在细胞壁中,叶片中的比例较低;胞壁硼含量受外界硼浓度变化的影响均小于相应的器官。缺硼时细胞壁硼含量占相应器官总硼量之比显著升高。
     3.2.同一油菜品种不同器官细胞壁硼含量与其细胞壁果胶含量呈显著正相关。根系细胞壁果胶含量及其硼含量显著低于叶片。不论缺硼与否,根系细胞壁中85%以上、叶片细胞壁中90%以上的硼结合在果胶中。
     3.3.正常供硼条件下,不同油菜品种根系中均有约30%以上的钙结合在细胞壁中。但细胞壁钙含量及其在细胞壁不同组分的分配受品种、生育期和外界硼浓度的影响较大,在细胞壁及其果胶中结合的专一性比硼弱。
     3.4.硼、钙含量在根系和叶片细胞壁中呈负相关。根系细胞壁硼含量低,钙含量高;叶片细胞壁硼含量高,钙含量低。
     4.引用先进的酶解法和DEAE-琼脂糖色谱柱法,首次在油菜不同品种细胞壁中分离出了含硼化合物,并初步证明该化合物为B-鼠李半乳糖醛酸聚糖-Ⅱ(B-RG-Ⅱ);硼在细胞壁中专一地和该化合物结合,果胶的硼含量与其RG-Ⅱ含量呈正相关;低效品种果胶结构比高效品种复杂,但果胶中B-RG-Ⅱ的结构基本相同;缺硼影响果胶和RG-Ⅱ的结构。
     5.首次运用原生质体培养方法,证实了硼是油菜不同品种细胞壁结构形成的必需元素。
     6.在油菜硼效率差异的生理生化机制方面,提出了如下新见解:
     6.1.从理论上证明了高效品种硼向上运转能力强是由于其根系和老叶细胞壁占器官鲜重之比及其硼含量较低,在正常供硼和缺硼条件下细胞壁硼量占器官总硼量之比均低于硼低效品种,即高效品种根系和老叶中自由态硼酸所占比例较高,因此在缺硼条件下硼向上运转的能力较强。
     6.2.高效品种新生叶细胞壁硼含量较低,细胞壁形成所需的硼量显著低于低效品种,因而在一定的低硼浓度条件下,高效品种新生部位细胞壁的形成和细胞的生长必然好于低效品种。
     6.3.高效品种新生叶片果胶的聚合度较低,可能有利于其适应外界环境条件的变化。
B deficiency in rape(Brassica Napus L.) is a common micronutrient deficiency phenomenon in field. But the cultivate response to low B varied widely. So it is possible to get ideal B efficient rape cultivars through methods of breeding and molecular biology. To achieve this goal, it is essential to make clear the mechanisms of efficiency. Recently studies showed that pectin content of plant cell wall may be the main factor to determine plant B efficient. In this stud), two B efficient rape cultivars and two B inefficient rape cultivars, which were screened by Wang Yunhua et al(1995) in our laboratory, were used to study B functions and distribution laws in the wall, and the differences of these respects among the cultivars. The main results as follow:
    1. 0.001Bmg/L~0.005Bmg/L B content range can be used as critical B content to screen different B efficient rape cultivars in seedling stage in Hoagland nutrition culture system. The growing conditions and root activities in this range were distinguished difference in different B-efficient cultivars. In addition, the root was more sensible to B deficiency than the shoot, which can looked on as a main index to judge B efficient cultivars.
    2. The constitution of wall were significantly different in different organs and cultivars and it was controlled by genetic and organ differentiation. The cellulose content in root is higher than that in leaf, pectin content is lower than that in leaf, and little difference exists in hetnicellulose. Cultured cells had the lowest cellulose content and the highest hemicellulose content The content of total pectin, cellulose and hemicellulose had little differences between B-efficient and B-inefficient cultivars. However, the dictation soluble pectin content was much higher and the alkaline soluble pectin content was much lower in B-efficient cultivars than in B-inefficient cultivars.
    3. B had little effect on the constitution of root and leaf wall, but B deficiency could significantly decrease the cellulose content in cultured cell and significantly increases the SDS extractants.
    4. It is proved that cell wall and pectin were the main sites combining B and Ca, and the Mg concentration in wall was very low, those were in agree with the other researcher's result.
    4.1. Under normal B condition, about more than 50% of root B was found in the wall; about 30% in upper leaf and about 20% in lower leaf. And the wall B content was more stable in different B conditions than the organs. So the ratio of wall B was significantly increased in B deficient conditions.
    4.2. More than 80% B in root wall and more than 90% B in leaf wall was found in pectin's.
    4.3.The B concentration in root wall and in the pectin was distinguished lower than that in leaf. 4.4.The Ca concentration in cell wall and its distribution in cell wall constitutions were influenced by growth stages and vitro boron concentration, its capability of combining with cell wall pectin is not strong.
    5. Through pectinase decomposition and DEAE- Sepharose chromalography methods, a B-complexe was separated for the first time in rape. And proved that this complexes may be B-RG-II.
    6. Boron is proved to be an essential element in cell wall formation through the method of protoplast breeding.
    7. New suggestions were put forward on mechanism of boron efficiency in rape cultivars.
    7.1. B-efficient cultivars had lower B content in root and old leaf wall and the ratio of free boron was higher under B deficiency condition, which meaned stronger capability of transportation of B upward.
    7.2. The B content needed in the protoplast wall rebuilding in B-efficient cultivars was much lower that that in B-inefficient cultivars. Therefore, the wall of B-efficient cultivars can form and grow normally under certain lower boron concentration.
    7.3. Lower polymerization of the pectin in upper leaves was founded in B-efficient cultivars, which might be advantageous for the cultivator to adapt to the change of outside environment.
引文
1.王火焰,王运华,吴礼树。硼钙营养对甘蓝型油菜IAA含量的影响。华中农业大学学报,1998,17(4):341-344
    2.王火焰。不同硼效率甘蓝型油菜品种硼钙相互作用机理研究。[博士学位论文]。武汉,华中农业大学,1999
    3.王运华,兰莲芳。甘蓝型油菜不同品种对缺硼敏感性差异的研究(Ⅰ,Ⅱ,Ⅲ)。华中农业大学学报,增刊,1995,21:71-84
    4.王运华,黄竹根,张晓钟。硼肥。北京,化学工业出版社,1988,13
    5.皮美美。硼对植物生理代谢的影响。华中农业大学学报(增刊),1995,11-17
    6.刘昌智,王玉芹等。油菜不同品种耐土壤缺硼力的研究。土壤学报,1995,32(3):308-315
    7.何子平,皮美美。硼钾营养相互配合对油菜叶片CAT和POD活性及根膜透性的影响。华中农业大学学报,1993,12(5):468-471
    8.李志玉,郭庆元。芝麻硼素营养与硼肥应用。(?)施肥对不同芝麻品种生长发育及硼素积累的影响。中国油料,1992,4:45-48
    9.李连朝、王学臣。水分亏缺对植物细胞壁的影响及其与细胞延伸生长的关系。植物生理学通讯,1996,32(5):321-327
    10.李雄彪,吴绮。植物细胞壁(M)。北京:北京大学出版社,1990
    11.杨玉华,吴礼树,王运华,曹享云。硼对不同甘蓝型油菜品种细胞壁酶活性的影响。植物营养与肥料学报,1999,5(4):341-346
    12.杨玉爱,谢振翅,Bell R W。中国油料籽作物硼锌营养调控研究项目成果简介。土壤学报,1995,32(4):449-452
    13.杨玉爱,谢振翅,Bell R W。中国油料作物硼锌营养调控。中澳合作国际会议报告,1994
    14.沈振,张秀省,王震宇。硼素营养对油菜花粉萌发的影响。中国农业科学,1994,27(1):51-56
    15.沈振国,沈康。硼在油菜体内分配与运转研究,南京农业大学学报,1991,14(4):13-17
    16.沈康,沈振国,徐汉卿。油菜硼素营养与结实性的研究,作物学报,1993(19)6:539-544
    17.周晓峰、王运华。硼对棉花叶柄解剖结构的影响,华中农业大学学报,1993,12(2):122-125
    18.胡时友,刘武定。硼锰及锌配合施用对苎麻生理代谢的影响。华中农业大学学报。1991,10(3)256-262
    19.胡秋辉,徐光壁,史瑞和。不同油菜品种硼素营养的遗传性差异机理研究,南京农业大学学报,1990,13(1):80-86
    20.胡秋辉。低芥酸油菜的硼素营养特性,南京农业大学学报,1992,15(3):53-56
    21.赵竹青。硼与生长素,乙烯及其它激素相互作用的研究,华中农业大学博士论文,1998
    22.徐芳森,王运华,李建春。甘蓝型油菜硼营养高效在F1代的遗传研究.植物营养与肥料学报,1998,4(3):305-310
    23.徐芳森。甘蓝型油菜硼营养高效的生理机制和遗传基础研究.[博士学位论文].武汉,华中农业大学,1999
    24.耿明建。对缺硼反应不同的二甘蓝型油菜品种生理特性研究,华中农业大学硕士论文,1997
    25.曹享云,刘武定,皮美美等。对缺硼反应不同的油菜品种根系活力和酶活性的差异.中国油料,1997,19(2):19-21
    26.曹享云,宋世文,刘武定。棉花品种对缺硼的敏感性及其硼效率的研究。华中农业大学学报,1996,15(6):558-561
    27.曹享云。对缺硼反应不同的油菜基因型根系生理特性的研究.[博士学位论文]。武汉,华中农业大学,1999
    28.喻敏。不同甘蓝型油菜品种硼利用效率差异研究.[硕士学位论文].武汉,华中农业大学,1997
    
    
    29.彭青枝,皮美美,刘武定。芥菜型油菜不同品种硼吸收与分配的差异,华中农业大学学报,增刊,1995,21:98-102
    30.彭青枝、皮美美、曹享云。硼对油菜不同品种酶活性和根系活力的影响,植物营养与肥料学报,1996,2(3)233-237
    31.谢青,魏文学,王运华。棉花对硼的吸收、运转和分配的研究。作物学报,1992,18(1):31-37
    32.褚海燕。甘蓝型油菜品种及其F1代利用硼效率及生理特性研究.[硕士学位论文].武汉,华中农业大学,1997
    33.熊汉峰,刘武定,皮美美。硼氮及其配合对油菜吸收氮及某些酶活性的影响。华中农业大学学报,1994,13(1)46-50
    34.熊双莲,吴礼树,王运华,兰莲芳。不同甘蓝型油菜品种硼的吸收与分布。华中农业大学学报,增刊,21:85-91
    35.薛建明,杨玉爱。不同油菜基因型对缺硼反应的差异.浙江农业大学学报,19
    36. Albert (?) S. Ribonucleic acid content boron deficiency systems and elongation of tomato root tips. Plant Physiol, 1965. 40:649-65
    37. Andrew J M, Bruno M M, Margaret L P and Niels O M. Problems encountered during the extraction, purification and chromatrography of pectic fragments, and some solution to them. Carbohydrate Research, 1991, 215:219-227
    38. Andrus C F, Brittle stem .An apparently new sublethal gene in tomato. Tomato Genetics Coop. Rept. 1995, 5:5
    39. Appel H M. Phenolics in ecological interaction: the importance of oxidation. J. Chem. Ecol. 1993, 19:1521-1552
    40. Asad A, Bell R W, Dell B. External Boron Requitements for Canola (Brassica napus L. ) in Boron Buffered Solution Culture Annals of Botony, 1997 , 80:65-73,
    41. Asen S and Davidson O W. The boron distribution in greenhouse rose plants. Proc Amer. Soc, Hort. Sci. 1950, 56:433-437
    42. Augsten H., Eichorn B. Biochemistry and physiology of the effect of boron in plants. Biol Rundsch. 1976, 14:268-285
    43. Bellaloui N, Brown P H and Dandekar A M. Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physio, 1999, 119(2):735-74
    44. Bingham F T, Elseewi A and Oertli J J. Characteristics of boron absorption by excised barley roots. Soil Sci. Soc. Am. Proc. 1970, 34:613-617
    45. Birnbaum E H, Beasley C A and Dugger W M. Boron deficiency in unfertilized cotton (Glossypium birsutum) ovules grown in vitro. Plant physiol, 1974, 54:931-9
    46. Blamey F P C and Chapman J. Differential response of two sunflower cultivars to boron fertilization. Australia. 1982, 92-94
    47. Blamey F P C, Vermculen W J and Chapman J. Inheritance of boron status in sunflower. Crop Sci, 1984, 24: 43-46
    48. Blaser-Grill J, Knoppik D. Amberger A and Goldbach H. Influence of boron on the membrane potentialin Elodea densa and Helianthus annuus roots and H+ extrusion of suspension cultured Daucus carota cella. Plant Physiol, 1989,90:2880-284
    49. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Analytical Biochemistry. 1973, 54: 484-489
    50. Bonilla I, Perez H. Cassab G. The effect of boron deficiency on development in determinate nodules: changes in cell wall pectin contents and nodule polypeptide expression. In: Bell R W and Reerkasem Eds.,Boron in Soils and Plants, 1997 Kluwer Academic Publishers. 1997, 213-220.
    51. Bonner J, Galston A W. Carbohydrates: Their nature function and interrelations. Plant Physiol, 1952,
    
    187-215
    52. Bowen J E, Nissen P, Boron uptake by excised barly roots. I. Uptake into the free space, Plant Physiol, 1976, 57:353-357
    53. Brown P H and Hu H. Boron uptake by sunflower, squash and cultnred tobacco cells. Plant Physiol, 1994, 91 : 435-441
    54. Brown P H and Hu H. Phloem mobility of boron is species dependent. Evidence for phloem mobility in sorbitol rich species. An Botn, 1996, 77:497-505
    55. Brown P H and Shelp B J. Boron mobility in plants. In: Bell R W and Reerkasem Eds., Boron in Soils and Plants. Kluwer Academic Publishers. 1997, 193:85-101.
    56. Brown P H, Bellaloui N, Hu H N, et al. Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physio,1999,119 (1) :17-20
    57. Brown P H, Hu H N. Phloem boron mobility in diverse plant. species. Botanica Acta.,1998, 111 (4) : 331-335
    58. Cakmak I, Kurz H and Marschner H. Short-term effects of boron, germanium and high light intensity on membrane permeability on boron deficient leaves, but not in phosphorus-deficient leaves of sunflower. Physiol.Plant, 1995, 95:11-18
    59. Carpita N C. Pectic polysaccharides of maize coleoptiles and proso millet cells in liquid culture. Phytochemistry,1989, 28(1) : 121-125
    60. Chuda Y, Ohnishi-Kameyama M and Nagata T. Identification of the forms of boron in seaweed by 11B NMR. Phytochemistry, 1997, 46(2):209-213
    61. Coetzer L A and Robbertse P J. Pollination biology of Persea Americana Fuerte / Sth. Africa Avocado Grow. Assoc. Yearbook 10, 1987,43-45
    62. Cohen M S, Albert L S, Autoradiographic examination of meristems of intact boron-deficient squash roots treated with tritiated thymidine. Plant Physiol, 1974, 54:766-768
    63. Coke L and Whittington W J. The role of boron in plant growth. Ⅳ. Interrelationships between boron and iadol-3-y1 acetic acid in the metabolism of bean radicles.J Exp Bot, 1968, 19:295-308
    64. Cormack R G H. Action of pectic enzymes on surface cells of living Brassica roots. Science, 1955, 122:1019-1929
    65. Crandall P C, Chamberlain J D and Garth J K L. Toxicity symptoms and tissue levels associated with excess boron in pear. Comm. Soil Sci.Plant Anal, 1981, 12:1047-1057
    66. Cutcliffe J A. Cultivar and spacing effects on incidence of hollow stem in broccoli. Can J. Plant Sci 1975, 55:867-869
    67. Dannel F, Pfeffer H and Romheld V. Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. J Plant Physiol, 1998, 153(5, 6): 615-622
    68. Dannel F, Pffefffer H, and Pomheld V. Effect of pH and boron concentration in the nutrient solution on translocation of boron in the xylem of sunflower. In: Bell R W and Reerkasem Eds. , Boron in Soils and Plants. Kluwer Academic Publishers. 1997, 193:183-186
    69. Delgado A, Benlloch M and Fernandez-Escobar R. Mobilisation of boron in olive trees during flowering and fruit development. Hort Science, 1994, 29:616-618
    70. Dickinson D B. Influence of borate and pentaerythriol concentrations on germination and tube growth of Lilium longiflorum pollen.J Amer Soc Hort Sci, 1978, 103:413-416
    71. Dugger W M. Boron on plant metabolism In: Encyclopedia of Plant Physiology. In: Lauchli A and Bieleski R L Eds. ,, New series. Springer—Verlag. Berlin , 1983, 14: 626-650.
    72. Dugger W M., Plamer R L. Effect of boron on the incorporation of glucose from UDP-glucose Into cotton flbers grown in vitro. Plant Physiol, 1980, 65:266-273
    
    
    73. Durst R W, Loomis W D. Substitution of germanium for boron in suspension-cultural carrot colls. Plant Physiol, 1984, 75S: 14
    74. Dye M H, Buchanan L, Dorofaeff F D and Beecroft F G, Dieback of apricot trees following soil application of boron. New Zealand J, Exp Agric, 1983, 11:331-342
    75. Endho M, Ohira K, Fujiwara A. A role of calcium as a component of cell wall of radish. J Sci Soil and Manure(Japan), 1971, 42:390-394
    76. Evans S and Krahenbuhl U. Improved boron determination in biological material by inductively coupled plasma mass spectrometry. J Anal Atom Spectrom, 1994, 9:1249-1253
    77. Fackler U, Goldbach H, Weiler E W and Amberger A. Influence of boron deficiency on indol-3yl-acetic acid and abscissic acid levels in root and shoot tips. J Plant Physiol, 1985, 119:295-299
    78. Ferrol N and Donaire J P. Effect of boron on plasma membrane proton extrusion and redox activity in sunflower cells. Plant Sci , 1992, 86:41-47
    79. Ferrol N, Belver A , Roldddan M et al, Effects of boron on proton transport and membrane properties of sunflower (Helianthus annuus L, ) cell microsomes. Plant Physiol, 1993, 103:763-769
    80. Ferrol N, Belver A, Roldan M, Rodriguez-Rosales M P and Donaire J P. EFfects of boron on proton transport and membrane properties of sunflower (Helianthus annuus L,) cell microsomes. Plant Physiol, 1993, 103:763-769
    81. Findeklee P and Goldbach H E. Rapid effects of boron deficiency on cell wall elasticity modulus in Cucurbita pepo roots. Bot Acta . 1996, 109:463-465
    82. Findeklee P, Wimmer M and Goldbach H E. Early effects of boron deficiency on physical cell wall parameters, hydraulic conductivity and plasmalemma-bound reductase activities in young C, Pepo and V.Faba roots. In: Bell R W and Rerkasem B eds., Boron in Soils and Plants. 1997 Kluwer Academic Publishers. 1997, 221-227
    83. Fleischer-A, Titel-C, Ehwald-R. The boron requirement and cell wall properties of growing and stationary suspension-cultured Chenopodium album L. cells. Plant Physiol, 1998, 117: 4, 1401-1410
    84. Forrest H, Nielsen. Boron in human and animal nutrition. In: B Dell, P H Brown and R W Bell Eds. , Soil and Plant. Kluwer Academic Publishers. 1997, 199-208
    85. Freshour G, Clay R P, Fuller M S, Albersheim P, Darvill A G and Hahn M G, Developmental and tissue specific structural alterations of the cell wall polysaccharides of Aravidopsis thaliana roots. Plant Physiol,1996. 110:1413-1429
    86. Fry S C. Cross linking of maatrix polymers in the growing cell walls of angiosperms Annu Rev Plant Physiol,1986, 37:165-186
    87. Garcia-Gonzales M, Mateo P and Bonilla I. Boron requirement for envelope structure and function in Anabaena PCC7119 heterocysts. J Exp Bot, 1991, 42:925-929
    88. Goldbach H and Amberger A. Influence of boron nutrition on cell wall polysaccharides in cell cultures of Daucus carota L. J Plant Physiol,1986, 123: 263-269
    89. Goldbach H. Influence of boron nutrition on net uptake and efflux of 32P and 14C-glucose in Heliantbus annuus roots and cell cultures of Daucus carota. J.Plant Physiol, 1985, 118:431-438
    90. Gomez-Rodriguez M V, Luna del Castillo J and Alvarez-Tinaut M C. The evolution of glucose-6P-dehydrogenase and 6P-gluconate-dehydrogenase activities and the ortho diphenolic content of sunflower leaves cultivated under different boron treatments. J Plant Nutr, 1987, 10:2211-2229
    91. Gupta U C. Boron nutrition of crops. Adv Agron , 1979, 31:273-303
    92. Hanson E J. Movement of boron out of tree fruit leaves. Hort Science , 1991a, 26:271-273
    93. Hanson E J. Sour cherry trees respond to foliar boron applications. Hort Science, 1991b. 26:1142-1145
    94. Heathcote R G, Smithson J B. Boron deficiency in cotton in Northern Nigeria. Ⅱ. The effect of variety. Experimental Agriculture.1974, 10(3): 199-208
    
    
    95. Hemberg T, Rooting experiments With hypocotyles of phascolus vulgaris L. Physioi Plantarum, 1951, 4:358-369
    96. Heyes J h, White P J and Loughman B C. The role of boron in some membrane characteristics of plant cells and protoplasts. In : Randall DD , Blevins DG And Miles Eds, Current topics in Plant Biochem And Physiol. University Missouri, Columbas, 1991, 10:179-194.
    97. Hirsch A M, Pengelly W L and Torrey J G. Endogenous IAA levels in boron-deficient and control root tips of sunflower. Bot Gaz , 1982, 143:15-19
    98. Hirsch A M, Torrey J G. Ultrastructural changes in sunflower root cell in relation to boron deficiency and added auxin. Can, J.Bot I980, 58:856-866
    99. Hu H and Brown P H. Absorption of boron by plant roots. In: Bell R W and Reerkasem eds, Boron in Soils and Plants. Kluwer Academic Publishers. 1997 , 193:49-58.
    100. Hu H, Penn S G, Lebrilla C B and Brown P H. Isolation and characterization of soluble B-complexes in higher plants. Plant Physiol , 1997, 113:649-655
    101. Hu H., Brown P. H., Localization of boron in cell walls of squash and tobacco and its association with pectin, Evidence for a structural role of boron in the cell wall. Plant Physiol , 1994, 105: 681-689
    102. Hu-HeNing; Brown-PH, Labavitch-JM.. Species variability in boron requirement is correlated with cell wall pectin. Journal-of-Experimental-Botany. 1996, 47: 295, 227-232
    103. Hu HL, Penn S G and Brown P H. Direct analysis of sugar alcohol borate complexes in plant extracts by matrix-assisted laser desorption/ionization Fouier transform mass spectrometry. Analytical Chemistry Washington 1997, 69(13) :2471-2477
    104. Ishii T, Matsunaga T. Isolation and characterization of a boron-rhamno galacturonan-Ⅱ complex from cell walls of sugar beet pulp. Carbohydr. Res. 1996, 284, 1-9
    105. Jackson J F. Borate control of protein secretion from Petunia pollen exhibits critical temperature discontinuities. Sex. Plant Reprod. 1989, 2:11-14
    106. Jamjod S, Mann C E and Rerkasem B. Combining ability of the response to boron deficiency in wheat. In: Dev. Plant Soil Sci. V. 50, Dordrecht: Kluwer Academic Publishers. 1993, 359-361
    107. Jarvis M C. Structure and properties of pectin gels in plant cell wall. Plant Cell Environ. 1984, 7:153-164
    108. Jenkin M., Hu H N, Brown P et al. Investigations of boron uptake at the cellular level. In: Barrow N J ed., Plant nutrition-from genetic engineering to field practice. The Netherlands, Kluwer Academic Publishers, 1993, 157-160
    109. Jiang Y, Miles P W. Generation of H202 during enzymic oxidation of catechin. Phytochem, 1993, 33:29-34
    110. Jianming Xue, Minshu Lin, R D Bell et al.Differential response of oilseed rape (Brassica napus L.) cultivars to low boron supply . Plant and Soil, 1998, 204:155-163
    111. Kaneko S, Ishii T, hand Matsunaga T. A boron-rhamnogalacturonan-complex from bamboo shoot cell walls. Phytochemistry, 1997, 44 (2) :243-248
    112. Karkhanis Y D, Zeltner J Y, Jackson J J . A new and improved microassay to determine 2-Keto-3- deoxyoctonaate in lipopolysaccharide of Gram-Negative bacteria. Analytical Biochemistry, 1978, 85: 595-601
    113. Keerati-kasikorn P, Bell R W, Panya P, Gilmour R F and Loneragan J F. Comparision of seed yield and their response to boron and complete fertilizer. In: Barrow N J ed., Plant Nutrition—from Genetic Engineering to Field Practice . Kluwer Academic Publishers. 1993, 409-412
    114. Kelly J F and Gabelman W H. Variability in the tolerance of varieties and strains of red beets (Beta Vulgaris L) to boron deficiency. Proc Am Soc Hort Sci, 1960, 76:409-415
    
    
    115. Kobayashi M, Kawagguchi S. Takasaki M. A borate-rhamnogalacturonan complex in germminating pollen tubes of lily(Lilium longifflorum).In: Ando T Ed., Plant nutrition -for substainable food production and environment..1997 Kluwer Academic Publishers. 1997, 89-90
    116. Kobayashi M, Matoh T, Azuma J. Structure and glycosyl composition of the boron -polysaccharide complex of radishroots. Plant Cell Physiol, 1995, 365:139
    117. Kobayashi M, Matoh T, Azuma J. Two chains of rhamno-galacturonan Ⅱ are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol,1996,110, 1017-1020
    118. Kobayashi M, Matoh T, In vitro reconstitution of the boron-polysacharide complex purified ffrom cultured tobacco BY-2 cells, In: Bell R W and Reerkasem Eds., Boron in Soils and Plants, Kluwer Academic Publishers. 1997,237-241
    119. Kobayashi M, Nakagawa H, Asaka T. Borate-Rhamnogalacturonan Ⅱ bonding reinforced by Ca~(2+) retains pectic polysaccharides in higher-plant cell walls. Plant Physiol, 1999, 119:199-203
    120. Kobayashi M., Nakaggawa H., Asaka T and Matoh T. Cross-linkage in the rhamnogalacturronan regions both with boric acid and calcium ion anchors pectic network in cell walls. Plant Physiol, 1998
    121. Kohl H C Jr and Oertli J. Distribution of boron in leaves. Plant Physiol,1961, 36:420-424
    122. Kouchi H., Kumazawa K. Anatomical responses of root tips to boron deficiency. Ⅱ.Effect of boron deficiency on the cellular growth and development in root tips. Soil Sci Plant Nutr, 1975,21(2):137-150
    123. Kouchi H., Kumazawa K., Anatomical responses of root tips to boron deficiency. Ⅲ.Effect of boron deficiency on sub-cellular structure of root tips, particularly on morphology of cell wall and its felated organelles. Soil Sci Plant Nutr, 1976, 22:53-71
    124. Kouchi H., Kumazawa K.. Anatomical responses of root tips to boron deficiency. Ⅰ. Effect of boron deficiency on elongation of root tips and their morphological, characteristics. Soil Sci Plant Nutr,1975, 21:21-28
    125. Lambein P and Wolk C P. Structural studies on the glycolipids from the envelope of the heterocyst. Anabaena cylindrica. Biochem., 1973, 12:791-798
    126. Lee S G and Aronoff S. Boron in plants: a biochemical role. Science, 1967, 158:798-780
    127. Lee S G and Aronoff S. Investigations on the role of boron in plants Ⅲ. Anatomical observations. Plant Physiol, 1966,41:1570-1577
    128. Lee S. Boron in plants:a biochemical role. Science, 1967, 158:798-799
    129. Lewis D H. Boron, lignification, and origin of vascular plants-a unified hypothesis. New Phytol, 1980, 84:209-229
    130. Loomis W D, Durst R W. Chemistry and biology of boron. Biofactors,1992, 3:229-239.
    131. Lovatt C J, Albert L S and Tremblay G C. Synthesis and catabolism of uridine nucleotides in boron deficient squash roots. Plant Physiol, 1981, 68:1389-1394
    132. Lukaszewski K M and Blevins D G. Root growth inhibition in boron-deficient or aluminium-stressed squash may be a result of impaired ascorbate metabolism. Plant Physiol, 1996,112:1135-1140
    133. Marsh R P and Shire J W. Boron as a factor in the calcium metabolism of the corn plant. Soil Sci, 1941, 51:141-151
    134. Marsh R P. Comparative study of the calcium-boron metabolism of representative dicots and monocots. Soil Sci,1942, 53:75-78
    135. Mason T L and Wasserman B P. Inactivation of red beet B-glucan synthetase by native and oxidised phenolic compounds. Phytochemistry, 1987, 26:2197-2202
    136. Matoh T and Kobayashi M. Boron and calcium, essential inorganic constituents of pectic
    
    polysaccharides in higher plant cell walls. J Plant Res, 1998, 111:179-190
    137. Matoh T, Ishigaki K, Mizutani M. Boron nutrition of cultured Tobacco BY-2 cells. I. Requirement for and intracellular localization of boron and selection of cells that tolerate low levels of boron. Plant Cell Physiol, 1992, 33(3):1135-1141
    138. Matoh T, Ishigaki K, Ohno K, Azuma J. Isolation and characterization of a boron-polysaccharide complex from radish roots. Plant cell Physiol, 1993, 34(4):639-642
    139. Matoh T, Kawaguchi S, Kobayashi M. Ubiquity of a borate-rhamnogalaacuronan-Ⅱ complex in the cell walls of higher plants. Plant Cell Physiol, 1996, 37:636-640
    140. Matoh T, Takasaki M, Takabe K. Immunocytochemistry of rhamnogalacturonan in cell walls of higher plants. Plant Cell Physiol, 1998, 39 (5) : 483-491
    141. Matoh T. Boron in plant cell walls. In: Bell R W and Reerkasem Eds., Boron in Soils and Plants. Kluwer Academic Publishers, 1997, 193: 59-70.
    142. Matsunaga T, Ishii T and Watanabe-Oda H. HPLC/ICP-MS study of metals bound to borate-rhaamnogalaturonan-Ⅱ from plant cell walls. In: Ando T Eds., Plant nutrition -for sustainable food production and environment. 1997 Kluwer Academic Publishers. 1997, 81-82
    143. Matsunaga T, Ishii T. Chemical forms of water-soluble boron in fietd-grown komatsuna plants(Brassica campestris L) during flowering stage. Japanese J Soil Sci Plant Nutr, 1999, 70 (1) : 70-72
    144. Mondal A B, Singharoy A K. Selection of some wheat genotypes on terai soil. Envion Ecology, 1986, 7 (4):978-979
    145. Muhling-KH, Wimmer-M, Goldbach-HE, Muhling-KH, Wimmer-M, Goldbach-HE Apoplastic and membrane-associated Ca2+ in leaves and roots as affected by boron deficiency. Physiologia-Plantarum, 1998, 102: 2, 179-184
    146. Nayar P K,Misra A K and Patnaik N. Uptake of B and Mo in relation to growth and yield of rice varieties of different urations . Indian J Agric Sci, 1984, 54(6): 470-477
    147. Neales T F. A comparison of the boron requirement of intact tomato plants and excised tomato roots grown on sterile culture. J Exp Bot, 1964, 15:647-653
    148. Noguchi K, Yasumori M, Imai T. borl-1, an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol, 1997, 115:901-906
    149. Northcote D H. Sites of synthesis of the polysaccharides of the cell wall. In: Pridhan J B ed., Plant Carbohydrate Biochemistry ,Academic Press, New York, 1974, 165-181
    150. Obermeyer G, Kriechbaumer R, Strasser D . Boric acid stimulates the plasma membrane H~+-ATPase of ungerminated lily pollen grains. Physiol. Plant, 1996,98:281-290
    151. Oertli J J and Grgutevic. Effect of pH in the absorption of boron by excised barley roots. Agron J, 1975, 67:278-280
    152. Oertli J J and Kohl H C. Some considerations about the tolerance of various plant species to excessive supplies of bouon. Soil Sci, 1961, 92:243-247.
    153. Oertli J J and Richardson W F. The mechanism of boron immobility in plants. Plant Physiol, 1970, 23:108-116
    154. Oertli J J. Non -homogeneity of boron distribution in plants and consequence for foliar diagnosis. Comm Soil Sci Plant Anal, 1994, 25:1133-1147
    155. Oertli J J. The distribution of normal and toxic amount of boron in leaves if rough lemon. Agron
    
    J. 1960, 52:530-532
    156. Oertli J J. The mobility of boron in plants. Plant and Soil, 1993, 155/156:301-304
    157. O'Neill M A, Warrenfeltz D, Kates K. Rhamnogalacturonan-Ⅱ, a pectic polysaccharide in the walls of growing plant cells, forms a dimer that is covalently cross-linked by a borate ester. J Biol Chem, 1996, 271, 22923- 22930
    158. Parr A J and Loughman B C. Boron and membrane function in plants. In: D A Robb and W S Pierpoint. Eds., Metals and Micronutrients, Uptake and Utilization by Plants. Academic Press, New York. 1983, 87-107
    159. Pellerin P, Doco T. Vidal S. Structural characterization of red wine rhamnogalacturonan Ⅱ. Carbohydr. Res. 1996, 290, 183-197
    160. Pfeffer H, Dannel F. and Romheld V. Compartmentation of boron in roots and its translocation to the shoot of sunflower as affected by short term changes in boron supply. In: Bell R. W and Reerkasem Eds., Boron in Soils and Plants. Kluwer Academic Publishers. 1997, 193:203-207
    161. Pfeffer H, Dannel F, Romheld V. Isolation of soluble boron complexes and their determination together with free boric acid in higher plants. 1999, 154 (3): 283-288
    162. Pfeffer-H, Dannel-F, Romheld-V. Are there connections between phenol metabolism, ascorbate metabolism and membrane integrity in leaves of boron-deficient sunflower plants? Physiologia-Plantarum 1998, 104: 3, 479-485
    163. Picchiont G A, Weinbaum S A and Brown P H. Retention and the kinetics of uptake and export of foliage-applied, labelled boron by apple, pear, prune, and sweet cherry leaves. J Amer, Soc Hort Sci, 1995, 120:28-35
    164. Piland J R, Irwland C F and Reisenauer H M.The importance of borax to legume seed production on the south. Soil Sci, 1944, 57:75-84
    165. Pilbeam D J and Kirkby E A. The physiological role of boron in plants. J Plant Nutr, 1983, 6:563-582
    166. Pillinger J M ,Cooper J A and Ridge I. Role of phenolic compounds in the antialgal activity of barley straw . J Chem Ecol, 1994, 20:1557-1569
    167. Pollard A S, Parr P J, Loughman B C. Boron in relation to membrane function in higher plants, J Exp Bot, 1977, 28:831-841
    168. Poole R J. Energy coupling for membrane transport. Ann Rev Plant Physiol, 1978, 29:437-460
    169. Pope D T and Munger H M. The inheritance of susceptibility to boron deficiency in celery. Proc Amer Soc Hort Sci, 1953, 61: 163-172
    170. Puvanesarajah V, Darvill A G and Albersheim P. Structural characterization of two oligosaccharide fragments formed by the selective cleavage of rhamnogalacturonan Ⅱ : evidence for the anomeric configuration ad attachment sites of apiose and 3-deoxy-2-heptulosaric acid. Carhohydr Res, 1992, 218:211-222
    171. Rajarathnam J A and Lowry J B. The role of boron in the oil-palm(Elaeis guinensis). Ann Bot, 1974, 38:193-200
    172. Raven J A. Short and long-distance transport of boric acid in plants. New Phytol, 1980,84:231-249
    173. Rerkasem B and Jamjod S. Genotypic variation in plant response to low boron and implications for plant breeding. In: B Dell. P H Brown and R W Bell. Eds., Boron in Soil and Plant. Kluwer Academic Publishers, The Netherlands. 1997, 169-180
    174. Rerkasem B, Bell R W, Lordkaew S and Loneragan J F. Boron deficiency in soybean, peanut, and black gram: Symptoms in seeds and differences among soybean cultivars in susceptibility to boron deficiency. Plant Soil 1993, 150:289-284
    175. Rerkasem B, Bell R W, Lordkaew S, and Loneragan J F. Boron deficiency in soybean(Glycine max L. Merr. ) , peanut (Arachis hypogaea L. ) and black gram (Vigna mungo L. Hepper) : Symptoms in seeds
    
    and differences among soybean cnltivars in susceptibility to boron deficiency. Plaint and Soil, 1993, 150:289-294
    176. Rerkasem B, Loneragan J F. Boron deficiency in two wheat genotypes in a warm, subtropical region . Agron J 1994, 80:887-890
    177. Rerkasem B, Netsangtip R, Lordkaew S and Cheng C. Grain set failure in boron deficient wheat. Plant and Soil, 1993b, 155/156:309-312
    178. Rerkasem B. Comparison of green gram( Vigna radiata) and black gram ( Vigna mungo) in boron deficiency. In:Thavarasook C, Srinives P, Bookerd N, Imai H, Pookpakdi A, Laosuwan P and Pupipat U. Eds. Proceedings of the Mumgbean Meeting 90. Bankok Office of Tropical Agricultural Research Centre, Japan. 1990, 167-174
    179. Robertson G A, Loughman B C. Rubidium uptake and boron deficiency in Vicia faba L. J Exp Bot, 1973, 24:1046-1052
    180. Robertson G.A. Loughman BC., Reversible effects of boron on the absorption and incorporation of phosphate on Vicia faba L. New Phytol. 1974, 73;291-298
    181. Roldan M, Belver A, Rodriguez-Rosales P, Ferrol N and Donaire J D . In: vivo and in vitro effects of boron on the plasma membrane proton pump of sunflower roots. Physiol Plan, 1992, 84:49-54
    182. Roush A H and Gowdy B B. The inhibition of yeast alcohol dehydrogenase by borate. Biochem Biophys Acta, 1961, 52:200-202
    183. Ruiz J M, Bretones G, Baghour M. Relationship between boron and phenolic metabolism in tobacco leaves. Phytochemistry, 1998, 48(2):269-272
    184. Schmucker T. Uber den Einfluss von Borsaure auf Pflanzen. Insbesondere Keiminde Pollenkrner. Planta, 1934, 23:264- 283
    185. Schmucker T. Zur Blutenbiologie Tropischer Nymphaea-Arten. Ⅱ. (Bor als entscheidender faktor. ) Planta 1933, 18:641-650
    186. Schon M K, Novacky A and Blevins D G. Boron induces hyperpolarization of sunflower root cell membranes and increases membrane permeability to K~+. Plant Physiol, 1990,93:566-571
    187. Scott L E. An instance of boron deficiency in the grape under field conditions. Proc Amer Soc Hort Sci, 1941, 38:375-378
    188. Serrano R. Structure and function of plasma membrane ATPase. Ann Rev Plant Physio, 1989, 40:61-94
    189. Shattuck V I, Shelp B J. Environmental stability of yield and hollow stem in broccoli ( Brassica Oleracea Var: italica). Can J Plant Sci 1986, 66:683-688
    190. Shelp B J, Penner R and Zhu Z. Broccoli cultivar response to boron deficiency. Can J Plant Sci, 1992, 72:883-888
    191. Shive J B Jr and Barnett N M. Boron deficiency effects on peroxidase, hydrocyproline, and boron in cell walls and cytolasm of Helianthus annuus L. Hypocotyls. Plant Cell Physiol, 1973, 14:573-583
    192. Shkol'nik M Y .Trace elements in plants. Bovelopments in Crop Science(6) , Elsevier. New York 1984, 68-109
    193. Shkol'nik M Y, Krupnikova T A and Smirnov Y S. Activity of polyphenol oxidase and sensitivity to boron deficiency in monocots and dicots. Fiziol Rast, 1981, 28:391-397
    194. Shkolnik M Y and Ilinskaya N L. Effect of a boron deficiency on activity of glucose-6-phosphaate dehydrogenase in plants with different boron requirements. Fiviol Rast, 1975, 22:801-805
    195. Shkolnik M Y. M General conception of the physiological role of boron in plants. Fiviolog Rast., 1974, 21: 174-186
    196. Shorrocks V M. The occurrence and correction of boron deficiency. In : Bell R W and Reerkasem Eds., Boron in Soils and Plants. 1997 Kluwer Academic Publishers. 1997. 193:121-148.
    
    
    197. Skok J and Mcllrath W J. Distribution of boron in cells of dicotyledonous plants in relation to growth. Plant Physiol, 1958, 33:428-431
    198. Skok J, The substitution of complexing substances for boron in plant growth. Plant Physiol, 1957, 32:308-312
    199. Slack C R., Whittington W J. The role of boron in plant growth Ⅲ. The effects of differentiation and deficiency on radicle metabolism. J Exp Bot, 1964. 15:495-514
    200. Smith F G, Wiederin D R, Houk R S, Egan C B and Serfass R E . Measurement of boron concentration and isotope ratios in biological samples by inductively coupled plasma mass spectrometry with direct injection nebulization. Anal Chom Acta,, 1992, 248:229-234
    201. Smith M E. The role of boron in plant metabolism. 1. Boron in relation to the absorption and solubility of calcium. Aust J Exp Biol Med Sci, 1944, 22:257-263
    202. Smith T E, Hetheringon S E, Asher C J. Boron deficiency of avocado. 1. Effects on pollen viability and fruit set. In: R W Bell. and B Rerkasem. Eds., Soil and Plant. Kluwer Academic Publishers. The Netherlands. 1993a, 131-134,
    203. Smith T E, Hetheringon S E, Asher C J. Boron deficiency of avocado. 2. Effects on fruit size and ripening. In: R W Bell and B Rerkasem Eds., Soil and Plant. Kluwer Academic Publishers, The Netherlands. 1993b, 135-138
    204. Smyth D A and Bugger W M. Cellular changes during boron deficient culture of the diatom Cylindrotheca fusiformis. Plant Physiol, 1981, 51:111-117
    205. Spurr A R. The effect of boron on cell wall structure in celery. Amer J Bot, 1957, 44:637-650
    206. Stark J R. Effect of boron on the cell wall structure in sunflower. Acta Soc Bot Pol, 1963, 32:619-623
    207. Stevenson T T, Darvill A G, and Albersheim P. 3-Deoxy-D-lyxo-2-heptulosaric acid, a component of the plant cell-wall polysaccharide rhamnogalacturonan-Ⅱ. Carbohydr. Res. 1988, 179:269-288
    208. Takasaki M, Kawaguchi S, Kobayashi M, Tasael K, and Matoh T. Immunocytochemistry of the borate-rhaamnogalacturonan complex in cell walls of radish roots. In: Bell R W and Reerkasem Eds., Boron in Soils and Plants, 1997 Kluwer Academic Publishers. 1997, 243-249.
    209. Tanada T. Localization of boron in membranes , J Plant Nutr, 1983, 6:743-749
    210. Tandon J P and Naqvi S M A. Wheat varietal screening for boron deficiency in Indea. In : C E Mann and B Rerkasem Eds., Boron Deficiency in Wheat. CIMMYT Wheat Special Report No. 11. CIMMYT, Mexlco. 1992, 76-78
    211. Tang P M and Dela Fuente R K. The transport of indole-3-acetic acid in boron- and calcium-deficient sunflower hypocotyl segments. Plant Physiol, 1986, 81: 646-650.
    212. Teasdale R D, Richards D K. Boron deficiency in cultured pine cells. Quantitative studies of the interaction with Ca and Mg. Plant Physiol, 1990, 93:1071-1077
    213. Thellier M Duval Y and Demarty M. Borate exchanges of Lemna minor L. As studied with the help of the enriched stable isotopes and of a(n, a) nuclear reaction. Plant Physiol, 1979, 63:283-288
    214. Thomas J R, Darvill A G. Albersheim R, Isolation and strutural characterization of the pectic polysaccharide rhamnogalacturonan Ⅱ from walls of suspension-cultured rice cells. Carbohydr Res, 1989, 185:261-277
    215. Van de Venter H A., Currier H B. The effect of boron deficiency on callose formation and ~(14)C translocation in bean and cotton. Amer J Bot, 1977, 64:861-865
    216. Wall J R and Andrus C F. The inheritance and physiology of boron response in the tomato. Am J Bot, 1962, 49:758-762
    217. Wall J R and Andrus C F. A temperature sensitive sublethal mutant in tomato. Tomato Genetics Coop
    
    Rept 1959, 9: 48
    218. Wang-ZY, Tang-YL, Zhang-FS, Wang-H. Effect of boron and low temperature on membrane integrity of cucumber leaves. Journal-of-Plant-Nutrition, 1999, 22: 3, 543-550
    219. Whittington W J. The role of boron in plant growth. Ⅱ.The effect on growth of the radicle. J Exp Bot, 1959, 10:93-103
    220. Wilders R A and Neales T F. The absorption of boron by disks of plant storage tissues. Aus J Biol Sci, 1971, 24:873-884
    221. Willliam M N V, Freshour G, Darvill A G, Albersheim P, and Hahn M G. An antibody Fab selected from a recombinant phage display library detects cdeesterified pectic polysaxxharide rhamnogalacturonan in plant cells. Plant Cell, 1996 , 8:673-685
    222. Wllson C M. Cell wall carbohydrates in tobacco pith parenchyma as affected by boron deficiency and by growth in tissue culture. Plant Physiol, 1961, 36:336-341
    223. Woodbriddge C G. The boron requirements of stone fruit trees. Can J Agric Sci,1955, 35:282-286
    224. Woodbridge C G, Venegas A and Crandall P C. The boron content of developing pear, apple and cherry flower buds. J Amer Soc Hort Sci, 1971 ,96:613-615
    225. Xiao-FengHui; Xiao-FH. Changes of protective enzymes and accumulation of polyamines induced by boron deficiency in roots of rape seedlings. Pedosphere, 1998, 8: 3, 229-236
    226. Yamanouchi M. The role of boron in higher plants, Ⅰ. The relations between boron and calcium or the pectic substance in plants. J Sci Soil Manure Jpn, 1971, 42:207-231
    227. Yamanouchi M. The role of boron in higher plants, Ⅱ. The influence of boron on the formation of pectic substances. Bull. Fac. Agr. Tottori Univ, 1973, XXv:21-27
    228. Yamauchi T, Hara T, Sonoda Y. Distribution of calcium and boron in the pectin fraction of tomato leaf cell wall. Plant Cell Physiol, 1986, 27(4): 729-732
    229. Yang Yuai, Xue Jianming, Ye Zhengqiang et al. Responses of rape genotypes to boron application. Plant and Soil. Kluwer Acadmic Publishers. Printed in the Netherlands. 1993, 155/156:321-324
    230. Yih R Y, Hille F K and Clark H E. Requirement of ginkgo pollen-derived tissue culture for boron and effects of boron deficiency. Plant Physiol, 1966,41:815-820
    231. York W S, Darvin A G, Mcnhi M . 3-Deoxy-D-manno-2-Octulosonic acid (KDO) is a component of rhamnogalacturonan Ⅱ. A pectic polysacchauide in the primary cell walls of plants. Carbohydrate Research, 1985, 138:109-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700