用户名: 密码: 验证码:
延河流域植物功能性状对环境变化的响应和植物适应策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在长期适应环境的过程中,会通过内部不同功能性状之间的平衡变化来适应外部环境,以达到自身生存与繁衍的目的。因此,研究植物的功能性状及其关系沿环境梯度的变化规律,对于理解植物对环境的适应策略具有十分重要的意义。近年来,由于植物功能性状具有简单易于测定的特点,并且可以同时在不同植物的种类间进行比较研究,在植物与环境关系的研究中被广泛应用。黄土丘陵区是我国水土流失最严重的地区,植被恢复重建是改善该区环境的重要途径。如何针对不同的侵蚀环境,研究植物对环境的适应策略,从而构建适宜的植被体系是该区恢复生态学面临的重大科学问题之一。本文以延河流域为研究区,沿降雨与温度梯度,选择24个样地,共调查测定了149种植物(隶属于49科120属,其中草本植物102种,木本植物47种)的高度、比叶面积、叶面积、叶厚度、叶氮含量、叶组织密度、细根直径、比根长、细根组织密度、细根氮含量等功能性状特征,通过各个性状及其相互关系沿环境梯度的变化规律的分析,探究了植物对环境的适应机理和适应策略,取得的研究结果主要有:
     1)延河流域植物功能性状的基本分布
     延河流域各种植物的功能性状属性值变化范围很大。比叶面积均值为170.1mm~2·mg~(-1),分布范围为5.26—9240.53mm~2·mg~(-1);叶组织密度的均值为0.0989mg·mm~(-1),分布在0.000789—1.39mg·mm~(-1)之间;叶氮含量均值为2.3%,分布在0.218—8.39%之间;植物的根氮含量、比根长、根组织密度分别在0.142—2.81%,0.158—66.77m·g~(-1)和0.0256—134.3mg·mm~(-1)之间波动,其平均值分别为:0.941%,6.67m·g~(-1),26.82mg·mm-3。
     2)延河流域植物功能性状的互补与替代
     通过性状之间在功能上的平衡变化是植物适应环境的重要策略。本研究表明,延河流域叶性状之间的关系紧密,各叶性状均显著相关,其中比叶面积与叶氮含量正相关,但比叶面积与叶氮含量都与叶组织密度呈负相关;对根性状,除了比根长与根组织密度存在负相关关系,其余根性状间不存在相关关系。而不同器官间,根氮含量与比叶面积、叶氮含量正相关,与叶组织密度负相关;根组织密度与叶组织密度正相关,与比叶面积负相关,即叶片和细根对应的生理功能性状,如叶氮含量和根氮含量间存在显著关系,而结构性状,如比叶面积和比根长没有表现出显著性,即氮含量和组织密度在叶片和细根之间存在性状平行关系,其余性状则无平行性。
     3)植物功能性状沿环境梯度的变化规律
     植物功能性状沿环境梯度的变化规律反映了植物对延河流域环境变化的适应机理。研究表明,就植物功能性状而言,只有少数性状能够反映环境梯度变化信息,相比之下,性状间的关系更为紧密。比叶面积随着坡度的增加而增加;阳坡植物的叶片和细根氮含量大于阴坡;叶氮含量随着年均温度的升高而增加;随年均降雨量的增加,叶组织密度呈增加趋势,而细根氮含量则呈现出降低的趋势。同时,坡度较大地区(Slope>20°)的植物有较大的比叶面积,温暖或(和)隐域环境下的植物叶氮含量较高,而较干旱或(和)阳坡的植物叶片和细根氮含量均较高。
     4)延河流域植物功能性状组合对环境梯度变化的响应
     一些植物性状组合间存在较为稳定的关系,且不随环境因子的改变而改变,如根组织密度-比叶面积,根组织密度-叶组织密度和根组织密度-比根长,是延河流域不同种类的植物种为适应环境表现出的趋同进化。一些功能性状组合间关系则会随着环境因子的变化而变化,体现植物通过性状对动态变化在生长策略与防御策略间的平衡。在延河流域较温暖地区(MAT>9℃),除了叶氮含量-叶组织密度组合的关系更显著外,其余性状组合间关系的斜率均不变,并呈现出一定比叶面积下,有更高的叶氮含量;一定叶组织密度时,根氮含量也更高的趋势。较干旱的地区(MAP<490mm),根氮含量-叶氮含量间关系更为紧密,且当叶组织密度一定时,叶氮含量的增量较低。坡度并不影响延河流域植物性状组合间关系的标准化主轴斜率和截距。生长在阳坡的植物,叶氮含量-比叶面积和根氮含量-叶氮含量间关系更密切,且当比叶面积、叶组织密度一定时,相对阴坡的植物,具有更高的根氮含量。坡位也会影响性状组合间的关系,当比叶面积一定时,隐域环境下生长的植物具有较高的叶组织密度。总的来说,生长在温暖地区阳坡植物的叶氮含量-比叶面积,湿润地区阳坡植物的根氮含量-叶氮含量以及温暖地区植物的叶氮含量-叶组织密度间关系更为显著。
     5)延河流域植物的CSR(Competitive-stress tolerant-ruderal scheme)策略
     根据149种植物功能性状间的差异性,将物种划分为3大功能型,功能型I的植物具有最强的耐旱力和防御力,如代表性的地带性物种有辽东栎(Quercus liaotungensis),侧柏(Platycladus orientalis)、酸枣(Zizyphus jujuba)、荆条(Vitex negundo)等;功能型III的植物具有最强的养分维持能力用以对抗营养贫瘠的环境,有百里香(Thymusmongolicus)、草木樨状黄芪(Astragalus melilotoides)、灌木铁线莲(Clematis fruticosa),延安锦鸡儿(Caragana purdomii)等;功能型II植物居中,生长速率最高,具有较强的竞争力、分布最广,如代表性的物种有茭蒿(Artemisia giraldii)、蒙古蒿(Artemisiamongolica)、芦苇(Phragmites communi)、阿尔泰狗娃花(Heteropappus altaicus),土庄绣线菊(Spiraea pubescens)及软毛虫实(Corispermum puberullum)、小蓟(Circiumsegetum)、马齿苋(Portulaca oleracea)等分布广泛的杂草。其中,功能型I和III属于“胁迫忍耐型”策略,功能型II则属于“竞争型”和“干扰型”策略的综合。
     6)延河流域植物的LHS(Leaf-height-seed strategy)策略
     在原有植物叶片和细根性状的基础上加入2个植物种子性状(种子干重和种子体积),将延河流域30种植物划分为4个主要的功能型。功能型I的植物处于低胁迫的环境中,植株生长速率较快,易受到放牧干扰影响,属于干扰型和竞争,包括灰叶黄芪(Astragalus discolor)、砂珍棘豆(Oxytropis gracillima)、直立黄芪(Astragalusadsurgens)、南苜蓿(Medicago polymorpha)、虫实(Corispermum puberullum)、柴胡(Bupleurum scorzonerifolium)。功能型II的植物处于高胁迫的环境中,植物生长较慢,植株体将获得的营养大部分用来维持生命、抵抗外界压力,有臭草(Melica scabrosa)、白羊草(Bothriochloa ischaemum)、沙参(Adenophora elata)、铁杆蒿(Artemisia gmelinii)、阿尔泰狗娃花、蒙古蒿、委陵菜(Potentilla chinensis)。功能型III植物种子的扩散力和幼苗的成活率最强,能抵抗一定的胁迫压力,且最不易受外界放牧干扰影响,包括延安锦鸡儿、大针茅(Stipa grandis)、沙棘(Hippophae rhamnoidessi)、大蓟(Cirsiumjaponicum)、杠柳(Periploca sepium)、地梢瓜(Cynanchum thesioides)、灌木铁线莲、胡叶醉鱼草(Buddleya alternifolia)。功能型IV的植物,如虎榛子(Ostryopsis davidiana)、水栒子(Cotoneaster multiflorus)、黄刺玫(Rosa xanthina)、酸枣具有较强的繁殖力、对外界胁迫抵抗力较强具有较强的竞争力。
Plants use a variety of adaptive and functional strategies to adapt to environmentalchanges. Plants under specificenvironmental conditions usually share certain common traits,which allow plants to adapt to environment stress. The study of a plant’s functional traits iscurrently becoming a high priority area of plant ecology because these traits are both easy toquantify and are closely related to plant functioning. Consequently, variation in thesefunctional traits along environmental gradients reflects variation in plant adaptivemechanisms and each species’ interactions with climatic, edaphic or topographic drivers. Inhilly areas of the Loess Plateau, which is the focus area of national ecology restoration theefforts of revegetation has produced great achievements. However, serious soil erosion wasnot be kept within limits, the revegetation is still facingmany problems. Understanding planttraits in different habitats can provide scientific guidance for revegetation. The objective ofthis thesis was to assess the relationships and co-variation of plant functional traits alongenvironmental gradients, and to analyze the adaptive strategies of plants in semi-arid and aridenvironments. We measured plant height(PH), specific leaf area(SLA), leaf tissuedensity(LTD), leaf nitrogen concentrations(LNC), root nitrogen concentrations(RNC),specific root length(SRL) and fine root density(RTD) of149species at24sites in the YanheRiver watershed. By focusing on traits, our study uniquely demonstrates adaptivedifferentiation among species. These results will help the selection of species for restorationprograms in the hilly areas in Loess Plateau. The main results are as follows:
     1) The general pattern of plant traits
     Six plant attributes across all the149species of Yanhe River watershed showed largevariations, with the following range:5.26—9240.53mm~2·mg~(-1)for specific leaf area;0.000789—1.39mg·mm~(-1)for leaf tissue density;0.218—8.39%for leaf nitrogen concentrations;0.142—2.81%for root nitrogen concentrations;0.158—66.77m·g~(-1)for specific root length; and0.0256—134.3mg·mm~(-1)for root tissue density. The atithmetic means of these parameterswere170.1mm~2·mg~(-1),0.0989mg·mm~(-1),2.3%,0.941%,6.67m·g~(-1)and26.82mg·mm-3.
     2) Summary of relationships among plant traits
     We analyzed the patterns of correlations among six organ-level traits and how these traitsallow different species to deal with environmental conditions. The results showed that thesix plant functional traits of the149species were closely related. Leaf nitrogen concentrationswere positively related to specific leaf area and root nitrogen concentrations, and a negativelyrelated to leaf tissue density. Specific root length was negatively related to fine root tissuedensity, whereas no correlation existed between leaf and root traits except for root nitrogenconcentrations.
     3) Relationships between plant traits and environmental variables
     In general, the correlation between individual traits and environmental variables is nothigh. Specific leaf area increased with slope, and leaf nitrogen concentrations increased withincrease of mean annual temperature. As mean annual precipitation increased, leaf tissuedensity increased and root nitrogen concentrations decreased. Meanwhile, the mean specificleaf area was higher at steep gradient; leaf nitrogen concentrations was higher at hotter,hidden region; and mean leaf and root nitrogen concentrations were higher at drier, sunnyslope sites.
     4) Variation of trait relationships along environmental gradient
     The combinations of RTD-SLA,RTD-LTD and RTD-SRL recur in distantly related taxaacross Yanhe River watershed, which provide evidence for convergent evolution. However, athotter sites, average LNC was higher at a given SLA, RNC was higher at a given LTD. Atdrier sites, LNC was lower at a given LTD. RNC was higher at a given SLA or LTD at sunnyslope sites. And LTD was higher at a given SLA at hidden regions.
     5) A multi-trait test of CSR(Competitive-stress tolerant-ruderal scheme) plant strategyscheme
     Based on the dissimilarity of the six traits, the species were classified into three mainplant functional types (PFTs). The species of PFT I are best adapted to an arid environment,with the greatest resistance and resistance to herbivore and physical damage. The species ofPFT III may avoid nutrient stress by having the greatest nutrient conservation efficiency,which is believed to be important in minimizing nutrient losses in a nutrient-poorenvironment. The PFT II group is somewhat intermediate with a greater growth rate, highercompetitive ability and wider distribution in the study area. Based on CSR Triangle theoriesof Grime et al.(1979), both PFT I and PFT III plants adopt a stress-tolerance strategy to theenvironment (S strategy) while PFT II plants use a combination of competitiveness (C) andruderality (R) strategies.
     6) A multi-trait test of LHS(Leaf-height-seed strategy) plant strategy scheme
     Here we investigated30species and plus2seed traits(seed mass, seed area) to test Westoby’s LHS strategy scheme(1998) in Yanhe River watershed, and the species wereclassified into four main plant functional types. The species of PFT I are the combination ofrapid growth of grazing pressure individuals with low stress. The species of PFT II may avoidstress by having the greatest nutrient conservation efficiency, which is believed to beimportant in minimizing nutrient losses in a nutrient-poor environment. The species of PFTIII may avoid stress and grazing pressure, with high-effective colonizing abilities. The PFT IVgroup is higher competitive, effective colonizing ability and wider distribution in the studyarea.
引文
方精云,王襄平,沈泽昊,唐志尧,贺金生,丹,于.,源,江.,王志恒,郑成洋,朱江玲等2009.植物群落清查的主要内容、方法和技术规范.生物多样性,17(6):533-548.
    牛书丽,蒋高明,李永庚.2004. C3与C4植物的环境调控.生态学报,24(002):308-314.
    王平,盛连喜,燕红,周道玮,宋彦涛.2010.植物功能性状与湿地生态系统土壤碳汇功能.生态学报,30(24).
    白文娟,郑粉莉,董莉丽,丁晓斌.2010.黄土高原水蚀风蚀交错带不同生境植物的叶性状.生态学报,30(10):2529—2540.
    李晓兰,李雪华,蒋德明,刘志民,王红梅,姬兰柱.2005.科尔沁沙地22种菊科草本植物叶片形态特征研究.生态学杂志,24(12):1397~1401.
    李轩然,刘琪璟,蔡哲,马泽清.2007.千烟洲针叶林的比叶面积及叶面积指数.植物生态学报,31(001):93-101.
    周鹏,耿燕,马文红,贺金生.2010.温带草地主要优势植物不同器官间功能性状的关联.植物生态学报,43(1):7–16
    孟婷婷,倪健,王国宏.2007.植物功能性状与环境和生态系统功能.植物生态学报,31(1):150-165.
    祁建,马克明,张育新.2007.辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释.生态学报,27(3):0930-0937.
    侯庆春,韩蕊莲,李宏平.2000.关于黄土丘陵典型地区植被建设中有关问题的研究.水土保持研究,7(2):119-123.
    胡启武,宋明华,欧阳华,刘贤德.2007.祁连山青海云杉叶片氮、磷含量随海拔变化特征.西北植物学报,27(10):2072-2079.
    梁一民.1999.从植物群落学原理谈黄土高原植被建造的几个问题.西北植物学报,19(005):26-31.
    董莉莉,刘世荣,史作民,冯秋红.2009.中国南北样带上栲属树种叶功能性状与环境因子的关系.林业科学研究,22(4):463-469.
    薛薇.2004. SPSS统计分析方法与应用北京:电子工业出版社.
    习新强,赵玉杰,刘玉国,王欣,高贤明.2011.黔中喀斯特山区植物功能性状的变异与关联.植物生态学报,35(10):1000-1008.
    冯秋红,史作民,董莉莉.2008.植物功能性状对环境的响应及其应用.林业科学,44(4):125-131.
    冯秋红,史作民,董莉莉,刘世荣.2009.南北样带落叶乔木功能性状及其与气象因子的关系.中国农业气象,30(1):79-83.
    冯秋红,史作民,董莉莉,刘世荣.2010.南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应.植物生态学报,34(6):619-627.
    冯秋红,史作民,董莉莉.2008.植物功能性状对环境的响应及其应用.林业科学,44(4).
    刘金环,曾德慧, Lee, D. K.2006.科尔沁沙地东南部地区主要植物叶片性状及其相互关系.生态学杂志,25(8):921-5.
    刘福德,王中生,张明,王文进,安树青,郑建伟,杨文杰,张世挺.2007.海南岛热带山地雨林幼苗幼树光合与叶氮、叶磷及比叶面积的关系.生态学报,27(11).
    宝乐,刘艳红.2009.东灵山地区不同森林群落叶功能性状比较.生态学报,29(7):3692-3703.
    尧婷婷,孟婷婷,倪健,阎顺,冯晓华,王国宏.2010.新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探.生物多样性,18(2):201-211.
    张林,罗天祥.2004.植物叶寿命及其相关叶性状的生态学研究进展.植物生态学报,28(6):844-852.
    温仲明,焦峰,焦菊英.2008a.黄土丘陵区延河流域潜在植被分布预测与制图.应用生态学报,19(9):1897-1904.
    温仲明,赫晓慧,焦峰,焦菊英.2008b.延河流域本氏针茅(Stipa bungeana)分布预测——广义相加模型及其应用生态学报,28(001):192-201.
    邹厚远,张信.1995.关于黄土高原植被恢复的生态学依据探讨.水土保持学报,9(004):1-4.
    郑纯辉,康跃虎,姚素梅,颜长珍,孙泽强.2004.基于地理信息系统的植物根系分析方法.农业工程学报,20(1):181-3.
    韦兰英,上官周平.2006.黄土高原白羊草、沙棘和辽东栎细根比根长特征.生态学报,26(12).
    Ackerly, D.2003. Community assembly, niche conservatism, and adaptive evolution in changing environments.International Journal of Plant Sciences,164(3):165-184.
    Ackerly, D., Knight, C., Weiss, S., Barton, K., Starmer, K.2002. Leaf size, specific leaf area and microhabitatdistribution of chaparral woody plants: contrasting patterns in species level and community levelanalyses. Oecologia,130(3):449-457.
    Aerts, R., Chapin III, F.1999. The mineral nutrition of wild plants revisited: a re-evaluation of processes andpatterns. Advances in ecological research,301-67.
    Bauhus, J., Khanna, P., Menden, N.2000. Aboveground and belowground interactions in mixed plantations ofEucalyptus globulus and Acacia mearnsii. Can. J. For. Res,301886-1894.
    Chapin III, F., Autumn, K., Pugnaire, F.1993. Evolution of suites of traits in response to environmental stress.American Naturalist,14278-92.
    Comas, L., Eissenstat, D.2004. Linking fine root traits to maximum potential growth rate among11maturetemperate tree species. Functional Ecology,18(3):388-397.
    Comstock, J., Mencuccini, M.1998. Control of stomatal conductance by leaf water potential in Hymenocleasalsola, a desert subshrub. Plant, Cell&Environment,21(10):1029-1038.
    Cornelissen, J., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D., Reich, P., Steege, H., Morgan, H.,Van Der Heijden, M.2003. A handbook of protocols for standardised and easy measurement of plantfunctional traits worldwide. Australian Journal of Botany,51(4):335-380.
    Cornelissen, J., Perez-Harguindeguy, N., D¨aaz, S., Grime, J., Marzano, B., Cabido, M., Vendramini, F.,Cerabolini, B.1999. Leaf structure and defence control litter decomposition rate across species and lifeforms in regional floras on two continents. New Phytologist,143(1):191-200.
    Cornwell, W., Ackerly, D.2009. Community assembly and shifts in plant trait distributions across anenvironmental gradient in coastal California. Ecological Monographs,79(1):109-126.
    Craine, J., Lee, W.2003. Covariation in leaf and root traits for native and non-native grasses along an altitudinalgradient in New Zealand. Oecologia,134(4):471-478.
    Craine, J. M., J. Froehle, D. G. Tilman, Wedin, D. A., F. S. Chapin, I.2001. The relationships among root andleaf traits of76grassland species and relative abundance along fertility and disturbance gradients.Oikos,93(2):274-285.
    Cunningham, S. A., Summerhayes, B., Westoby, M.1999. Evolutionary divergences in leaf structure andchemistry, comparing rainfall and soil nutrient gradients. Ecological Monographs,69(4):569-588.
    Díaz, S., Cabido, M.2001. Plant functiinal diversity matter to ecosystem process. Trends in Ecology&Evolution,16(11):646-655.
    Díaz, S., Hodgson, J., Thompson, K., Cabido, M., Cornelissen, J., Jalili, A., Montserrat-Marti, G., Grime, J.,Zarrinkamar, F., Asri, Y.2004. The plant traits that drive ecosystems: evidence from three continents.Journal of Vegetation Science,15(3):295-304.
    DeLucia, E. H., Hamilton, J. G., Naidu, S. L., Thomas, R. B., Andrews, J. A., Finzi, A., Lavine, M., Matamala,R., Mohan, J. E., Hendrey, G. R.1999. Net primary production of a forest ecosystem with experimentalCO2enrichment. Science,284(5417):1177.
    Diaz, S., Cabido, M.1997. Plant functional types and ecosystem function in relation to global change. Journal ofVegetation Science,8(4):463-474.
    Diaz, S., Cabido, M., Casanoves, F.1998. Plant functional traits and environmental filters at a regional scale.Journal of Vegetation Science,9(1):113-122.
    Diaz, S., M., C., Zak, M., Carretero, E. M., Aranibar, J.1999. Plant functional traits, ecosystem structure andland-use history along a climatic gradient in central-western Argentina. Journal of Vegetation Science,10(5):651-660.
    Dijkstra, P., Lambers, H.1989. Analysis of specific leaf area and photosynthesis of two inbred lines of Plantagomajor differing in relative growth rate. New Phytologist,113(3):283-290.
    Duarte, C., Sand-Jensen, K., Nielsen, S., Enr¨aquez, S., Agust¨a, S.1995. Comparative functional plant ecology:rationale and potentials. Trends in Ecology&Evolution,10(10):418-421.
    Edwards, E.2006. Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae). NewPhytologist,172(3):479-789.
    Eissenstat, D., Caldwell, M.1988. Competitive ability is linked to rates of water extraction. Oecologia,75(1):1-7.
    Eissenstat, D., Wells, C., Yanai, R., Whitbeck, J.2000. Building roots in a changing environment: implicationsfor root longevity. New Phytologist,147(1):33-42.
    Eissenstat, D., Yanai, R.1997. The ecology of root lifespan. Advances in ecological research,271-60.
    Eviner, V., Chapin III, F.2003. Functional matrix: a conceptual framework for predicting multiple plant effectson ecosystem processes. Annual Review of Ecology, Evolution, and Systematics,34455-485.
    Falster, D., Warton, D., Wright, I.(2006). User's guide to SMATR: standardised major axis tests&routinesversion2.0, copyright2006.
    Fargione, J., Tilman, D.2006. Plant species traits and capacity for resource reduction predict yield andabundance under competition in nitrogen-limited grassland. Functional Ecology,20(3):533-540.
    Farrish, K. W.1991. Spatial and temporal fine root distribution in three Louisiana forest soils. Soil ScienceSociety of America Journal,55(6):1752-1757.
    Field, C., Merino, J., Mooney, H. A.1983a. Compromises between water-use efficiency and nitrogen-useefficiency in five species of California evergreens. Oecologia,60384-389.
    Field, C., Mooney, H. A.(1983b). The photosynthesis-nitrogen relationship in wild plants: Cambridge UniversityPress.
    Fitter, A.1996. Characteristics and functions of root systems. Plant roots: the hidden half,20.
    Fonseca, C. R., Overton, J. M. C., Collins, B., Westoby, M.2000. Shifts in trait combinations along rainfall andphosphorus gradients. Journal of Ecology,88(6):964-977.
    Franco, A., Bustamante, M., Caldas, L., Goldstein, G., Meinzer, F., Kozovits, A., Rundel, P., Coradin, V.2005.Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees-Structureand Function,19(3):326-335.
    Freschet, G., Cornelissen, J., Van Logtestijn, R., Aerts, R.2010. Evidence of the 'plant economics spectrum' in asubarctic flora. Journal of Ecology,98(2):362-373.
    Garnier, E., Cortez, J., Bill¨¨s, G., Navas, M., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D.,Bellmann, A.2004. Plant functional markers capture ecosystem properties during secondary succession.Ecology,85(9):2630-2637.
    Garnier, E., Shipley, B., Roumet, C., Laurent, G.2001. A standardized protocol for the determination of specificleaf area and leaf dry matter content. Functional Ecology,15(5):688-695.
    Givnish, T.1995. Plant stems: biomechanical adaptation for energy capture and influence on speciesdistributions. Plant stems: physiology and functional morphology,3-49.
    Grime, J.1977. Evidence for the existence of three primary strategies in plants and its relevance to ecologicaland evolutionary theory. American Naturalist,111(982):1169-1194.
    Grime, J.(1979). Plant strategies and vegetation processes.222pp: Wiley, Chichester.
    Guo, D. L., Mitchell, R. J., Hendricks, J. J.2004. Fine root branch orders respond differentially to carbonsource-sink manipulations in a longleaf pine forest. Oecologia,140(3):450-457.
    Guo_Hong, W.2002. Plant traits and soil chemical variables during a secondary vegetation succession inabandoned fields on the Loess Plateau.植物学报(英文版),08.
    Han, W., Fang, J., Guo, D., Zhang, Y.2005. Leaf nitrogen and phosphorus stoichiometry across753terrestrialplant species in China. New Phytologist,168(2):377-385.
    Hanba, Y. T., Noma, N., Umeki, K.2000. Relationship between leaf characteristics, tree sizes and speciesdistribution along a slope in a warm temperate forest. Ecological Research,15(4):393-403.
    He, J.-S., WANG, X., FLYNN, D. F. B., WANG, L., SCHMID, B., FANG, J.2009. Taxonomic, phylogenetic, andenvironmental trade-offs between leaf productivity and persistence. Ecology,90(10):2779–2791.
    He, J.-S., Wang, Z., Wang, X., Schmid, B., Zuo, W., Zhou, M., Zheng, C., Wang, M., Fang, J.2006. A test of thegenerality of leaf trait relationships on the Tibetan Plateau. New Phytologist,170(835-848):835-848.
    Hendricks, J., Aber, J., Nadelhoffer, K., Hallett, R.2000. Nitrogen controls on fine root substrate quality intemperate forest ecosystems. Ecosystems,3(1):57-69.
    Higuchi, H., Sakuratani, T., Utsunomiya, N.1999. Photosynthesis, leaf morphology, and shoot growth asaffected by temperatures in cherimoya (Annona cherimola Mill.) trees. Scientia Horticulturae,80(1-2):91-104.
    Hikosaka, K., Hanba, Y., Hirose, T., Terashima, I.1998. Photosynthetic nitrogen‐use efficiency in leaves ofwoody and herbaceous species. Functional Ecology,12(6):896-905.
    Hodgson, J., Wilson, P., Hunt, R., Grime, J., Thompson, K.1999. Allocating C-S-R plant functional types: a softapproach to a hard problem. Oikos,85(2):282-294.
    Holscher, D., Schmitt, S., Kupfer, K.2002. Growth and Leaf Traits of Four Broad-Leaved Tree Species along aHillside Gradient. Forstwissenschaftliches Centralblatt,121(5):229-239.
    K rner, C., Farquhar, G., Roksandic, Z.1988. A global survey of carbon isotope discrimination in plants fromhigh altitude. Oecologia,74(4):623-632.
    Keddy, P.1992. Assembly and response rules: two goals for predictive community ecology. Journal ofVegetation Science,3(2):157-164.
    Kikuzawa, K., Lechowicz, M.2006. Toward synthesis of relationships among leaf longevity, instantaneousphotosynthetic rate, lifetime leaf carbon gain, and the gross primary production of forests. AmericanNaturalist,168(3):373-383.
    Kramer, P. J.1981. Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience,29-33.
    Lambers, H., Chapin, F. S., Pons, T. L.2008. Plant physiological ecology Springer Verlag.
    Lavorel, S., Garnier, E.2002. Predicting changes in community composition and ecosystem functioning fromplant traits: revisiting the Holy Grail. Functional Ecology,16(5):545-556.
    Liu, G., Freschet, G. T., Pan, X., Cornelissen, J. H. C., Li, Y., Dong, M.2010. Coordinated variation in leaf androot traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist,188(2):543-553.
    MacArthur, R. H., Wilson, E. O.1967. The theory of island biogeography Princeton Univ Pr.
    Mark, A., Dickinson, K., Allen, J., Smith, R., West, C.2001. Vegetation patterns, plant distribution and life formsacross the alpine zone in southern Tierra del Fuego, Argentina. Austral Ecology,26(4):423-440.
    McIntyre, S., Lavorel, S., Landsberg, J., Forbes, T.1999. Disturbance response in vegetation-towards a globalperspective on functional traits. Journal of Vegetation Science,10(5):621-630.
    Mendez-Alonzo, R., Lopez-Portillo, J., Rivera-Monroy, V.2008. Latitudinal variation in leaf and tree traits of themangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico. Biotropica,40(4):449-456.
    Meng, T. T., Ni, J., Harrison, S. P.2009. Plant morphometric traits and climate gradients in northern China: ameta-analysis using quadrat and flora data. Annals of Botany,104(6):1217-1229.
    Meziane, D., Shipley, B.1999. Interacting determinants of specific leaf area in22herbaceous species: effects ofirradiance and nutrient availability. Plant, Cell&Environment,22(5):447-459.
    Moles, A. T., Westoby, M.2004. Seedling survival and seed size: a synthesis of the literature. Journal of Ecology,92(3):372-383.
    Murray, B., Brown, A., Dickman, C., Crowther, M.2004. Geographical gradients in seed mass in relation toclimate. Journal of Biogeography (J. Biogeogr.),31379-388.
    Ohashi, Y., Nakayama, N., Saneoka, H., Fujita, K.2006. Effects of drought stress on photosynthetic gasexchange, chlorophyll fluorescence and stem diameter of soybean plants. biologia plantarum,50(1):138-141.
    Oliveira, G., Werner, C., Correia, O.(1996). Are ecophysiological responses influenced by crown position incork-oak?, vol.53, pp.235-241: edpsciences. org.
    Pyankov, V., Gunin, P., Tsoog, S., Black, C.2000. C4plants in the vegetation of Mongolia: their naturaloccurrence and geographical distribution in relation to climate. Oecologia,123(1):15-31.
    Raunki r, C.1937. Plant life forms The Clarendon Press.
    Reich, P., Buschena, C., Tjoelker, M., Wrage, K., Knops, J., Tilman, D., Machado, J.2003a. Variation in growthrate and ecophysiology among34grassland and savanna species under contrasting N supply: a test offunctional group differences. New Phytologist,157(3):617-631.
    Reich, P., Oleksyn, J.2004a. Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America,101(30):11001.
    Reich, P., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S., Eissenstat, D., Chorover, J., Chadwick, O., Hale,C., Tjoelker, M.2005. Linking litter calcium, earthworms and soil properties: a common garden testwith14tree species. Ecology Letters,8(8):811-818.
    Reich, P., Walters, M., Ellsworth, D.1992. Leaf life-span in relation to leaf, plant, and stand characteristicsamong diverse ecosystems. Ecological Monographs,62(3):365-392.
    Reich, P., Walters, M., Ellsworth, D.1997. From tropics to tundra: global convergence in plant functioning.Proceedings of the National Academy of Sciences of the United States of America,94(25):13730.
    Reich, P., Walters, M., Ellsworth, D., Vose, J., Volin, J., Gresham, C., Bowman, W.1998. Relationships of leafdark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functionalgroups. Oecologia,114(4):471-482.
    Reich, P., Wright, I., Cavender-Bares, J., Craine, J., Oleksyn, J., Westoby, M., Walters, M.2003b. The evolutionof plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences,164(3):143-164.
    Reich, P. B., Ellsworth, D. S., Walters, M. B., Vose, J. M., Gresham, C., Volin, J. C., Bowman, W. D.1999.Generality of leaf traits relationship: A test across six biomes. Ecology,80(6):1955-1969.
    Reich, P. B., Oleksyn, J.2004b. Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America,101(30):11001.
    Reich, P. B., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M. G., Knops, J., Wedin, D., Naeem, S., Bahauddin,D., Goth, J.2001. Do species and functional groups differ in acquisition and use of C, N and waterunder varying atmospheric CO2and N availability regimes? A field test with16grassland species. NewPhytologist,150(2):435-448.
    Roche, P., Diaz-Burlinson, N., Gachet, S.2004. Congruency analysis of species ranking based on leaf traits:which traits are the more reliable? Plant Ecology,174(1):37-48.
    Roderick, M., Berry, S., Noble, I.2000. A framework for understanding the relationship between environmentand vegetation based on the surface area to volume ratio of leaves. Functional Ecology,14(4):423-437.
    Saura Mas, S., Shipley, B., Lloret, F.2009. Relationship between post-fire regeneration and leaf economicsspectrum in Mediterranean woody species. Functional Ecology,23(1):103-110.
    Schoettle, A.1990. The interaction between leaf longevity and shoot growth and foliar biomass per shoot inPinus contorta at two elevations. Tree Physiology,7(1-2-3-4):209.
    Shipley, B., Lechowicz, M., Wright, I., Reich, P.2006. Fundamental trade-offs generating the worldwide leafeconomics spectrum. Ecology,87(3):535-541.
    Sterck, F., Bongers, F.2001. Crown development in tropical rain forest trees: patterns with tree height and lightavailability. Journal of Ecology,89(1):1-13.
    Takashima, T., Hikosaka, K., Hirose, T.2004. Photosynthesis or persistence: nitrogen allocation in leaves ofevergreen and deciduous Quercus species. Plant, Cell&Environment,27(8):1047-1054.
    Tanaka-Oda, A., Kenzo, T., Koretsune, S., Sasaki, H., Fukuda, K.2010. Ontogenetic changes in water-useefficiency (δ13C) and leaf traits differ among tree species growing in a semiarid region of the LoessPlateau, China. Forest Ecology and Management,259(5):953-957.
    Tjoelker, M., Craine, J., Wedin, D., Reich, P., Tilman, D.2005. Linking leaf and root trait syndromes among39grassland and savannah species. New Phytologist,167(2):493-508.
    Turner, I.1994. Sclerophylly: primarily protective? Functional Ecology,8(6):669-675.
    van Schaik, C., Terborgh, J., Wright, S.1993. The phenology of tropical forests: adaptive significance andconsequences for primary consumers. Annual Review of Ecology and Systematics,24353-377.
    Vandenkoornhuyse, P., Ridgway, K., Watson, I., Fitter, A., Young, J.2003. Co-existing grass species havedistinctive arbuscular mycorrhizal communities. Molecular Ecology,12(11):3085-3095.
    Vendramini, F., Díaz, S., Gurvich, D. E., Wilson, P. J., Thompson, K., Hodgson, J. G.2002. Leaf traits asindicators of resource-use strategy in floras with succulent species. New Phytologist,154(1):147-157.
    Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. n., Garnier, E.2007. Let the concept oftrait be functional! Oikos,116882-892.
    Walker, B., Kinzig, A., Langridge, J.1999. Plant attribute diversity, resilience, and ecosystem function: Thenature and significance of dominant and minor species. Ecosystems,2(2):95-113.
    Wang, G.-H., Ni, J.2005a. Responses of plant functional types to an environmental gradient on the NortheastChina Transect. Ecological Research,20(5):563-572.
    Wang, G.2007. Leaf trait co-variation, response and effect in a chronosequence. Journal of Vegetation Science,18(4):563-570.
    Wang, G., Ni, J.2005b. Plant traits and environmental condition along the Northeast China Transect. Ekológia,24(2).
    Westoby, M.1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil,199(2):213-227.
    Westoby, M.(1999). The LHS strategy scheme in relation to grazing and fire. In Proceedings of the VIInternational Rangelands Congress, vol.2, pp.893-896. Australia.
    Withington, J., Reich, P., Oleksyn, J., Eissenstat, D.2006. Comparisons of structure and life span in roots andleaves among temperate trees. Ecological Monographs,76(3):381-397.
    Woodward, F., Cramer, W.1996. Plant functional types and climatic change: introduction. Journal of VegetationScience,7(3):306-308.
    Woodward, F., Diament, A.1991. Functional approaches to predicting the ecological effects of global change.Functional Ecology,5(2):202-212.
    Wright, I., Groom, P., Lamont, B., Poot, P., Prior, L., Reich, P., Schulze, E., Veneklaas, E., Westoby, M.2004a.Leaf trait relationships in Australian plant species. Functional Plant Biology,31(5):551-558.
    Wright, I., Reich, P., Atkin, O., Lusk, C., Tjoelker, M., Westoby, M.2006. Irradiance, temperature and rainfallinfluence leaf dark respiration in woody plants: evidence from comparisons across20sites. NewPhytologist,169(2):309-319.
    Wright, I., Reich, P., Cornelissen, J., Falster, D., Garnier, E., Hikosaka, K., Lamont, B., Lee, W., Oleksyn, J.,Osada, N.2005a. Assessing the generality of global leaf trait relationships. New Phytologist,166(2):485-496.
    Wright, I., Reich, P., Cornelissen, J., Falster, D., Groom, P., Hikosaka, K., Lee, W., Lusk, C., Niinemets, Oleksyn,J.2005b. Modulation of leaf economic traits and trait relationships by climate. Global Ecology andBiogeography,14411-421.
    Wright, I., Reich, P., Westoby, M.2001. Strategy shifts in leaf physiology, structure and nutrient content betweenspecies of high-and low-rainfall and high-and low-nutrient habitats. Functional Ecology,15(4):423-434.
    Wright, I., Reich, P., Westoby, M.2003. Least-cost input mixtures of water and nitrogen for photosynthesis.American Naturalist,161(1):98-111.
    Wright, I., Reich, P., Westoby, M., Ackerly, D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T.,Cornelissen, J., Diemer, M.2004b. The worldwide leaf economics spectrum. Nature,428(6985):821-827.
    Wright, I., Westoby, M.1999. Differences in seedling growth behaviour among species: trait correlations acrossspecies, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology,87(1):85-97.
    Wright, I., Westoby, M., Reich, P.2002. Convergence towards higher leaf mass per area in dry and nutrient-poorhabitats has different consequences for leaf life span. Journal of Ecology,90(3):534-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700