用户名: 密码: 验证码:
中国东部亚热带微地形上孑遗落叶阔叶树种分异格局及其成因与维持机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国东部亚热带地区是孑遗落叶阔叶树种的主要分布区之一,大量种类残存并长期共存,受到自然和人为干扰的影响,生存现状恶化,种群更新和群落维持能力差,深入研究区域内大量孑遗落叶阔叶树种的共存机制,有助于对孑遗落叶阔叶树种尤其是珍稀濒危种类的保育和恢复提供实践指导,丰富我国亚热带山地植物多样性及保护生态学理论研究。本论文从地形-植被关系入手,通过调查测定天目山自然保护区孑遗落叶阔叶群落的分布类型、生境特征、种类组成、群落结构和植物叶性状,揭示微地形上孑遗落叶阔叶树种及其群落的分异格局,从生境异质性、植物性状的响应、种间关系和种群更新格局四个方面,阐明微地形上孑遗落叶阔叶树种分异格局的成因及其维持机制。主要结论如下:
     (1)孑遗落叶阔叶群落的分布格局在微地形上存在分异
     群落聚类和特征分析结果表明,天目山孑遗落叶阔叶群落在微地形上存在分异,具有各自主要的分布类型,形成地形顶极群落。青钱柳分布的范围最广,在海拔高度600~800 m范围内的谷床和谷坡中优势度相对较大;枫香在海拔高度600 m以下的坡地上最为丰富,谷床中次之;而同属的高海拔替代种缺萼枫香则在海拔高度800 m以上的坡地、谷坡和顶坡上都有较大优势;蓝果树在海拔高度800 m以上的谷头凹地、坡地占据较大优势;香果树则仅在海拔高度800 m以上的谷床和谷头凹地中占优势;领春木则仅分布在海拔高度1000~1200 m以上的谷床中。与山地垂直带植被带群落相比,孑遗落叶阔叶群落的分布、种类组成、群落结构和物种多样性均存在差异,多占据在谷床、谷坡、谷坡凹地、顶坡和陡坡等微地形单元上,既填补了常绿阔叶林未能占据的生境空间,也进入到坡地上地带性植被的林窗中,构成斑块状镶嵌的山地植被格局。
     (2)海拔和微地形单元是决定孑遗落叶阔叶群落分异的主要因子
     通过CCA分析孑遗落叶阔叶群落与地形因子间关系,结果表明群落分布受海拔的影响最大,其次为微地形单元,坡度和坡向的影响较小。随着海拔升高,群落的种类组成发生了明显变化,低海拔优势种枫香被缺萼枫香、香果树、蓝果树等替代,适应冷凉气候条件的常绿伴生树种交让木替代了细叶青冈、小叶青冈,壳斗科落叶乔木短柄袍替代低海拔的麻栎。微地形单元具有自身的地表特征,形成不同的地表干扰体系,阻碍植被的演替进程。坡度是影响滑坡、土壤侵蚀的重要因素,也是不同微地形单元的重要特征,通过滑坡使部分种类可以首先占据干扰后的生境,为孑遗落叶阔叶树种提供种群更新和维持的机会。
     (3)孑遗落叶阔叶树种间及与其它树种间存在空间和时间上的生态位分化
     孑遗落叶阔叶树种为环境变化后的残存类群,其分布的地形条件和资源空间存在差异,形成了一种特殊的生境偏好,多分布在特殊的不稳定生境中。香果树、领春木集中分布在沟谷中,蓝果树、缺萼枫香主要分布在顶坡和坡地上,生态位宽度较窄,树种间生态位重叠值较小,存在明显的分异格局,体现了空间分布上物种间的排斥性,是长期适应不同的微环境、利用不同资源空间的结果。
     蓝果树、缺萼枫香、枫香、香果树等多数种类为长寿命的先锋种,在干扰后可与短寿命的先锋种一起侵入到裸地生境。如果立地长期稳定,当短寿命的先锋种如雷公鹅耳枥、化香树等逐渐消退后,长寿命的孑遗落叶阔叶树种便得以成为优势种,在两者种间关系上多呈显著负关联关系,表明其生态位存在显著差异,是物种在群落演替上实现生态位互补的表现。随着演替的进程,孑遗落叶阔叶树种如坡地上的蓝果树、缺萼枫香,也为耐荫的常绿树种提供了庇护的场所,由于具有较长的寿命和高大的个体,可以在常绿树种不断占据优势的情况下长期处于群落的超高层,实现与常绿树种的共存,种间关系上呈显著正相关关系,体现了种群在垂直空间上的生态位分化。
     (4)微地形上优势种采取不同的更新策略和类型维持其种群及群落
     孑遗落叶阔叶树种部分种类选择长距离的扩散,在适宜生境中间歇型更新,如青钱柳、缺萼枫香等。部分种类因生境限制,在不断干扰下,选择母树周围的间歇型更新,如领春木、香果树。在相对稳定的微地形单元上,如坡地上,通过种子更新占据生境后,蓝果树、枫香等孑遗落叶阔叶树种通过固有的萌枝能力迅速扩大种群,形成径级大小相似的多主干植株,迅速占据优势地位;在不稳定的微地形单元上,如谷床、谷坡中,香果树、领春木、枫香等孑遗落叶阔叶树种种子更新受限,植株受到干扰造成损伤,常有个体枯死,通过其极强的萌枝更新能力补充零星的幼苗更新以及干扰造成的个体损伤。
     在相对稳定的立地下,由单株或少量林冠个体枯死形成小林窗导致的逐树替代是群落更新的主要机制。本区域低海拔常绿阔叶林区域因受到强烈的人为活动和自然干扰影响,常绿阔叶林破坏严重,缺乏种源,致使枫香林下常绿树种稀少,枫香种群以不连续的间歇型更新以及较强的萌枝能力,在各微地形单元上长期占据优势地位。中海拔地区,相对稳定的坡地、顶坡、谷头凹地上,蓝果树、缺萼枫香、香果树种群更新呈间歇型,以先锋种形式侵入林窗,而林下的小叶青冈、长叶石栎更新旺盛,在没有大规模干扰的情况下,坡地和顶坡上将继续向以逆-J字型的小叶青冈、长叶石栎为优势种的群落发展,而孑遗落叶阔叶树种以其长寿命特征处于群落的超高层;同时,由于该区域地形变化复杂,坡度较陡,易发生滑坡形成小面积的林窗,蓝果树、缺萼枫香可凭其长距离扩散能力,占据新生境。
     低山常绿阔叶林区域的谷床、谷坡中,紫楠种群更新呈逆-J字型,处于发展期,将取代青钱柳成为优势种;而青钱柳种群更新呈间歇型,且幼苗远离母树,在频繁地冲刷下形成青钱柳群落的斑块状更新。在中海拔的谷床中,由于频繁的干扰,小叶青冈、长叶石栎种群多处于较小径级处,且有枯死现象,缺少大径级个体,频繁的干扰阻止了常绿顶极树种的发展;而香果树为长寿命的高大阳生乔木,种群更新呈间歇型,具有较强的萌枝能力,在群落中长期占据优势地位;领春木种群更新也呈间歇型,幼苗的更新依赖于频繁的地表扰动,幼树、中树的成活率较高,且该年龄段植株的萌枝率也比较高,使其种群在相当长的时期内得以维持。
     (5)叶性状相似的树种对微地形单元具有相似的响应
     孑遗落叶阔叶群落主要阔叶乔木树种的叶性状受到微地形单元的影响最大,微地形单元通过改变土壤的养分条件和干扰体系,影响了树种分布及其对环境的适应能力。在不同微地形单元上呈现不同的格局,谷床、谷坡上占优势树种多具有较大的叶面积和比叶面积,较低的干物质含量,高氮含量;谷头凹地、顶坡、坡地上占优势树种的叶性状格局则相反,叶面积和比叶面积较小,干物质含量高,氮含量低;从谷床到顶坡,叶面积、氮含量呈减小趋势,干物质含量呈增大趋势。
     聚类和PCA分析结果表明,34个树种可以划分具有相似叶性状的4大类型,常绿树种除交让木外,多为具有小叶面积和比叶面积、低氮含量、高干物质含量特征的一类,与孑遗落叶阔叶树种间存在差异,多为坡地上群落的主要伴生种或优势种;落叶种类多具有叶面积和比叶面积大,氮含量高,干物质含量低的特点,较适宜在沟谷地形中生存。孑遗落叶阔叶树种及其主要伴生树种间的叶性状格局存在差异,青钱柳与多数叶面积较大的落叶树种刺楸、天目木姜子、玉铃花、黄山木兰等具有相似的叶性状格局;枫香、香果树、领春木、灯台树、八角枫等具有比叶面积大,干物质含量低,氮含量高的特点;蓝果树、缺萼枫香、短毛椴、交让木划分为一类;常绿树种与雷公鹅耳枥、短柄袍、鸡爪槭等叶面积小的落叶树种的叶性状较为相似。基于叶性状特征划分的类型与其分布的生境之间具有很好的对应关系,形成了不同的植物群落。
     (6)孑遗落叶阔叶树种的生态种组
     基于以上研究,将孑遗落叶阔叶树种划分为基于分布以及更新、适应、竞争策略的生态种组,可以划分为两类:
     生境填充种:包括领春木、青钱柳、香果树,主要特征表现为:在干扰频繁的沟谷区域占据优势地位,填补地带性植被构成种未能占据的生境空间,种群更新依赖于频繁的干扰并呈间歇型,可通过极强的萌枝能力补充、维持种群,种间竞争能力较弱。
     林窗修复种:包括蓝果树、缺萼枫香、枫香等,主要特征表现为:在干扰周期长的坡地林窗中占据优势地位,通过种子繁殖和无性繁殖迅速扩大种群,种群更新能力弱,依赖于远离母株的间歇型更新维持区域种群,与地带性植被构成种多为正相关关系,通过垂直空间上的生态位分化而共生。
The subtropical area of East China is one of the most important refugia for survivors of Tertiary relict flora, therefore contains large number of relict deciduous broad-leaved trees. The capabilities of population regeneration and community maintenance were reduced due to the natural and anthropogenic impact. Hence, the coexistence mechanism of relict deciduous broad-leaved trees in local area should be further studied to provide practical guidance for conservation and restoration of relict deciduous broad-leaved trees especially the rare and endangered species, and enrich the research on theory of mountain plant diversity and conservation ecology in the subtropical evergreen forests area of China.
     The distribution type, habitat characteristics, floristic composition, community structure and plant leaf traits of relict deciduous broad-leaved forests have been studied in this paper. It could reveal differentiation pattern of relict deciduous broad-leaved trees and communities along micro-topographic gradient. Furthermore, it would clarify the cause of differentiation pattern and their maintenance mechanism by the analysis of habitat heterogeneity, response of plant trait, inter-specific interaction and population regeneration pattern. The main conclusions are as follows:
     (1) Differentiation pattern of relict deciduous broad-leaved forest along micro-topographic gradient.
     The results of cluster analysis and characteristic depiction of communities indicated that spatial distribution of relict deciduous broad-leaved trees was different among micro-topographic units. They were dominated at each site and formed topographic climax community. Cyclocarya paliurus was widely distributed and dominated on river bed and valley slope between 600 to 800 m a.s.l.. The abundance and dominance of Liquidambar formosana was higher on sideslope and river bed below 800 m a.s.l.. Above 800 m a.s.l., L. acalycina was dominanted on sideslope, valley slope and crest slope, Nyssa sinensis was on head hollow and sideslope, and Emmenoptery henryi was on river bed and head hollow. Euptelea pleiospermum was only located on river bed between 1000 to 1200 m a.s.l.. Compared with the altitudal zonation of mountain vegetation, the spatial distribution, floristic composition, community structure and species diversity of relict deciduous broad-leaved forests were significantly different. They were mainly distributed on specific unstable habitat and supplied for bare habitat that evergreen broad-leaved forest was hardly occupied.
     (2) Altitude and micro-topographic units were the main factors that determed the community differentiation pattern.
     The result of CCA analysis indicated that the community distribution pattern was significantly affected by altitude and micro-topographic units. The effects of slope and aspect were not significant. The floristic compostion and dominant species changed significantly along the altitude. Low-altitude dominant species L. formosana was replaced by L. acalycina, E. henryi, N. sinensis at high altitude. The main companion species Cyclobalanopsis gracilis and Cyclobalanopsis myrsinifolia were replaced by Daphniphyllum macropodum, and Quercus acutissima was replaced by Quercus serrata var. brevipetiolata. Micro-topographic units have their own surface characteristics which contributed to different disturbance regimes. The disturbance regimes would hinder the process of vegetation succession. Slope was the most important factor that affects landslide and soil erosion, and an important characteristic of each micro-topographic unit as well. This could give the opportunity for population regeneration and maintenance of relict deciduous broad-leaved tree due to the landslide.
     (3) Niche differentiation among relict deciduous broad-leaved trees and other trees at spatial and temporal scales.
     The topographic characteristics and spatial distribution pattern of relict deciduous broad-leaved trees were different. They had a specific habitat preference and were mostly distributed at unstable habitat. E. henryi and E pleiospermum were located on valley habitat while N. sinensis and E. acalycina mainly located on crest slope and side slope. Their niche breadth was narrow and their niche overlap was smaller so that the differentiation pattern was significant. Hence, it reflected the exclusion of species spatial distribution, which resulted from species'long-term adaptation to micro-environment and utilization to different resources. N. sinensis, L. acalycina, L. formosana and E. henryi were a long-lived pioneer species. They could invade into the bare habitat after disturbance that accompanied with short-lived trees. If the habitat were long-term stable after once disturbance, long-lived relict deciduous broad-leaved trees would become dominant species when the short-lived pioneer species such as Carpinus viminea, Platycarya strobilacea disappeared gradually. The relationship among these different pioneer species was significantly negative. It indicated that their niche was a significant difference and represented the niche complement of species on the process of community succession. Besides, long-lived relict deciduous broad-leaved trees N. sinensis and L. acalycina would provide a shelter for evergreen trees during the process of community succession. They were coexisted with evergreen tree due to its tall stature and long life span. Their relationship appeared significant positive relationship. This reflected that the vertical niche differentiation between relict species and evergreen trees.
     (4) The persistence of population and community depend on different reproduction strategy and regeneration pattern at different micro-topographic units
     Some relict species such as C. paliurus and L. acalycina regenerated discontinuously at safe site via long-distance diffusion. And E. heryi and E. pleiospermum regenerated discontinuously around mature tree under frequent disturbance. After occupied by sexual regeneration, N. sinensis and L. formosana could regenerate and form multi-stems individuals by inherent sprouting ability at relative stable sites. At river bed and valley slope habitat, E. henryi and E. pleiospermum, L. formosana also could be recruited by strong sprouting ability due to sparse seedling and loss incurred by disturbance.
     At low altitude, evergreen broad-leaved forests were damaged seriously under natural and artificial disturbance so that there were few evergreen seedlings. Therefore, L. formosana would predominate for long-term at each micro-topographic unit by the sporadic regeneration and strong sprouting ability. At middle altitude, N. sinensis, L. acalycina, L. formosana and E. henryi were regenerated discontinuously while the regeneration type of C. gracilis and Lithocarpus harlandii displaced an inverse-J type on the relative stable habitat. The evergreen trees would predominate gradually and long-lived relict species only existed at emergent layer. And N. sinensis and L. acalycina also could occupy new habitat via long-distance diffusion when forest gaps were formed.
     At lower mountain evergreen broad-leaved forest area, the population of Phoebe sheareri was regenerated well and would replace the first dominant species on river bed and valley slope. However, C. paliurus could regenerate well at mosaic community level by virtue of sporadic regeneration far away from mature trees. On river bed at middle altitude, the size classes of dominant evergreen species C. gracilis and L. harlandii were smaller and some individuals died due to the frequent disturbance. E. henryi would predominate long-term by virtue to sporadic recruitment and strong sprouting ability. The regeneration of E. pleiospermum population depended on frequent disturbance and displaced a sporadic type. Furthermore, the survival rate and sprouting rate of saplings and young trees were higher. Thus E. pleiospermum population could persist for a long period.
     (5) The response of trees with similar leaf traits to micro-topographic units was unanimous.
     Micro-topographic units were the greatest factor that affects the leaf traits of main broad-leaved trees. It affected the distribution of tree and their adaption ability via changing the soil nutrition and disturbance regime. The leaf trait characteristics of dominant trees located on river bed and valley slope were larger leaf area and specific leaf area, lower leaf dry matter content, higher nitrogen content. And the dominant trees located on head hollow, crest slope and side slope have smaller leaf area and specific leaf area, higher leaf dry matter content, lower nitrogen content. From the river bed to crest slope, leaf area and nitrogen content showed a decreasing trend, while leaf dry matter content tended to increase.
     The results of cluster and PCA analysis showed that 34 trees can be classified into 4 types based on the similar leaf traits. Evergreen trees except for Daphniphyllum macropodum had the characteristics of lower leaf area, specific leaf area and nitrogen content, and high leaf dry matter content. They were mainly located on side slope and became the main companion species or dominant species. Deciduous trees mainly adapted on valley habitat and their leaf traits characteristics were larger leaf area, higher specific and nitrogen content and lower leaf dry matter content. C. paliurus has a similar leaf traits pattern with a large number of deciduous trees such as Kalopanax septemlobus, Litsea auriculata, Styrax obassius, Magnolia cylindrical. The leaf traits characteristics of L. formosana, E. henryi, E. pleiospermum, cornus controversum and Alangium chinense were also similar. N. sinensis, L. acalycina, Tilia breviradiata and D. macropodum were the third type. Evergreen tree and smaller leaf area deciduous trees such as Carpinus viminea, Quercus serrata var. brevipetiolata and Acer palmatum were the fourth type. There was a good correspondent relationship between the species group types based on leaf trait characters and their distribution patterns.
     (6) Ecological species group of relict deciduous broad-leaved tree in subtropical area of East China.
     The relict deciduous broad-leaved trees could be classified into two ecological species groups based on spatial distribution and strategy of regeneration, adaptation and competition.
     Type 1 was species that supplement for bare habitat, such as E. pleiospermum, C. paliurus, E. henryi and L. formosana. They were characterized by predominating on valley habitat with frequent disturbance, unimodal distribution type, strong vegetative reproduction ability, and lower interspecific competition.
     Type 2 was species that repairment for forest gap, such as N. sinensis, L. acalycina, L. formosana. They were characterized by predominating on side slope with long period disturbance, regenerated by sexual and vegetation reproduction, persisted by discontinuously regeneration that far away from mature trees, and the vertical niche differentiation with other trees.
引文
Abos C.P., Lepori F., Mckie B.G., et al. (2006). Aggregation among resource patches can promote coexistence in stream-living shredders. Freshwater Biol,51,545-553.
    Ackerly D.D.& Cornwell W.K. (2007). A trait-based approach to community assembly: partitioning of species trait values into within-and among-community components. Ecol Lett,10, 135-145.
    Ackerly D.D. & Nyffeler R. (2004). Evolutionary diversification of continuous traits: phylogenetic tests and application to seed size in the California flora. Evol Ecol,18,249-272.
    Ackerly D.D., Dudley S.A., Sultan S.E., et al. (2000). The evolution of plant ecophysiological traits:Recent advances and future directions. Bioscience,50,979-995.
    Ackerly D.D., Knight C.A., Weiss S.B., et al. (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia,130,449-457.
    Ackerly D.D., Schwilk D.W.& Webb C.O. (2006). Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology,87Suppl., S50-S61.
    Aerts R. (1995). The advantage of being evergreen. Trends Ecol Evol,10,402-407.
    Albert C.H., Thuiller W., Yoccoz N.G., et al. (2010). A multi-trait approach reveals the structure and the relative importance of intra-vs. interspecific variability in plant traits. Funct Ecol,24, 1192-1201.
    Amarasekare P. (2003). Competitive coexistence in spatially structured environments:a synthesis. Ecol Lett,6,1109-1122.
    Amin M.& Flowers T.H. (2004). Evaluation of Kjeldahl digestion method. Journal of Research, 15,159-179.
    Ann S.W.& Oshima Y. (1996). Structure and regeneration of Fraxinus spaethiana- Pterocarya rboifolia forests in unstable valleys in the Chichibu Mountains, central Japan. Ecol Res,11, 363-370.
    Arevalo J.R.& Fernandez-Palacios J.M. (1998). Treefall gap characteristics and regeneration in the laurel forest of Tenerife. J Veg Sci,9,297-306.
    Arevalo J.R.& Fernandez-Palacios J.M. (2007). Treefall gaps and regeneration composition in the laurel forest of Anaga (Tenerife):a matter of size? Plant Ecol,188,133-143.
    Beaudet M.& Messier C. (2008). Beech regeneration of seed and root sucker origin:A comparison of morphology, growth, survival, and response to defoliation. Forest Ecol Manag,255, 3659-3666.
    Bell G., Lechowicz M.J.& Waterway M.J. (2000). Environmental heterogeneity and species diversity of forest sedges. J Ecol,88,67-87.
    Brook B.W., Sodhi N.S.& Ng P. (2003). Catastrophic extinctions follow deforestation in Singapore. Nature,424,420-423.
    Busing R.T. (1998). Composition, structure and diversity of cove forest stands in the Great Smoky Mountains:a patch dynamics perspective. J Veg Sci,9,881-890.
    Callaway R.M. (1995). Positive interactions among plants. The Botanical Review,61,306-349.
    Callaway R.M., Brooker R.W., Choler P., et al. (2002). Positive interactions among alpine plants increase with stress. Nature,417,844-848.
    Calleja J.A., Garzon M.& Ollero H. (2009). A Quaternary perspective on the conservation prospects of the Tertiary relict tree Prunus lusitanica L. JBiogeogr,36,487-498.
    Chust G., Perez-Haase A., Chave J., et al. (2006). Floristic patterns and plant traits of Mediterranean communities in fragmented habitats. JBiogeogr,33,1235-1245.
    Cingolani A.M., Cabido M., Gurvich D.E., et al. (2007). Filtering processes in the assembly of plant communities:Are species presence and abundance driven by the same traits?J Veg Sci,18, 911-920.
    Condit R., Watts K., Bohlman S.A., et al. (2000). Quantifying the deciduousness of tropical forest canopies under varying climates. J Veg Sci,11,649-658.
    Cornelissen J.H.C., Lavorel S., Gamier E., et al. (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot,51,335-380.
    Cornell H.V.& Lawton R.M. (1992). Species interactions, local and regional processes, and limits to richness of ecological communities:a theoretical perspective. J Anim Ecol,61,1-12.
    Cornwell W.K.& Ackerly D.D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr,79,109-126.
    Cornwell W.K.& Ackerly D.D. (2010). A link between plant traits and abundance:evidence from coastal California woody plants. J Ecol,98,814-821.
    Cornwell W.K., Schwilk D.W.& Ackerly D.D. (2006). A trait-based test for habitat filtering: Convex hull volume. Ecology,87,1465-1471.
    Craine J.M.& Lee W.G. (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia,134,471-478.
    Curtis P.S.& Ackerly D.D. (2008). Introduction to a Virtual Special Issue on plant ecological strategy axes in leaf and wood traits. New Phytol,179,901-903.
    Da L.J., Kang M.M., Song K., et al. (2009). Altitudinal zonation of human-disturbed vegetation on Mt. Tianmu, eastern China. Ecol Res,24,1287-1299.
    Da L.J., Xia A.M.& Yang Y.C. (2003). The study on vertical distribution pattern of vegetation on Mt.Tianmu, Zhejiang province, China. In: Report of the "PRO NATURA FUND",103-116 (Japanese with English synopsis).
    Deiller A.F., Walter J.& Tremolieres M. (2003). Regeneration strategies in a temperate hardwood floodplain forest of the Upper Rhine:sexual versus vegetative reproduction of woody species. Forest Ecol Manag,180,215-225.
    Del Tredici P. (2001). Sprouting in temperate trees:A morphological and ecological review. Bot Rev,61,121-140.
    Denk T., Frotzler N.& Davitashvili N. (2001). Vegetational patterns and distribution of relict taxa in humid temperate forests and wetlands of Georgia (Transcaucasia). Biol J Linn Soc,72,287-332. Dias E.& Melo C. (2010). Factors influencing the distribution of Azorean mountain vegetation: implications for nature conservation. Biodivers Conserv,19,3311-3326.
    Diaz S.& Cabido M. (2001). Vive la difference:plant functional diversity matters to ecosystem processes. Trends Ecol Evol,16,646-655.
    Diaz S., Cabido M.& Casanoves F. (1998). Plant functional traits and environmental filters at a regional scale. J Veg Sci,9,113-122.
    Diaz S., Hodgson J.G., Thompson K., et al. (2004). The plant traits that drive ecosystems: Evidence from three continents. J Veg Sci,15,295-304.
    Diaz S., Lavorel S., McIntyre S., et al. (2007). Plant trait responses to grazing-a global synthesis. Global Change Biol,13,313-341.
    Diaz S., Noy-Meir I.& Cabido M. (2001). Can grazing response of herbaceous plants be predicted from simple vegetative traits? J Appl Ecol,38,497-508.
    Elias R.B.& Dias E. (2009). Cyclic patch dynamics in a Macaronesian island forest. Community Ecol,10,25-34.
    Emerson B.C.& Gillespie R.G. (2008). Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol,23,619-630.
    Enoki T. (2003). Microtopography and distribution of canopy trees in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan. Ecol Res,18,103-113.
    Eriksson A. (1998). Regional distribution of Thymus serpyllum:management history and dispersal limitation. Ecography,21,35-43.
    Fajardo A., Quiroz C.L.& Cavieres L.A. (2008). Spatial patterns in cushion-dominated plant communities of the high Andes of central Chile:How frequent are positive associations? J Veg Sci, 19,87-96.
    Fang J.Y., Ohsawa M.& Kira T. (1996). Vertical vegetation zones along 30°N latitude in humid East Asia. Vegetatio,135-149.
    Fryxell P. (1962). The "relict species" concept. Acta Biotheor,15,105-118.
    Fujihara M.& Kikuchi T. (2005). Changes in the landscape structure of the Nagara River Basin, CEntral Japan. Landscape Urban Plan,70,271-281.
    Fujihara M., Hara K., Da L.J., et al. (2011). Landscape and stand structures in a hilly agricultural area in Fenghua City, Zhejiang Province, China: impact of fuelwood collection. Landsc Ecol Eng, Online (DOI 10.1007/s11355-010-0141-0).
    Garcia M.B. (2003). Demographic viability of a relict population of the critically endangered plant Borderea chouardii. Conserv Biol,17,1672-1680.
    Garcia M.B. (2008). Life history and population size variability in a relict plant. Different routes towards long-term persistence. Divers Distrib,14,106-113.
    Gleason H.A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club,53,7-26.
    Gomez J.P., Bravo G.A., Brumfield R.T., et al. (2010). A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds. J Anim Ecol,79,1181-1192.
    Gotelli N.J., Graves G.R.& Rahbek C. (2010). Macroecological signals of species interactions in the Danish avifauna. P Natl Acad Sci Usa,107,5030-5035.
    Grime J.P. (1973). Competitive exclusion in herbaceous vegetation. Nature,344-347.
    Guariguata M.R. (1990). Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico. J Ecol,78, pp.814-832.
    Hampe A.& Arroyo J. (2002). Recruitment and regeneration in populations of an endangered South Iberian Tertiary relict tree. Biol Conserv,107,263-271.
    Hampe A.& Petit R.J. (2005). Conserving biodiversity under climate change: the rear edge matters. Ecol Lett,8,461-467.
    Han W.X., Fang J.Y., et al. (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol,168,377-385.
    Hanba Y.T., Noma N.& Umeki K. (2000). Relationship between leaf characteristics, tree sizes and species distribution along a slope in a warm temperate forest. Ecol Res,15,393-403.
    Hara M., Hirata K.& Fujihara M. (1996). Vegetation structure in relation to micro-landform in an evergreen broad-leaved forest on Amami Ohshima Island, South-West Japan. Ecol Res,11, 325-337.
    Hawkins B.A., Albuquerque F.S., Araujo M.B., et al. (2007). A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology,88,1877-1888.
    He J.S., Wang Z.H., Wang X.P., et al. (2006). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytol,170,835-848.
    Holscher D., Schmitt S.& Kupfer K. (2002). Growth and leaf traits of four broad-leaved tree species along a hillside gradient. Forestwissenschaftliches Centralblatt,121,229-239.
    Hou J.H., Mi X.C., Liu C.R., et al. (2004). Spatial patterns and associations in a Quercus-Betula forest in northern China. J Veg Sci,15,407-414.
    Illa E., Carrillo E.& Ninot J.M. (2006). Patterns of plant traits in Pyrenean alpine vegetation. Flora,201,528-546.
    Iwao S. (1977). Analysis of spatial association between two species based on the interspecies mean crowding. Re Popul Ecol,18,243-260.
    Jung V., Violle C., Mondy C., et al. (2010). Intraspecific variability and trait-based community assembly. J Ecol,98,1134-1140.
    Keddy P.A. (1992). Assembly and response rules:two goals for predictive community ecology. J Veg Sci,3,157-164.
    Kikuchi T.& Miura O. (1993). Vegetation patterns in relation to micro-scale landforms in hilly land regions. Vegetatio,106,147-154.
    Knight C.A.& Ackerly D.D. (2003). Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size:congeneric species from desert and coastal environments. New Phytol,160,337-347.
    Koh L.P., Dunn R.R., Sodhi N.S., et al. (2004). Species coextinctions and the biodiversity crisis. Science,305,1632-1634.
    Kohyama T., Suzuki E., Partomihardjo T., et al. (2001). Dynamic steady state of patch-mosaic tree size structure of a mixed dipterocarp forest regulated by local crowding. Ecol Res,16,85-98.
    Kraft N.& Ackerly D.D. (2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr,80,401-422.
    Kraft N., Cornwell W.K., Webb C.O., et al. (2007). Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat,170,271-283.
    Kraft N., Valencia R.& Ackerly D.D. (2008). Functional traits and niche-based tree community assembly in an amazonian forest. Science,322,580-582.
    Krebs C.J. (2009). Ecology:The Experimental Analysis of Distribution and Abundance. Benjamin-Cummings Pub Co, San Francisco.
    Kubo M., Sakio H., Shimano K., et al. (2005). Age structure and dynamics of Cercidiphyllum japonicum sprouts based on growth ring analysis. Forest Ecol Manag,213,253-260.
    Ky-Dembele C., Tigabu M., Bayala J., et al. (2007). The relative importance of different
    regeneration mechanisms in a selectively cut savanna-woodland in Burkina Faso, West Africa. Forest Ecol Manag,243,28-38.
    Kyle G.& Leishman M.R. (2009). Plant functional trait variation in relation to riparian geomorphology: The importance of disturbance. Austral Ecol,34,793-804.
    Lavorel S.& Garnier E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol,16,545-556.
    Lebrija-Trejos E., Perez-Garcia E.A., Meave J.A., et al. (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology,91, 386-398.
    Li J.M.& Jin Z.X. (2008). Genetic structure of endangered Emmenopterys henryi Oliv. based on ISSR polymorphism and implications for its conservation. Genetica,133,227-234.
    IUCN List I.R. (2007). IUCN Red List of Threatened Species. Available at http:// www.iucnredlist.org,2007.2008(May).
    Lloret F., Verdu M., Flores-Hernandez N., et al. (1999). Fire and resprouting in Mediterranean ecosystems:Insights from an external biogeographical region, the mexical shrubland. Am J Bot, 86,1655-1661.
    Lopez-Hoffman L., Ackerly D.D., Anten N., et al. (2007). Gap-dependence in mangrove life-history strategies:A consideration of the entire life cycle and patch dynamics. J Ecol,95, 1222-1233.
    Lopez-Pujol J., Zhang F.M.& Ge S. (2006). Plant biodiversity in China:richly varied, endangered, and in need of conservation. Biodivers Conserv,15,3983-4026.
    Lu H.P., Cai Y.W., Chen X.Y., et al. (2006). High RAPD but no cpDNA sequence variation in the endemic and endangered plant, Heptacodium miconioides Rehd. (Caprifoliaceae). Genetica,128, 409-417.
    Marby C., Ackerly D.& Fritz G. (2000). Landscape and species-level distribution of morphological and life history traits in a temperate woodland flora. J Veg Sci,11,213-224.
    McGill B.J., Enquist B.J., Weiher E., et al. (2006). Rebuilding community ecology from functional traits. Trends Ecol Evol,21,178-185.
    McIntyre S., Lavorel S., Landsberg J., et al. (1999). Disturbance response in vegetation towards a global perspective on functional traits. J Veg Sci,10,621-630.
    Mejias J.A., Arroyo J.& Ojeda F. (2002). Reproductive ecology of Rhododendron ponticum (Ericaceae) in relict Mediterranean populations. Bot J Linn Soc,140,297-311.
    Mendoza Ⅰ., Gomez-Aparicio L., Zamora R., et al. (2009). Recruitment limitation of forest communities in a degraded Mediterranean landscape. J Veg Sci,20,367-376.
    Michalet R., Rolland C., Joud D., et al. (2003). Associations between canopy and understory species increase along a rainshadow gradient in the Alps:habitat heterogeneity or facilitation? Plant Ecol,165,145-160.
    Milne R.I. (2006). Northern hemisphere plant disjunctions:A window on tertiary land bridges and climate change? Ann Bot (London),98,465-472.
    Milne R.I.& Abbott R.J. (2002). The origin and evolution of tertiary relict floras. Adv Bot Res,38, 281-314.
    Mou P., Jones R.H., Guo D.L., et al. (2005). Regeneration strategies, disturbance and plant interactions as organizers of vegetation spatial patterns in a pine forest. Landscape Ecol,20, 971-987.
    Mouquet N., Munguia P., Kneitel J.M., et al. (2003). Community assembly time and the relationship between local and regional species richness. Oikos,103,618-626.
    Murrell D.J., Purves D.W.& Law R. (2001). Uniting pattern and process in plant ecology. Trends Ecol Evol,16,529-530.
    Nagamatsu D.& Miura O. (1997). Soil disturbance regime in relation to micro-scale landforms and its effects on vegetation structure in a hilly area in Japan. Plant Ecol,133,191-200.
    Nagamatsu D., Hirabuki Y.& Mochida Y. (2003). Influence of micro-landforms on forest structure, tree death and recruitment in a Japanese temperate mixed forest. Ecol Res,18,533-547.
    Nakazawa T.& Yamamura N. (2006). Community structure and stability analysis for intraguild interactions among host, parasitoid, and predator. Popul Ecol,48,139-149.
    Nanami S., Kawaguchi H., Tateno R., et al. (2004). Sprouting traits and population structure of co-occurring Castanopsis species in an evergreen broad-leaved forest in southern China. Ecol Res, 19,341-348.
    Narayanaraj G., Bolstad P.V., Elliott K.J.& Vose J.M. (2010). Terrain and Landform Influence on Tsuga canadensis (L.) Carriere (Eastern Hemlock) Distribution in the Southern Appalachian Mountains. Castanea,75,1-18.
    Nathan R., Schurr F.M., Spiegel O., et al. (2008). Mechanisms of long-distance seed dispersal. Trends Ecol Evol,23,638-647.
    Navas M.L.& Violle C. (2009). Plant traits related to competition:how do they shape the functional diversity of communities? Community Ecol,10,131-137.
    Niinemets U. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology,82,453-469.
    Ofomata V.C., Overholt W.A., Van Huis A., et al. (1999). Niche overlap and interspecific association between Chilo partellus and Chilo orichalcociliellus on the Kenya coast. Entomol Exp Appl,93,141-148.
    Ohsawa M. (1984). Differentiation of vegetation zones and species strategies in the subalpine region of Mt. Fuji. Vegetatio,15-52.
    Ohsawa M. (1990). An interpretation of latitudinal patterns of forest limits in South and East Asian mountains. J Ecol,78,326-339.
    Ohsawa M. (1991). Structural comparison of tropical montane rain forests along latitudinal and altitudinal gradients in south and East Asia. Vegetatio,1-10.
    Ohtsuka T., Sakura T.& Ohsawa M. (1993). Early herbaceous succession along a topographical gradient on forest clear-felling sites in mountainous terrain, central Japan. Ecol Res,329-340.
    Okubo S., Kamiyama A., Kitagawa Y., et al. (2005). Management and micro-scale landform determine the ground flora of secondary woodlands and their verges in the Tama Hills of Tokyo, Japan. Biodivers Conserv,14,2137-2157.
    Ozturk M., Celik A., Guvensen A., et al. (2008). Ecology of tertiary relict endemic Liquidambar orientalis Mill. forests. Forest Ecol Manag,256,510-518.
    Pacala S.W. (1997). Dynamics of plant communities. In:Plant Ecology (ed. Crawley M.J.). Blackwell Scientific Oxford, UK, pp.532-555.
    Paolini L., Villalba R.& Grau H.R. (2005). Precipitation variability and landslide occurrence in a subtropical mountain ecosystem of NW Argentina. Dendrochronologia,22,175-180.
    Pellissier L., Fournier B., Guisan A., et al. (2010). Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecol,211,351-365.
    Pico F.X.& Riba M. (2002). Regional-scale demography of Ramonda myconi:Remnant population dynamics in a preglacial relict species. Plant Ecol,161,1-13.
    Poorter L.& Bongers F. (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology,87,1733-1743.
    Poulos H.M.& Camp A.E. (2010). Topographic influences on vegetation mosaics and tree diversity in the Chihuahuan Desert Borderlands. Ecology,91,1140-1151.
    Prior L.D., Eamus D.& Bowman D. (2003). Leaf attributes in the seasonally dry tropics:a comparison of four habitats in northern Australia. Funct Ecol,17,504-515.
    Pujol B., Salager J.L., Beltran M., et al. (2008). Photosynthesis and leaf structure in domesticated cassava (Euphorbiaceae) and a close wild relative:Have leaf photosynthetic parameters evolved under domestication? Biotropica,40,305-312.
    Pulido F., Valladares F., Calleja J.A., et al. (2008). Tertiary relict trees in a Mediterranean climate: abiotic constraints on the persistence of Prunus lusitanica at the eroding edge of its range. J Biogeogr,35,1425-1435.
    Reader R.J. (1998). Relationship between species relative abundance and plant traits for an infertile habitat. Plant Ecol,134,43-51.
    Rejmanek M.& Leps J. (1996). Negative associations can reveal interspecific competition and reversal of competitive hierarchies during succession. Oikos,76,161-168.
    Root T.L., Price J.T., Hall K.R., et al. (2003). Fingerprints of global warming on wild animals and plants. Nature,421,57-60.
    Rusch G.M., Pausas J.G.& Leps J. (2003). Plant functional types in relation to disturbance and land use:Introduction. J Veg Sci,14,307-310.
    Sakai A.& Ohsawa M. (1993). Vegetation pattern and microtopography on a landslide scar of Mt Kiyosumi, central Japan. Ecol Res,8,47-56.
    Sakai A.& Ohsawa M. (1994). Topographical pattern of the forest vegetation on a river basin in a warm-temperature hilly region, central Japan. Ecol Res,9,269-280.
    Sakai A., Ohsawa T.& Ohsawa M. (1995). Adaptive significance of sprouting of Euptelea Polyandra a deciduous tree growing on steep slopes with shallow soil. J Plant Res,108,377-386.
    Sakio H., Kubo M., Shimano K., et al. (2002). Coexistence of three canopy tree species in a riparian forest in the Chichibu Mountains, Central Japan. Folia Geobot,37,45-61.
    Sammul M., Kull K., Oksanen L., et al. (2000). Competition intensity and its importance:results of field experiments with Anthoxanthum odoratum. Oecologia,125,18-25.
    Schiffers K., Schurr F.M., Tielborger K., et al. (2008). Dealing with virtual aggregation-a new index for analysing heterogeneous point patterns. Ecography,31,545-555.
    Schneider D.C. (2001). The rise of the concept of scale in ecology. Bioscience,51,545-553.
    Schwilk D.W.& Ackerly D.D. (2005). Is there a cost to resprouting? Seedling growth rate and drought tolerance in sprouting and nonsprouting Ceanothus (Rhamnaceae). Am JBot,92,404-410. Shackleton C.M. (1999). Rainfall and topo-edaphic influences on woody community phenology in South African savannas. Global Ecol Biogeogr,8,125-136.
    Shang K.K., Zhang Q.P., Da L.J., et al. (2011). Effects of natural and artificial disturbance on landscape and forest structure in Tiantong National Forest Park, East China. Landsc Ecol Eng, online (DOI 10.1007/s11355-010-0148-6).
    Shimano K. (2000). A power function for forest structure and regeneration pattern of pioneer and climax species in patch mosaic forests. Plant Ecol,146,207-220.
    Sletvold N.& Rydgren K. (2007). Population dynamics in Digitalis purpurea:the interaction of disturbance and seed bank dynamics. J Ecol,95,1346-1359.
    Sutton F.M.& Morgan J.W. (2009). Functional traits and prior abundance explain native plant extirpation in a fragmented woodland landscape. JEcol,97,718-727.
    Suzuki W., Osumi K., Masaki T., et al. (2002). Disturbance regimes and community structures of a riparian and an adjacent terrace stand in the Kanumazawa Riparian Research Forest, northern Japan. Forest Ecol Manag,157,285-301.
    Tang C.Q.& Ohsawa M. (1997). Zonal transition of evergreen, deciduous, and coniferous forests along the altitudinal gradient on a humid subtropical mountain, Mt. Emei, Sichuan, China. Plant Ecol,63-78.
    Tang C.Q.& Ohsawa M. (1999). Altitudinal distribution of evergreen broad-leaved trees and their leaf-size pattern on a humid subtropical mountain, Mt. Emei, Sichuan, China. Plant Ecol,145, 221-233.
    Tang C.Q.& Ohsawa M. (2002a). Tertiary relic deciduous forests on a humid subtropical mountain, Mt. Emei, Sichuan, China. Folia Geobot,37,93-106.
    Tang C.Q.& Ohsawa M. (2002b). Coexistence mechanisms of evergreen, deciduous and coniferous trees in a mid-montane mixed forest on Mt. Emei, Sichuan, China. Plant Ecol,161, 215-230.
    Tateno R.& Takeda H. (2003). Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecol Res,18, 559-571.
    Tiffney B.H. (1985). The Eocene North Atlantic land bridge:its importance in Tertiary and modern phylogeography of the Northern Hemisphere. Journal of Arnold Arboretum,66,243-273. Tilman D. (1994). Competition and biodiversity in spatially structured habitats. Ecology,75,2-16.
    Tofts R.& Silvertown J. (2000). A phylogenetic approach to community assembly from a local species pool. P Roy Soc B-Biol Sci,267,363-369.
    Travis J., Brooker R.W.& Dytham C. (2005). The interplay of positive and negative species interactions across an environmental gradient:insights from an individual-based simulation model. Biol Lett,1,5-8.
    Tzedakis P.C., Lawson I.T., Frogley M.R., et al. (2002). Buffered tree population changes in a quaternary refugium:Evolutionary implications. Science,297,2044-2047.
    Vetaas O.R.& Grytnes J.A. (2002). Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol Biogeogr,11,291-301.
    Wang X.G., Ye J., Li B.H., et al. (2010). Spatial distributions of species in an old-growth temperate forest, northeastern China. Can J Forest Res,40,1011-1019.
    Wang Z., Ye W.H., Cao H.L., et al. (2009). Species-topography association in a species-rich subtropical forest of China. Basic Appl Ecol,10,648-655.
    Wang Z.H., Tang Z.Y.& Fang J.Y. (2007). Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Divers Distrib,13,845-854.
    Wangda P.& Ohsawa M. (2006). Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya. Forest Ecol Manag,230, 136-150.
    Warner R.R.& Chesson P.L. (1985). Coexistence mediated by recruitment fluctuations:A field guide to the storage effects. Am Nat,125,769-787.
    Watt A.S. (1946). Pattern and process in the plant community. J Ecol,35,1-22.
    Webb C.O. (2000). Exploring the phylogenetic structure of ecological communities:An example for rain forest trees. Am Nat,156,145-155.
    Webb C.O.& Peart D.R. (2000). Habitat associations of trees and seedlings in a Bornean rain forest. J Ecol,88,464-478.
    Webb C.O., Ackerly D.D., McPeek M.A., et al. (2002). Phylogenies and community ecology. Ann Rev Ecol Syst,33,475-505.
    Webb S.L.& Scanga S.E. (2001). Windstorm disturbance without patch dynamics:Twelve years of change in a Minnesota forest. Ecology,82,893-897.
    Wehrli A., Zingg A., Bugmann H., et al. (2005). Using a forest patch model to predict the dynamics of stand structure in Swiss mountain forests. Forest Ecol Manag,205,149-167.
    Wei X.Z., Jiang M.X., Huang H.D., et al. (2010). Relationships between environment and mountain riparian plant communities associated with two rare tertiary-relict tree species, Euptelea pleiospermum (Eupteleaceae) and Cercidiphyllum japonicum (Cercidiphyllaceae). Flora,205, 841-852.
    Whitmore T.C. (1989a). Canopy gaps and the two major groups of forest trees. Ecology,70, 536-538.
    Whitmore T.C. (1989b). Changes over twenty-one years in the Kolombangara rain forests. J Ecol, 77,469-483.
    Wiens J.A. (1989). Spatial scaling in ecology. Funct Ecol,3,385-397.
    Wilson P.J., Thompson K.& Hodgson J.G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol,143,155-162.
    Wolfe J.A. (1975). Some aspects of plant geography in the northern hemisphere during the late Cretaceous and Tertiary. Ann Mo Bot Gard,62,264-279.
    Wright I.J., Ackerly D.D., Bongers F., et al. (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann Bot-London,99,1003-1015.
    Wright I.J., Reich P.B., Westoby M., et al. (2004). The worldwide leaf economics spectrum. Nature,428,821-827.
    Wu J.G.& Loucks O.L. (1995). From balance of nature to hierarchical patch dynamics:a paradigm shift in ecology. Q Rev Biol,70,439-466.
    Yoshida N.& Ohsawa M. (1999). Seedling success of Tsuga sieboldii along a microtopographic gradient in a mixed cool-temperate forest in Japan. Plant Ecol,140,89-98.
    Zhang J.L., Ding Q.& Huang J.H. (2010). http://cran.r-project.org/package=spaa.
    Zhang Z.H., Hu G., Zhu J.D., et al. (2010). Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecol Res,25,1151-1160.
    Zhu Y., Mi X.C., Ren H.B., et al. (2010). Density dependence is prevalent in a heterogeneous subtropical forest. Oikos,119,109-119.
    宝乐和刘艳红(2009).东灵山地区不同森林群落叶功能性状比较.生态学报,29(7):3692-3703.
    陈小勇,陈波和蒋屹峰(2003).片断化对常绿阔叶林种类组成的影响.华东师范大学学报(自然科学版),(3):69-74.
    达良俊,杨永川和宋永昌(2004).浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型.植物生态学报,28(3):376-384.
    邓贤兰,刘玉成和吴杨(2003).井冈山自然保护区栲属群落优势种群的种间联结关系研究.植物生态学报,27(4):531-536.
    丁炳扬,李根有,傅承新等(编)(2010)天目山植物志.第1-4卷,浙江大学出版社,杭州.
    方精云(2001).也论我国东部植被带的划分.植物学报,43(5):522-533.
    方精云(2004).探索中国山地植物多样性的分布规律.生物多样性,12(1):1-4.
    方精云,沈泽昊和崔海亭(2004).试论山地的生态特征及山地生态学的研究内容.生物多样性,12(1):10-19.
    方精云,王襄平和唐志尧(2009).局域和区域过程共同控制着群落的物种多样性:种库假说.生物多样性,17(6):605-612.
    方精云,王志恒和唐志尧(编)(2010).中国木本植物分布图集.高等教育出版社,北京.
    冯秋红,史作民和董莉莉(2008).植物功能性状对环境的响应及其应用.林业科学,44(4):125-131.
    傅立国(1989).中国珍稀濒危植物.科学技术出版社,北京.
    郭相亿,李裕红和林慧萍(2001).牛姆林区青钱柳群落的主要种群种间关联特征.福建林学院学报,21(2):181-185.
    郭志华,卓正大,陈洁,等(1997).庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究.植物生态学报,21(5):33-41.
    韩也良(编)(1988).牯牛降科学考察集.中国展望出版社,北京.
    何东,魏新增,李连发,等(2009).神农架山地河岸带连香树的种群结构与动态.植物生态学报,33(3):469-481.
    贺金生,林洁和陈伟烈(1995).我国珍稀特有植物珙桐的现状及其保护.生物多样性,3(4):213-221.
    侯继华和马克平(2002).植物群落物种共存机制的研究进展.植物生态学报,26(增刊):1-8.
    胡理乐,李新,江明喜,等(2003).宣恩七姊妹山珙桐群落种间联结分析.武汉植物学研究21(3):203-208.
    胡绍庆,丁炳扬和陈征海(2002).浙江省珍稀濒危植物物种多样性保护的关键区域.生物多样性,15-23.
    胡正华,钱海源和于明坚(2009).古田山国家级自然保护区甜槠林优势种群生态位.生态学报,29(7):3670-3677.
    黄云鹏(2008).武夷山米槠林主要树种种间关联性.山地学报,26(6):692-698.
    简敏菲,刘琪,朱笃,等(2009).九连山常绿阔叶林乔木优势种群的种间关联性分析.植物生态学报,33(4):672-680.
    金则新(1997).浙江天台山七子花种群结构与分布格局研究.生态学杂志,16(4):16-20.
    金则新(2002a).浙江天台山七子花群落优势种群结构及种间联结性研究.植物研究,22(1):76-83.
    金则新(2002b).浙江天台山常绿阔叶林优势种群结构及种间联结性研究.广西植物,22(3):203-208.
    康华靖,陈子林,刘鹏,等(2007).大盘山自然保护区香果树种群结构与分布格局.生态学报,27(1):389-396.
    康华靖,陈子林,刘鹏,等(2008).大盘山香果树(Emmenopterys henryi)种内及其与常见伴生种之间的竞争关系.生态学报,28(7):3456-3463.
    康华靖,刘鹏,徐根娣,等(2008).大盘山自然保护区香果树对不同海拔生境的生理生态响应.植物生态学报,32(4):865-872.
    康敏明,张奇平,杜璟,等(2010).浙江天童受损常绿阔叶林实验生态学研究(Ⅵ):不同干扰下植被恢复初期主要优势种叶性状及其生态适应.华东师范大学学报(自然科学版),(3):26-38.
    李克志(1963).试论林木的种内种间关系.东北林学院学报,2:51-60.
    李铭红,宋瑞生,姜云飞,等(2008).片断化常绿阔叶林的植物多样性.生态学报,28(3):1137-1146.
    李小双,彭明春和党承林(2007).植物自然更新研究进展.生态学杂志,16(12):2081-2088.
    林洁,沈泽昊,贺金生,等(1995).珙桐群落学特征及群落环境分析.植物学通报,12(生态学 专辑):71-78.
    林石狮,沈如江,凡强,等(2007).江西三清山东亚—北美间断分布属植物缺萼枫香群落研究.生态环境,16(2):509-515.
    林协和张都海(2004).天目山银杏种群起源分析.林业科学,40(2):28-31.
    刘鸿雁(2002).第四纪生态学与全球变化.科学出版社,北京.
    刘亚兰,郭汝清和孙书存(2010).中国亚热带山地植被垂直带分布对气候季节性的响应.生态学报,30(14):3912-3922.
    楼涛,赵明水,杨淑贞,等(2004).天目山国家级自然保护区古树名木资源.浙江林学院学报,21(3):37-42.
    路安民,李建强和徐克学(1991).金缕梅类科的系统发育分析.植物分类学报,29(6):481-493.
    陆阳(1983).鼎湖山森林群落数量分析——Ⅱ.优势种群间的相关性.生态科学,(2):105-113.
    陆阳(1986).南亚热带森林种群分布格局取样技术研究.植物生态学与地植物学丛刊,10(4):272-282.
    孟婷婷,倪健和王国宏(2007).植物功能性状与环境和生态系统功能.植物生态学报,31(1):150-165.
    牛克昌,刘怿宁,沈泽昊,等(2009).群落构建的中性理论和生态位理论.生物多样性,17(6):579-593.
    彭少麟和方炜(1994).鼎湖山植被演替过程优势种群动态研究Ⅲ.黄果厚壳桂和厚壳桂种群.熟带亚热带植物学报,2(4):79-87.
    彭少麟,周厚诚,郭少聪,等(1999).鼎湖山地带性植被种间联结变化研究.植物学报,41(11):1293-1244.
    戚裕锋,杨徐烽,张奇平,等(2010).浙江天童受损常绿阔叶林实验生态学研究(V):不同干扰下植被恢复初期主要树种五年的恢复和更新.华东师范大学学报(自然科学版),(3):10-25.
    祁建,马克明和张育新(2008).北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较.生态学报,28(1):122-128.
    钱宏和汪思龙(1988).安徽省绩溪县清凉峰自然保护区主要森林植被类型及其分布.生态学杂志(2):32-36.
    钱君龙,吕军,屠其璞,等(2001),用树轮α-纤维素δ13C重建天目山地区近160年气候.中国科学(D辑:地球科钧,31(4):333-341.
    乔建平(2006).山洪、滑坡、泥石流灾害监测预警.中国减灾,(6):13-15.
    商侃侃,陈波和达良俊(2008).浙江天童受损常绿阔叶林实验生态学研究(Ⅲ):从热值角度分析常绿阔叶林常见种的适应策略.华东师范大学学报(自然科学版),(4):25-30.
    沈泽昊和方精云(2001).基于种群分布地形格局的两种水青冈生态位比较研究.植物生态学报,25(4):392-398.
    沈泽昊和张新时(2000).三峡大老岭地区森林植被的空间格局分析及其地形解释.植物学报,23(增刊):1089-1095.
    沈泽昊,胡会峰,周宇,等(2004).神农架南坡植物群落多样性的海拔梯度格局.生物多样性,12(1):99-107.
    沈泽昊,金义兴,赵子恩,等(2000a).亚热带山地森林珍稀植物群落的结构与动态.生态学报,20(5):800-807.
    沈泽昊,金义兴,赵子恩,等(2000b).三峡大老岭地区森林群落的数量分类研究.武汉植物学研究18(2):99-107.
    沈泽昊,张新时和金义兴(2000c).地形对亚热带山地景观尺度植被格局影响的梯度分析.植物生态学报,24(4):430-435.
    沈泽昊,赵子恩,吴金清,等(1999).三峡地区大老岭珍稀植物的分布格局及其与地形因子的关系.植物生态学报,23(增刊),171-180.
    史作民,刘世荣,程瑞梅,等(2000).河南宝天曼植物群落数量分类与排序.林业科学,36(6):20-27.
    宋坤,达良俊,杨同辉,等(2007).栲树种群的年龄结构及其生长特征.应用生态学报,18(2):254-260.
    宋垚彬,张奇平和达良俊(2010).浙江天童受损常绿阔叶林实验生态学研究(Ⅳ):土壤种子库在受损常绿阔叶林恢复初期中的作用.华东师范大学学报(自然科学版),(3):1-9.
    宋永昌(2001).植被生态学华东师范大学,上海.
    宋永昌和陈小勇(编)(2007).中国东部常绿阔叶林生态系统退化机制与生态恢复.科学出版社,北京.
    宋永昌,陈小勇和王希华(2005).中国常绿阔叶林研究的回顾与展望.华东师范大学学报(自然科学版),(1):1-8.
    孙鸿烈(2005).中国森林生态系统科学出版社,北京.
    覃林和艾训儒(1999).珙桐群落中珙桐种群与主要共生树木种群间联结关系的研究.林业科技,24(5):16-17,50.
    汤孟平,周国模,施拥军,等(2006).天目山常绿阔叶林优势种群及其空间分布格局.植物生态学报,30(5):743-752.
    唐志尧和方精云(2004).植物物种多样性的垂直分布格局.生物多样性,12(1):20-28.
    汪传佳和李晓庆(2002).珍稀濒危物种繁育技术.中国农业出版社,北京.
    王伯荪(1984).植物群落学.高等教育出版社,北京.
    王伯荪和彭少麟(19833).鼎湖山森林群落分析——Ⅱ.物种联结性.中山大学学报(自然科学版),(4):29-37.
    王传华,魏斌和李俊清(2009).鄂东南枫香(Liquidαmbar formosαnα)林、马尾松(Pinus mαssoniαnα)-枫香林群落结构及更新.生态学报,29(9):4681-4692.
    王传华,杨莹和李俊清(2009).鄂东南低山丘陵区枫香种群的天然更新方式与特征.植物学报,44(6):710-717.
    王磊,孙启武,郝朝运,等(2010).皖南山区南方红豆杉种群不同龄级立木的点格局分析.应用生态学报,21(2):272-278.
    王四川(2009).安徽牯牛降常绿阔叶林种子生态学研究.南京林业大学硕士学位论文.
    王祥荣和宋永昌(1994).浙江天童国家森林公园常绿阔叶林种间相关的研究.应用生态学报,5(2):113-119.
    王志恒,陈安平和方精云(2004).湖南省种子植物物种丰富度与地形的关系.地理学报,59(6):889-894.
    王志恒,陈安平,朴世龙,等(2004).高黎贡山种子植物物种丰富度沿海拔梯度的变化.生物多样性,12(1):82-88.
    魏新增,黄汉东,江明喜,等(2008).神农架地区河岸带中领春木种群数量特征与空间分布格局.植物生态学报,32(4):825-837.
    吴征镒(编)(1980).中国植被.科学出版社,北京.
    吴征镒,周浙昆,孙航,等(编)(2006).种子植物分布区类型及其起源和分化.云南科技出版社,昆明.
    夏爱梅,达良俊,朱虹霞,等(2004).天目山柳杉群落结构及其更新类型.浙江林学院学报, 21(1):46-52.
    肖宜安,何平,李晓红,等(2003).长柄双花木分布群落中优势种群间联结性研究.西南师范大学学报(自然科学版),28(6):952-957.
    熊四清,朱忠保,朱林峰,等(1996).八大公山珍稀濒危树种的种间联结及其迁地保护混交
    树种选择的研究.第二届全国生物多样性保护与持续利用研讨会中国北京,pp.95-103.
    严昌荣,韩兴国和陈灵芝(2000).北京山区落叶阔叶林优势种叶片特点及其生理生态特性.生态学报,22(1):54-61.
    闫恩荣,王希华,施家月,等(2005).木本植物萌枝生态学研究进展.应用生态学报,16(12):2459-2464.
    杨逢春(编)(1992).天目山自然保护区自然资源综合考察报告.浙江科学技术出版社,杭州.
    杨洪晓,张金屯,吴波,等(2006).毛乌素沙地油蒿种群点格局分析.植物生态学报,30(4):563-570.
    杨一光(1986).湖南省八大公山自然保护区的珍稀植物及其群落特征.湖南师范大学自然科学学报,9(2):83-90.
    杨永川(2005).中国中亚热带东部低山丘陵地形梯度上植被的分异及其形成和维持机制.华东师范大学博士学位论文.
    杨永川和达良俊(2006).丘陵地区地形梯度上植被格局的分异研究概述.植物生态学报,30(3):504-513.
    杨永川,达良俊和由文辉(2005).浙江天童国家森林公园微地形与植被结构的关系.生态学报,25(11):38-48.
    臧润国,杨彦承,林瑞昌,等(2003).海南霸王岭热带山地雨林森林循环与群落特征研究.林业科学,39(5):1-9.
    占玉燕(2010).湖北后河保护区珙桐的叶功能性状研究.北京林业大学硕士学位论文.
    章皖秋,李先华,罗庆州,等(2003).基于RS、GIS的天目山自然保护区植被空间分布规律研究.生态学杂志,22(6):21-27.
    张文辉,祖元刚和刘国彬(2002).十种濒危植物的种群生态学特征及致危因素分析.生态学报,22(9):1512-1520.
    张亚爽,苏智先和胡进耀(2005).四川卧龙自然保护区珙桐种群的空间分布格局.云南植物研究27(4):395-402.
    张殷波和马克平(2008).中国国家重点保护野生植物的地理分布特征.应用生态学报,19(8):1670-1675.
    浙江植物志编辑委员会(1993).浙江植物志.浙江科学技术出版社杭州.
    郑朝宗(1990).浙江珍稀濒危保护植物的地理分布及其区系特征.武汉植物学研究,8(3):235-242.
    郑朝宗和金孝锋(2008).华东地区分布的中国种子植物特有属的研究.浙江大学学报(理学版),35(6):668-673.
    郑成洋,刘增力和方精云(2004).福建黄岗山东南坡和西北坡乔木物种多样性及群落特征的垂直变化.生物多样性,12(1):63-74.
    周纪纶(1963).安徽省黄山植物群落分类和地理的研究.植物生态学与地植物学丛刊,1(1-2):146-147.
    周先叶,王伯荪,李鸣光,等(2000).广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析.植物生态学报,24(3):332-339.
    周浙昆& Momohara A.(2005).一些东亚特有种子植物的化石历史及其植物地理学意义. 云南植物研究27(5):3-24.
    祝燕,米湘成和马克平(2009).植物群落物种共存机制:负密度制约假说.生物多样性,17(6):594-604.
    宗世贤,杨志斌,陶金川,等(1991).苏浙皖地区珍稀濒危植物的研究.农村生态环境,12-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700