用户名: 密码: 验证码:
藏獒的起源、系统发育与遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家犬是人类最亲密的伙伴和朋友,也是人类第一个驯化的家养动物,有关家犬的起源、进化和品种形成等问题一直是各国学者研究的热点之一,关于家犬的起源问题,目前已基本达成共识,即世界范围内的所有家犬都起源于灰狼。但是,关于家犬的起源地和具体起源时间研究结果并不一致,仍然存在较大的分歧。那么对目前世界上现存的古老犬种进行分析将是揭示家犬发源地和起源时间的有效方法。藏獒是目前世界上最古老、最凶猛的大型家犬品种之一,因此藏獒起源以及与其它家犬品种系统发育关系的研究对于揭示家犬的起源、起源时间和起源地点都具有重要意义。但是目前藏獒的研究工作比较滞后,关于藏獒的起源、分类地位,以及与其它大型家犬品种间关系的研究报道较少。为了揭示藏獒的起源以及与其它家犬品种间的系统发育关系,我们测定了藏獒线粒体基因组全序列,分析了藏獒线粒体基因组的基因组成、特征,以及与犬属物种(家犬、灰狼和郊狼等)和哺乳动物的差异;利用线粒体基因组12个编码蛋白基因、COI基因、DNA条形码、控制区和高变区I序列分析了藏獒的起源、分类地位以及与其它家犬品种间的系统发育关系,推测藏獒和家犬的起源时间;测定了藏獒群体控制区序列,利用控制区和538bp高变区I序列分析了藏獒群体的遗传多样性。具体结果如下:
     (1)藏獒线粒体基因组全序列测定与分析
     通过克隆测序和序列拼接首次获得了藏獒线粒体基因组全序列(GenBank序列号为HM048871),发现藏獒线粒体基因组全长16710bp,包括13个编码蛋白基因、22个tRNA基因、2个rRNA基因和1个非编码区(即D-loop区),基因组成、排列方式和位置均与哺乳动物其他物种基本一致。藏獒线粒体基因组序列中T、C、A、G等4种碱基含量分别为28.7%、25.6%、31.6%和14.1%,其中AT含量(60.3%)明显高于GC含量(39.7%)。藏獒线粒体基因组13个编码蛋白基因序列长度为11410bp,其中序列最长的基因为ND5 (1821bp),最短的为ATPase8(204bp);共发现4种起始密码子,大多数编码蛋白基因(8个)均以ATG为起始密码子,ND2、ND3和ND5基因以ATA为起始密码子,ND6基因以AAT为起始密码子,而ND4L基因以GTG为起始密码子;11个编码蛋白基因的终止密码子为TAA,其中4个基因为不完全终止密码子,而CytB基因和ND2基因的终止密码子分别为AGA和TAG。藏獒线粒体基因组D-loop区序列全长为1250bp,定位在tRNA-Pro与tRNA-Phe之间,包括2个保守序列模块即CSBⅠ和CSBⅡ,而在2个保守序列模块之间有一个短片段重复区,这个重复区是由一个包含10个核苷酸构成的重复单元5'-GTACACG T(G/A) C-3'经过30个重复形成的。藏獒线粒体22个tRNA基因序列长度在66-75bp之间,总长度为1521bp,与引物源序列(家犬,GenBank序列号:U96639) tRNA的同源性为为99.08%,共有4个变异位点。藏獒线粒体12s rRNA和16s rRNA基因全长分别为954bp、1580bp,与与引物源序列的同源性为99.96%,仅发现1个变异位点,即在16s rRNA基因nt372位点发生了A/G转换。
     (2)藏獒的起源及与其它家犬品种的系统发育分析
     采用NJ法、MP法和网络法,分别根据线粒体基因组H链12个编码蛋白基因、COI基因、DNA条形码(648bp)、控制区和控制区582bp高变区Ⅰ等5种序列,结合我们测定的和GenBank中收录的家犬、灰狼和郊狼的相应序列,以郊狼为外类群,构建了藏獒、家犬品种和灰狼的系统发育树和单倍型网络关系图,系统发育树和网络关系图均显示:藏獒、家犬品种与灰狼聚在一起,而外类群郊狼单独聚为一类,说明藏獒和其它家犬一样起源于灰狼;且藏獒与家犬品种间线粒体基因组5种序列的序列差异均小于藏獒与灰狼间的,而大于家犬品种间的,认为藏獒是家犬亚种中的一个品种,在动物分类地位上应该隶属于食肉目(Carnivora)、犬科(Canidae)、犬属(Canis)、狼种(Canis lupus)、家犬亚种(Canis lupus familiaris)。藏獒、家犬品种聚为4个分支,说明家犬至少有4个母系起源,与前人的研究结果基本一致;藏獒和部分的大型家犬品种如圣伯纳犬、英国老式牧羊犬等属于分支A,且藏獒与圣伯纳犬、英国老式牧羊犬等大型家犬品种间的5种序列的序列差异、遗传距离均最小,说明藏獒与圣伯纳犬、英国老式牧羊犬等大型家犬品种间的亲缘关系较近,从分子水平上证实了圣伯纳犬、英国老式牧羊犬等大型犬在品种形成过程中可能掺入了藏獒的血统。
     利用Savolainen等(2002)的方法,线粒体基因组H链12个编码蛋白基因、COI基因、控制区和控制区582bp高变区Ⅰ的碱基替换率估计藏獒、家犬不同分支与灰狼间的分化时间。结果发现:综合考虑4个分支,家犬与灰狼间的分化时间分别为16000 YBP、32000 YBP、65000 YBP和50000 YBP,我们估计的家犬起源时间界于目前研究的最早的家犬起源时间(100000 YBP)和最晚的家犬起源时间(15000 YBP)之间,综合各种因素,我们认为家犬的起源时间至少在16000YBP,与Savolainen等(2002)、Pang等(2009)估计的家犬起源时间(分别为15000YBP、16300YBP)一致,也符合根据化石推测的起源时间(26000 YBP):藏獒的起源时间分别为18000 YBP、33000 YBP、68000 YBP和56000 YBP,均早于相应序列估计的家犬起源,且系统发育分析发现藏獒与一些古老的家犬品种(如英国老式牧羊犬等)聚为一类,序列差异和遗传距离均较小,与英国老式牧羊犬共享DNA条形码单倍型,说明藏獒是目前世界上最古老的家犬品种之一
     (3)藏獒群体遗传多样性分析
     通过克隆测序获得了40个藏獒个体线粒体基因组控制区全序列,对藏獒控制区的结构、控制区和538bp高变区Ⅰ序列的遗传多样性进行了分析,并与犬属7个群体(金毛寻回猎犬、拉布拉多猎犬、伊利里亚牧羊犬、土耳其牧羊犬、中国灰狼、欧洲灰狼、郊狼)进行了比较。结果显示:藏獒群体控制区全序列的长度从1240bp到1320bp不等,其中主要的长度类型为1270bp(32.5%,13/40),进一步分析发现藏獒控制区全序列的长度多态性主要是由重复单元数量的不同引起的;在40个藏獒的控制区全序列中共检测到75个变异位点,多态位点百分率为5.68%,其中单一多态位点14个,占多态位点总数的18.67%,简约信息多态位点61个,占多态位点总数的81.33%;核苷酸变异类型中只有转换、插入/缺失,没有颠换出现,表现出高度的转换偏爱性;藏獒控制区全序列的单倍型多样度(H)为0.990,核苷酸多样度(pi)为1.201,平均核苷酸差异数目(k)为13.082,均高于拉布拉多犬和金毛寻回猎犬群体,但与哺乳动物其他物种相比,核苷酸多样度偏低。
     在犬属8群体中,野生群体(中国灰狼、欧洲灰狼和郊狼)线粒体控制区538bp高变区Ⅰ序列的单倍型多样度(H)、核苷酸多样度和平均核苷酸差异数目均明显高于5个家犬品种;在5个家犬品种内,土耳其牧羊犬的多态位点最多为21个(3.90%)、其次是藏獒和伊利里亚牧羊犬,发现了19个多态位点(3.53%);家犬品种289个个体共检测到36个单倍型,其中29个单倍型为相应品种特有,有7个共享单倍型;藏獒的单倍型多样性最丰富,单倍型多样度为0.854,而金毛寻回猎犬的单倍型多样性最贫乏,单倍型多样度为0.471;但是,藏獒的核苷酸多样度和平均核苷酸差异数目最小,分别为0.845和4.519,伊利里亚牧羊犬的核苷酸多样度最丰富(1.427)、平均核苷酸差异数目最大(7.661)。藏獒群体的单倍型多样度比较高而核苷酸多样度较低,表明现存的藏獒群体可能是由一个较小的有效种群迅速增长形成的。总体来看,藏獒群体的遗传多样性相对贫乏。
Domestic dog is the closest friend of mankind and was probably the first animal to be domesticated. As the intimate relationship with people grew, the origin, domestication and breed formation of the dog had become a major topic of studies among the scholars in the world. With regard to the origin, there has been a confirmed conclusion that all the domestic dogs originated from the grey wolf. However, about the region and time of origin, there were greatly differing views. So the analysis of the most archaic extant domestic dog breeds in the world at present will be an effective method to reveal the region and time of domestic dog origin. Tibetan Mastiff is one of the most archaic and fierce large breed of domestic dogs, so the research about the origin of Tibetan Mastiff and its relationship between other large breed dogs will contribute to reveal the origin, origin time and origin regions. At present the study about Tibetan Mastiff is lagged, there have been few reports on the origin of the Tibetan Mastiff and its relationship with other domestic dogs. Therefore, we sequenced the complete mitochondrial genome of Tibetan Mastiff and analyzed its characteristics in comparison to those of other Canidae(domestic dogs, grey wolves and coyotes) and some mammals. Based on the mitochondrial genome (mtDNA) of 12 protein-coding genes, COI gene, DNA barcoding, D-loop and its hypervariable region I sequence, we analyzed the origin, taxonomic status of Tibetan Mastiff and its relationship between other domestic dogs, speculated the origin time of Tibetan Mastiff and domestic dog; we identified the structure characters of control region in Tibetan Mastiff, analyzed the genetic diversity based on the control region and hypervariable region 538bp sequence. The results followed as below:
     1. Sequencing and analyzing the complete sequence of the Tibetan Mastiff mitochondrial genome
     The complete sequence of the Tibetan Mastiff mitochondrial genome (mtDNA) was determined (GenBank No. HM048871) for the first time. The complete nucleotide sequence of the Tibetan Mastiff mtDNA was 16710 bp, and included 22 tRNA genes, 2S rRNA gene,13 protein-coding genes, and one non-coding region (D-loop region), the constitution, arrangements and location of genes is consistent with other mammalian mitochondrial genomes. The base composition of the Tibetan Mastiff mtDNA is 28.7%T,25.6%C,31.6% A, and 14.1% G. The AT content (60.3%) is significantly higher than the GC content (39.7%). The total length of the Tibetan Mastiff mtDNA that encodes the 13 protein-coding genes is 11410bp, in which the longest gene is ND5 (1821bp), the shortest gene is ATPase8 (204bp), The genome uses four initiation codons:eight genes use ATG; NADH2, NADH3, and NADH5 use ATA; NADH6 uses AAT; and NADH4 uses GTG. The stop codons of 11 genes are complete termination codons (TAA, TAG, or AGA) and four genes (COⅢ, NADH3, NADH4, and NADH6) use incomplete termination codons; The complete length of the D-loop region in the Tibetan Mastiff is 1250bp, and is located between the tRNA-Pro and tRNA-Phe genes; there were two conserved sequenced blocks (CSB), that is, CSB I and CSB II in the mitochondrial control region, and a short tandem repeat region between the two CSBs, which was composed of 30 repeated units (5'-GTACACGT(G/A)C-3').22 tRNA lengths range from 66 to 75bp, the total length of the Tibetan Mastiff mtDNA that encodes the tRNA genes is 1521bp, showing 99.08% homology with domestic dog (GenBank No. U96639) and 4 variable sites. The lengths of the 12s rRNA and 16s rRNA genes are 954bp and 1580bp respectively, showing 99.96% homology with domestic dog (GenBank No. U96639) and one variable site.
     2. Origin of Tibetan Mastiff and its phylogenetic analysis with other domestic dogs
     According to the methods of NJ, MP and network, based on the 5 sequences of 12 protein-coding genes in H chain, COI gene, DNA barcoding (648bp), control region and hypervariable region I (582bp) respectively, combining the sequences sequenced by us with the corresponding sequences of domestic dogs, grey wolves and coyotes gathered by GenBank, using coyotes as the outgroup, we constructed the phylogenetic trees and haplotypes network among Tibetan Mastiff, domestic dogs and grey wolves. Phylogenetic trees and network also showed that Tibetan Mastiff, domestic dogs and grey wolves clustered together, while the coyotes clustered alone, which suggesting that Tibetan Mastiff, as other domestic dogs, originated from grey wolves;the sequence divergence, based on the 5 types of sequences, between Tibetan Mastiff and domestic dogs were smaller than that of between Tibetan Mastiff and grey wolves but bigger than that of interspecies, so the Tibetan Mastiff could be considered as one species of domestic dogs, which belonged to the Carnivora, Canidae, Canis, Canis lupus, Canis lupus familiaris in the animal taxonomic status. Tibetan Mastiff and domestic dogs clustered into four clades, implying at least four maternal origins, which consistent with the before reports. Tibetan Mastiff and some large breed dogs such as Saint Bernard and the Old English Sheepdog belonged to clade A, the sequence divergence and genetic distance between the Tibetan Mastiff and these domestic dogs was smallest, indicating that Tibetan Mastiff appears to be closely related to large breed dogs such as the Saint Bernard and the Old English Sheepdog and confirming the point many of famous domestic dogs in the world such as Saint Bernard were possible of having blood lineage of Tibetan Mastiff at molecular level. According to the method of Savolainen et al (2002) based on the sequences of mitochondrial 12 protein-coding genes, COI gene, DNA barcoding, control region and hypervariable region I, we calculated the rate of base transition, speculated the divergence time between Tibetan Mastiff and grey wolves and between domestic dogs and grey wolves. The results showed that:considering the four clades synythetically, the divergence time between domestic dogs and grey wolves were 16000 YBP,32000 YBP,65000 YBP and 50000 YBP respectively, which was in the middle of the earliest originated time (100000 YBP) and the latest originated time (15000 YBP) of domestic dogs; we considered, synthetizing various factors,the originated time of domestic dogs was about at least 16000 YBP, which consistent with the results speculated by Savolainen et al (2002) and Pang et al (2009) (15000 YBP and 16300 YBP respectively) and fossil record (26000 YBP); the origin time of the Tibetan Mastiff was about 18000 YBP,33000 YBP,68000 YBP and 56000 YBP, which were earlier than the originated time of domestic dogs speculated by corresponding sequences, phylogenetic analysis showed that Tibetan Mastiff clustered with some archaic domestic dog (such as Old English Sheepdog), there was small sequence divergence and genetic distance between Tibetan Mastiff and these archaic domestic dogs, Tibetan Mastiff shared the haplotype of DNA barcoding with Old English Sheepdog, which suggesting that Tibetan Mastiff was one of the most archaic breed of domestic dog.
     3. Genetic diversity of Tibetan Mastiff population
     We sequenced the complete sequences of mitochondrial D-loop of 40 Tibetan Mastiff, analyzed the structure of control region and genetic diversity of control region and its 538bp hypervariable region I sequences and compared the genetic diversity with other 7 population of Canids (Golden Retriever, Labrador Retriever, Illyrian sheepdog, Kangal, Chinese wolf, grey wolf and coyote). The results showed that:the length of D-loop in Tibetan Mastiff populations ranges from 1240bp to 1320bp, of which 1270bp was the primary length types, there were 13 (32.5%) individuals owning 1270-bp length. Further analysis found that the length diversity mainly due to the different number of repeated units (5'-GTACACGT(G/A)C-3'). In 40 Tibetan Mastiff individuals,75 sites were polymorphic, taking up 5.68% of total sits, of which 14 (18.67% variable sites) was singleton polymorphic sites and 61 (81.33% variable sites) was parsimony informative polymorphic sites. There were two types of mutation of nucleotide such as transition, insertion/deletion, there was no transversion, showing strong transition bias. The haplotype diversity, nucleotide diversity and average number of nucleotide differences of Tibetan Mastiff popultion was 0.990,1.201 and 13.082 respectively, which were higher than that of Golden Retriever population and Labrador Retriever population, but compared with other mammals nucleotide diversity was lower. In 8 populations of Canids, the haplotype diversity, nucleotide diversity and average number of nucleotide differences of 538bp control region I sequence in wild populations (Chinese wolf, European wolf and coyote) were obviously higher than that of domestic dog breeds; in 5 breeds of domestic dog, the most variable sites (21 variable sites) happened in kangal (3.90%), following the Tiebtan Mastiff and Illyrian sheepdog with also 19 variable sites (3.53%); 289 individuals of 5 domestic dogs breeds were defined 36 haplotypes in which 29 haplotypes were the characteristic of their corresponding breeds and 7 haplotypes were the sharing haplotypes among breeds; haplotype diversity of Golden Retriever was smallest (0.471) and haplotype diversity of Tibetan Mastiff was highest (0.854), but the nucleotide diversity and average number of nucleotide differences in Tibetan Mastiff was smallest (0.845 and 4.519 respectively), the nucleotide diversity and average number of nucleotide differences in Illyrian sheepdog was highest (1.427 and 7.661 respectively). In Tibetan Mastiff population, the high haplotype diversity and low nucleotide diversity suggested the extant Tibetan Mastiff population probably formed and rapidly increased from a small and effective population. From these, we concluded that the genetic diversity of Tibetan Mastiff was relative spareness.
引文
1. 晁生玉.藏獒血液乳酸脱氢酶同工酶酶谱的电泳研究.青海畜牧兽医杂志,2000,30(5):15-16.
    2. 崔泰保,兰小平,杨俊年.河曲藏獒生长发育的研究.甘肃农业大学学报,2001,36(4):379-382.
    3. Dalvit C, De Marchi M, Zanetti E, Cassandro M. Genetic variation and population structure of Italian native sheep breeds undergoing in situ conservation. J Anim Sci.2009,87(12): 3837-3844.
    4. Edwards CJ, Magee DA, Park SD, McGettigan PA, Lohan AJ, Murphy A, Finlay EK, Shapiro B, Chamberlain AT, Richards MB, Bradley DG, Loftus BJ, Machugh DE. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius). PLoS One,2010,5(2):e9255.
    5. Emara MG, Kim H. Genetic markers and their application in poultry breeding. Poult Sci. 2003,82(6):952-957.
    6. Erlich HA, Bergstrom TF, Stoneking M, Gyllensten U. HLA Sequence Polymorphism and the Origin of Humans. Science,1996,274(5292):1552-1554.
    7. 苟想珍.不同毛色藏獒生长发育及其毛色遗传规律的研究.硕士学位论文.兰州:甘肃农业大学,2007.
    8. 贾宁,刘建国.不同海拔地区藏獒肺组织结构及肺动脉血管壁的比较观察.中国兽医科学,2009,39(4):349-352.
    9. 金鑫,涂政,姜成涛,赵兴春,叶健.藏獒犬11个STR基因座遗传多态性.中国法医学杂志,2009,24(1):3942.
    10. Kantanen J, Vilkki J, Elo K, Maki-Tanila A. Random amplified polymorphic DNA in cattle and sheep:application for detecting genetic variation. Anim Genet.1995,26(5):315-320.
    11.兰小平,陈永昌,郭宪,鄢珣,崔泰保.藏獒血液蛋白遗传多样性的研究.湖北农业科学,2009a,48(12):2938-2940.
    12.兰小平,郭宪,陈永吕,杨俊年,鄢珣,崔泰保.藏獒群体遗传结构及遗传分化研究.河南农业科学,2010,(1):110-112.
    13.兰小平,郭宪,陈永吕,鄢殉,崔泰保.藏獒血液蛋白多态性研究.安徽农业科学,2009b,37(33):16274-16276.
    14.兰小平,雒林通,李三相,黄晶,李一婧,王廷璞,鄢殉.2个中国藏獒群体遗传多样 性及遗传分化的研究.基因组学与应用生物学,2009c,28(6):1081-1086.
    15. Li MH, Merila J. Sex-specific population structure, natural selection, and linkage disequilibrium in a wild bird population as revealed by genome-wide microsatellite analyses. BMC Evol Biol,2010,10(1):66.
    16. Li QF, Liu ZS, Li YX, Zhao XB, Dong LY, Pan ZX, Sun YR, Li N, Xu YX and Xie Z. Origin and phylogenetic analysis of Tibetan Mastiff based on the mitochondrial DNA sequence. Journal of Genetics and Genomics,2008,35(6):335-340.
    17.刘成平.不同毛色藏獒生长发育情况对比研究.当代畜牧,2007,(11):48-49.
    18.刘建国,王芳,周大鹏,贾宁.不同海拔高度的藏獒肺动脉血管特性及结构.安徽农业科学,2009,37(1):144-145.
    19.卢灵霞,崔泰保,鄢珣,邸智勇.不同环境下藏獒幼犬生长发育规律的初步研究.甘肃农业大学学报,2008,43(6):45-47.
    20.罗理扬.现代家犬的起源——线粒体DNA的研究.博士学位论文.杨陵:西北农林科技大学,2003.
    21. Mao H, Guo Y, Yang G, Yang B, Ren J, Liu S, Ai H, Ma J, Brenig B, Huang L. A genome-wide scan for quantitative trait loci affecting limb bone lengths and areal bone mineral density of the distal femur in a White Duroc x Erhualian F2 population. BMC Genet, 2008,9:63.
    22.倪正.藏獒.北京:中国青年出版社,2004.
    23. Nyamsambaa D, Nomuraa K, Nozawac, Yokohamab M, Zagdsurend KYo, Amanoa T. Genetic relationship among Mongolian native goat populations estimated by blood protein polymorphism. Small Ruminant Res,2003,47(3):171-181.
    24. Okamoto S, Inafuku K, Ting Z, Maeda Y, Hou D, Tang YF, Yun ZH, Xu W, Shi L. Blood protein polymorphisms in native chicken breeds in Yunnan province of China. Anim Sci J, 2003,74(6):471-476.
    25.权凯,张迅华.藏獒的繁殖特征.河南畜牧兽医,2006,27(12):18-19.
    26. Ramirez O, Ojeda A, Tomas A, Gallardo D, Huang LS, Folch JM, Clop A, Sanchez A, Badaoui B, Hanotte O, Galman-Omitogun O, Makuza SM, Soto H, Cadillo J, Kelly L, Cho IC, Yeghoyan S, Perez-Enciso M, Amills M. Integrating Y-chromosome, mitochondrial, and autosomal data to analyze the origin of pig breeds. Mol Biol Evol,2009,26(9):2061-2072.
    27. Ren DR, Yang QY, Ye JH, Xu L, Zhao HA and Wu XP. Strong heterozygote deficit in Tibetan Mastiff of China based on microsatellite loci. Animal,2009,3:1213-1215.
    28. Rezaei HR, Naderi S, Chintauan-Marquier IC, Taberlet P, Virk AT, Naghash HR, Rioux D, Kaboli M, Pompanon F. Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Mol Phylogenet Evol,2010,54(2):315-326.
    29. Ritz LR, Glowatzki-Mullis M-L, MacHugh DE, Gaillard C. Phylogenetic analysis of the tribe Bovini using microsatellites. Animal Genetics.2000,31:178-185.
    30. Savolainen P, Zhang YP, Luo J, Lundeberg J, and Leitner T. Genetic evidence for an East Asian origin of domestic dogs. Science,2002,298:1610-1613.
    31.孙源荣.南京地区引入藏獒及几种国外犬的种质特性比较研究.硕十学位论文.南京:南京农业大学,2007.
    32. Tu ZC, Nie L, Yu Y, Wen JK, Zhang YP. Blood protein polymorphism in B. frontalis, B. grunniens, B. taurus, and B. indicus. Biochem Genet,2000,38(11-12):413-416.
    33. Vila C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, and Wayne RK. Multiple and ancient origins of the domestic dog. Science, 1997,276:1687-1689.
    34.王占奎.藏獒的繁殖特性及其演变.特种经济动植物,2006,(11):10-11.
    35.鄢殉,崔泰保.河曲藏獒繁殖性能研究.甘肃农业大学学报,2002,37(1):71-74.
    36. Ye JH, Ren DR, Xie AF, Wu XP, Xu L, Fu PF, Zhao HA, Yang QY. Microsatellite-based genetic diversity and evolutionary relationships of six dog breeds. Asian Austral J Anim 2009, 22(8):1102-1106.
    37. Yu Y, Lian L S, Wen J K, Shi X W, Zhu F X, Nie L, Zhang Y P. Genetic diversity and relationship of Yunnan native cattle breeds and introduced beef cattle breeds. Biochem Genet, 2004,42(1-2):1-9.
    38.周大鹏,刘建国,王芳,贾宁.藏獒肺组织对高原低氧环境的适应特性.甘肃农业大学学报,2009,44(4):25-28.
    1. Bannasch D L, Bannasch M J, Ryun J R, Famula T R, Pedersen N C. Y chromosome haplotype analysis in purebred dogs. Mamm Genome,2005,16(4):273-280.
    2. Benecke N. Studies on early dog remains from Northern Europe. J Archaeol Sci,1987,14: 31-49.
    3. Bjornerfeldt S, Webster M T, Vila C. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res,2006,16(8):990-994.
    4. Boyko AR, Boyko RH, Boyko CM, Parker HG, Castelhano M, Corey L, Degenhardt JD, Auton A, Hedimbi M, Kityo R, Ostrander EA, Schoenebeck J, Todhunter RJ, Jones P, Bustamante CD. Complex population structure in African village dogs and its implications for inferring dog domestication history. Proc Natl Acad Sci USA,2009,106(33): 13903-13908.
    5. Coppinger R and Schneider R, Evolution of working dogs. In:the domestic dog. Its evolution, behaviour and interactions with people (serpellj, ed). Cambridge:Cambridge university press.1995,21-47.
    6. Darwin C. The descent of man and selection in relation to sex. London:Murray,1871.
    7. Davis S J M, Valla F. Evidence for domestication of the dog 12,000 years ago in the Natufian of Israel. Nature,1978,276:608-610.
    8.丁昭莉,Savolainen P, Oskarsson MCR,张亚平.现在家犬的起源——基于Y染色体的研究.中国的遗传学研究.中国遗传学会第八次代表大会暨学术讨论会论文摘要汇编,2008,297.
    9. Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA. A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome,1996,7: 359-362.
    10. Garcia-moreno J, Matocq ND, Roy MS, Geffen E, Wayne RK. Relationship and genetic purity of the endangered Mexican wolf based on analysis of microsatellite loci. Conserve Boil,1996,10:376-389.
    11. Germonpre M, Sablin MV, Stevens RE, Hedges REM, Hofreiter M, Stiller M, Despres VR: Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. Journal of Archaeological Science 2009, 36:473-490.
    12. Gray MW, Burger G, Lang BE. Mitochondrial evolution. Science,1999,283:1476-1481.
    13. Gray MM, Sutter NB, Ostrander EA, Wayne RK. The IGF1 small dog haplotype is derived from Middle Eastern grey wolves. BMC Biol,2010,8:16.
    14.郭郛,李约瑟,成庆泰.中国古代动物学史.北京:科学出版社,1999.
    15. Hedrick PW, Miller PS, Geffen E, Wayne RK. Genetic evaluation of the three captive Mexican wolf lineages. Zoo Boil,1997,16:47-69.
    16. Heidi G. Parker, Lisa V. Kim, Nathan B. Sutter,Scott Carlson,Travis D. Lorentzen, Tiffany B. Malek, Gary S. Johnson, Hawkins B. DeFrance, Elaine A. Ostrander, Leonid Kruglyak. Genetic Structure of the Purebred Domestic Dog. SCIENCE,2004,304:1160-1164.
    17. Holmes NG, Dickens HF, Parker HL, Binns MM, Mellersh CS, Sampson J. Eighteen canine microsatellites. Anim Genet,1995,26:132-133.
    18. Holmes NG, Mellersh CS, Humphreys SJ, Binns MM, Holliman A, Curtis R, Sampson J. Isolation and characterization of microsatellites from the canine genome. Anim Genet,1993, 24:289-292.
    19. Ivankovic A, Kavar T, Caput P, Mioc B, Pavic V, Dovc P.Genetic diversity of three donkey populations in the Croatian coastal region. Anim Genet,2002,33(3):169-177.
    20. Leonard J A, Wayne R K, Wheeler J, Valadez R, Guillen S, Vila C. Ancient DNA evidence for Old World origin of New World dogs. Science,2002,298(5598):1613-1616.
    21. Li Q, Liu Z, Li Y, Zhao X, Dong L, Pan Z, Sun Y, Li N, Xu Y and Xie Z. Origin and phylogenetic analysis of Tibetan Mastiff based on the mitochondrial DNA sequence. Journal of Genetics and Genomics,2008,35(6):335-340
    22. Lorenz K. Man meets dog. London:Methuen,1954.
    23.罗理扬.现代家犬的起源——线粒体DNA的研究.博士学位论文.杨陵:西北农林科技大学,2003.
    24. Messina F, Scorrano G, Labarga CM, Rolfo MF, Rickards O. Mitochondrial DNA variation in an isolated area of Central Italy. Ann Hum Biol,2010 (Epub ahead of print)
    25. Morey D F. The early evolution of the domestic dog. American Scientist,1994,82:336-347.
    26. Nobis G. Der alteste Haushund lebte vor 14000 Jahren. Umschau,1979,79:610.
    27. Ostrander EA, Jong PM, Rine J, Duyk G. Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc Natl Acad Sci USA,1992,89: 3419-3423.
    28. Ostrander EA, Mapa FA, Yee M, Rine J. One hundred and one simple sequence repeat-based markers for the canine genome. Mamm Genome,1995,6:192-195.
    29. Ostrander EA, Sprague, GF, Rine J. Identification and characterization of dinucleotide repeat CA)n markers for genetic mapping in dog. Genomics,1993,16:207-213.
    30. Rothuizen J, Wolfswinkel J, Lenstra JA, Frants RR. The incidence of miniand micro-satellite repetitive DNA in the canine genome. Theor Appl Genet,1994,89:403-406.
    31. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao KY, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyarij E, Nordborg M, Lark KG, Wayne RK, Ostrander EA:A single IGF1 allele is a major determinant of small size in dogs. Science,2007,316:112-115.
    32. Savolainen P, Zhang Y P, Luo J, Lundeberg J, Leitner T. Genetic evidence for an East Asian origin of domestic dogs. Science,2002,298(5598):1610-1613.
    33. Sundqyist AK, Bjornerfeldt S, Leonard JA, Hailer F, Hedhammar A, Ellegren H, Vila C. Unequal contribution of sexes in the origin of dog breeds. Genetics,2006,172(2):1121-1128.
    34. Tamada T, Siriaroonrat B, Subramaniam V, Hamachi M, Lin LK, Oshida T, Rerkamnuaychoke W, Masuda R. Molecular diversity and phylogeography of the Asian leopard cat, Felis bengalensis, inferred from mitochondrial and Y-chromosomal DNA sequences. Zoolog Sci,2008,25(2):154-163.
    35. Tcherncov E and Valla F. Two new dogs, and other Natufian dogs, from the southern Levant. J Archaeol Sci,1997,24:65-95.
    36. Tsuda K, Kikkawa Y, Yonekawa H and Tanabe Y. Extensive interbreeding occurred among multiple matriarchal ancestors during the domestication of dogs:Evidence from inter- and intraspecies polymorphisms in the D-loop region of mitochondrial DNA between dogs and wolves. Genes and Genetic Systems,1997,4(72):229-238.
    37. Verginelli F, Capelli C, Coia V, Musiani M, Falchetti M, Ottini L, Palmirotta R, Tagliacozzo A, De Grossi Mazzorin I, and Mariani-Costantini R. Mitochondrial DNA from prehistoric Canids highlights relationships between dogs and South-East European wolves. Mol Biol Evol,2005,22:2541-2551.
    38. Vila C, Savolainen P, Maldonado J E, Amorim I R, Rice J E, Honeycutt R L, Crandall K A, Lundeberg J, Wayne R K. Multiple and ancient origins of the domestic dog. Science,1997, 276(5319):1687-1689.
    39. vonHoldt BM, Han E, Pollinger J, Lohmueller K, Earl DA, Parker HG Quignon P, Boyko A, Auton A, Reynolds A, Bryc K, Brisbin A, Knowles J, Margulies EH, Shao S, Mosher DS, Spady TC, Elkahloun A, Pilot M, Grecco C, Bannasch D, Wilton A, Shearman J, Cargill M, Jones PG, Zuwei Q, Zhou W, Zhang YP, Bustamante CD, Ostrander EA. Genome-wide SNP analysis of Domestic and Wild Canines. Nature,2010,464(7290):898-902.
    40. Wayne RK, Geffen E, Girman D J, Koepfli K P, Lau L M, Marshall C R. Molecular systematics of the Canidae. Syst Biol,1997,46(4):622-653.
    41. Wayne RK, Nash WG, O'Brien SJ. Chromosomal evolution of the canidae.1. species with high diploid numbers. Cytogenet Cell Genet,1987a,44:123-133.
    42. Wayne RK, Nash WG, O'Brien SJ. Chromosomal evolution of the canidae 2. divergence from the primitive carnivore karyotype. Cytogenet Cell Genet,1987b,44:134-141.
    43.翁屹,葛威,王昌燧.家犬起源的DNA分子系统发育研究.农业考古,2007,(1):235-241
    44. Wurster-Hill DH and Centerwall WR. The interrelationships of chromosome banding patterns in Canids, Mustelids, Hyena, and Felids. Cytogenet Cell Genet,1982,34:178-192.
    45. Zhang DX, Hewitt GM. Nuclear DNA analyses in genetic studies of populations:practice, problems and prospects. Mol Ecol,2003,12(3):563-584.
    1. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R and Young IG. Sequence and organization of the human mitochondrial genome. Nature,1981,290:457-465.
    2. Arnason U, Gullberg A, Janke A, Kullberg M. Mitogenomic analyses of caniform relationships. Mol Phylogenet Evol,2007,45(3):863-874.
    3. Arnason U, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA and Vainola R. Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogenet Evol, 2006,41:345-354.
    4. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. Sequence and gene organization of mouse mitochondrial DNA. Cell,1981,26(2):167-180.
    5. Bjornerfeldt S, Webster MT, and Vila C. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Research,2006,16:990-994.
    6. Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, Lalueza-Fox C, Rudan P, Brajkovic D, Kucan Z, Gusic I, Schmitz R, Doronichev VB, Golovanova LV, de la Rasilla M, Fortea J, Rosas A, Paabo S. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science,2009,325(5938):318-321.
    7. Cui P, Ji R, Ding F, Qi D, Gao H, Meng H, Yu J, Hu S, Zhang H. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus):an evolutionary history of camelidae. BMC Genomics,2007,8:241.
    8. Edwards CJ, Magee DA, Park SD, McGettigan PA, Lohan AJ, Murphy A, Finlay EK, Shapiro B, Chamberlain AT, Richards MB, Bradley DG, Loftus BJ, Machugh DE. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius). PLoS One.2010,5(2):e9255.
    9. Ghivizzani SC, Mackay SLD, Madsen CS, Laipis PJ and Hauswirth WW. Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J Mol Evol,1993,37:36-47.
    10. Gissi C, Gullberg A, Arnason U. The Complete Mitochondrial DNA Sequence of the Rabbit, Oryctolagus cuniculus. Genomics,1998,50:161-169.
    11. Gu Z, Zhao X, Li N and Wu C. Complete sequence of the yak (Bos grunniens) mitochondrial genome and its evolutionary relationship with other ruminants. Molecular Phylogenetics and Evolution,2007,42:248-255.
    12. Hassanin A, Ropiquet A, Couloux A, Cruaud C. Evolution of the mitochondrial genome in mammals living at high altitude:new insights from a study of the tribe Caprini (Bovidae, Antilopinae). J Mol Evol,2009,68(4):293-310.
    13. Hiendleder S, Lewalski H and Janke A. Complete mitochondrial genomes of Bos taurus and Bos indicus provide new insights into intra-species variation, taxonomy and domestication. Cytogenetic and Genome Research,2008,120:150-156.
    14. Hurst CD, Bartlett SE, Davidson WS and Bruce IJ. The complete mitochondrial DNA sequence of the Atlantic salmon, Salmo salar. Gene,1999,239:237-242.
    15. Hwang DS, Ki JS, Jeong DH, Kim BH, Lee BK, Han SH, Lee JS. A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae). Mitochondrial DNA,2008,19(4):418-429.
    16. Krause J, Briggs AW, Kircher M, Maricic T, Zwyns N, Derevianko A, Paabo S. A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr Biol,2010a,20(3): 231-236.
    17. Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Paabo S. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature,2010b, 464(7290):894-897.
    18. Kim KS, Lee SE, Jeong HW and Ha JH. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol Phylogenet Evo,1998,10:210-220.
    19. Kumar S, Dudley J, Nei M and Tamura K. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics,2008,9: 299-306.
    20.兰小平,陈永吕,郭宪,鄢殉,崔泰保.藏獒血液蛋白遗传多样性的研究.湖北农业科学,2009,48(12):2938-2940.
    21. Li QF, Liu ZS, Li YX, Zhao XB, Dong LY, Pan ZX, Sun YR, Li N, Xu YX and Xie Z. Origin and phylogenetic analysis of Tibetan Mastiff based on the mitochondrial DNA sequence. Journal of Genetics and Genomics,2008,35(6):335-340
    22. Li Y, Wu X, Ji X, Yan P and Amato G. The complete mitochondrial genome of salt-water crocodile (Crocodylus porosus) and phylogeny of crocodilians. J Genet Genomics,2007,34: 119-128.
    23. Lin CS, Sun YL, Liu CY, Yang PC, Chang LC, Cheng IC, Mao SJ and Huang MC. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene,1999,236:107-114.
    24. Lopez JV, Cevario S and O'Brien SJ. Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics,1996,33:229-246.
    25.马生林.藏獒面临的现状及开发保护.青海民族学院学报,2008,34(2):110-112.
    26. Meng C, Zhang H, Meng Q. Mitochondrial genome of the Tibetan wolf. Mitochondrial DNA, 2009,20(2-3):61-63.
    27. Mignotte F, Gueride M, Champagne AM, and Mounolou JC. Direct repeats in the non-coding region of rabbit mitochondrial DNA. Involvement in the generation of intra-and inter-individual heterogeneity. Eur Biochem,1990,194:561-57
    28.倪正.藏獒.北京:中国青年出版社,2004
    29. Pang JF, Kluetsch C, Zou XJ, Zhang AB, Luo LY, Angleby H, Ardalan A, Ekstrom C, Skollenno A, Lundeberg J, Matsumura S, Leitner T, Zhang YP, Savolainen P. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol Biol Evol.2009,26(12):2849-2864.
    30. Pereira L, Freitas F, Fernandes V, Pereira JB, Costa MD, Costa S, Maximo V, Macaulay V, Rocha R, Samuels DC. The diversity present in 5140 human mitochondrial genomes. Am J Hum Genet.2009,84(5):628-640.
    31. Ren DR, Yang QY, Ye JH, Xu L, Zhao HA and Wu XP. Strong heterozygote deficit in Tibetan Mastiff of China based on microsatellite loci. Animal,2009,3:1213-1215.
    32. Sambrook J and Russel DW. Molecular Cloning-A laboratory manual. Cold Spring Harbor Press,2001.
    33. Sbisa E, Tanzariello F, Reyes A, Pesole G, Saccone C. Mammalian mitochondrial D-loop region structural analysis:identification of new conserved sequences and their functional and evolutionary implications. Gene,1997,205:125-140.
    34. Shen YY, Shi P, Sun YB, Zhang YP. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res,2009,19(10): 1760-1765.
    35. Slack KE, Janke A, Penny D, Arnason U. Two new avian mitochondrial genomes (penguin and goose) and a summary of bird and reptile mitogenomic features. Gene.2003,302:43-52.
    36. Tabbada KA, Trejaut J, Loo JH, Chen YM, Lin M, Mirazon-Lahr M, Kivisild T, De Ungria MC. Philippine mitochondrial DNA diversity:a populated viaduct between Taiwan and Indonesia? Mol Biol Evol,2010,27(1):21-31.
    37. Thinh VN, Mootnick AR, Geissmann T, Li M, Ziegler T, Agil M, Moisson P, Nadler T, Walter L, Roos C. Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evol Biol.2010,10:74.
    38. Ursing BM, Arnason Ulfur. The Complete Mitochondrial DNA Sequence of the Pig (Sus scrofa). J Mol Evol,1998,47:302-306.
    39. Vigilant L. Elucidating population histories using genomic DNA sequences. Curr Anthropol, 2009,50(2):201-212.
    40.王永奇,史丽颍,于大永,冯宝民,宋力.藏獒的考证.大连大学学报,2003,24(6)108-112.
    41. Webb KM, Allard MW. Mitochondrial genome DNA analysis of the domestic dog: identifying informative SNPs outside of the control region. Journal of forensic sciences,2009, 54:275-288.
    42. Wei L, Wu X, Jiang Z. The complete mitochondrial genome structure of snow leopard Panthera uncia. Mol Biol Rep.2009,36(5):871-878.
    43. Xu X, Gullberg A and Arnason U. The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs. Journal of Molecular Evolution,1996,43:438-446.
    44. Ye JH, Ren DR, Xie AF, Wu XP, Xu L, Fu PF, Zhao HA, Yang QY. Microsatellite-based genetic diversity and evolutionary relationships of six dog breeds. Asian Austral J Anim 2009, 22(8):1102-1106.
    45. Yu L, Li YW, Ryder OA, Zhang YP. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evol Biol.2007,7:198-208.
    1. Arnason U, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA and Vainola R. Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogenet Evol,2006,41: 345-354.
    2. Birungi J, Arctander P. Molecular systematics and phylogeny of the reduncini (Artiodactyla: Bovidae) inferred from the analysis of mitochondrial cytochrome b gene sequences. J Mammal Evol,2001,8(2):125-147.
    3. Bjornerfeldt S, Webster MT, and Vila C. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Research,2006,16:990-994.
    4. Boyko AR, Boyko RH, Boyko CM, Parker HG, Castelhano M, Corey L, Degenhardt JD, Auton A, Hedimbi M, Kityo R, Ostrander EA, Schoenebeck J, Todhunter RJ, Jones P, Bustamante CD. Complex population structure in African village dogs and its implications for inferring dog domestication history. Proc Natl Acad Sci USA,2009,106(33):13903-13908.
    5. Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, and Waddell PJ. Partitioning and combining data in phylogenetic analysis. Syst Biol,1993,42(3):384-397.
    6. Delisle I, Strobeck C. A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes. Mol Phylogenet Evol,2005,37(1):192-201.
    7. Flynn JJ, Nedbal MA. Phylogeny of the Carnivora (Mammalia):congruence vs incompatibility among multiple data sets. Mol Phylogenet Evol,1998,9:414-426.
    8. Flynn JJ, Nedbal MA, Dragoo JW, Honeycutt RL. Whence the red panda? Mol Phylogenet Evol,2000,17:190-199.
    9. Gray M W, Burger G, Lang B E. Mitochondrial evolution. Science,1999,283(5407): 1476-1481.
    10.郭郛,李约瑟,成庆泰.中国古代动物学史.北京:科学出版社,1999.
    11. Koepfli KP, Wayne RK. Phylogenetic Relationships of Otters (Carnivora:Mustelidae) based on Mitochondrial Cytochrome b sequences. J Zool London,1998,246:401-416.
    12. Kraus F and Miyamoto MM. Rapid cladogenesis among the pecoran ruminants:evidence from mitochondrial DNA sequences. Syst Zool,1991,40:117-130.
    13. Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Paabo S. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature,2010, 464(7290):894-897.
    14. Krief S, Escalante AA, Pacheco MA, Mugisha L, Andre C, Halbwax M, Fischer A, Krief JM, Kasenene JM, Crandfield M, Cornejo OE, Chavatte JM, Lin C, Letourneur F, Gruner AC, McCutchan TF, Renia L, Snounou G. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from Bonobos. PLoS Pathog,2010,6(2):e1000765.
    15. Kumar S, Dudley J, Nei M and Tamura K. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics,2008,9: 299-306.
    16. Kurten B, Anderson E. Pleistocene Mammals of North America. New York:Columbia University Press,1980.
    17. Lebarbenchon C, Poitevin F, Arnal V, Montgelard C. Phylogeography of the weasel (Mustela nivalis) in the western-Palaearctic region:combined effects of glacial events and human movements. Heredity.2010 (Epub ahead of print)
    18. Ledje C, Arnason U. Phylogenetic analyses of complete cytochrome b genes of the order carnivora with particular emphasis on the caniformia. J Mol Evol,1996,42(2):135-144.
    19. Leonard JA, Wayne RK, Wheeler J, Valadez R, Guillen S, Vila C. Ancient DNA evidence for Old World origin of New World dogs. Science,2002,298(5598):1613-1616.
    20. Li QF, Li YX, Zhao XB, Liu ZS, Xu Yefen, Song DW, Qu XG, Li N, Xie Z. Study on the origin and taxonomic status of yak (Poephagus) using cytochrome b gene of mitochondrial DNA. Front Agric China,2007,1(3):329-333.
    21.李齐发,李隐侠,赵兴波,刘振山,张庆波,宋大伟,屈旭光,李宁,谢庄.牦牛线粒体DNA细胞色素b基因序列测定及其起源、分类地位研究.畜牧兽医学报,2006,37(11):1118-1123.
    22. Li QF, Liu ZS, Li YX, Zhao XB, Dong LY, Pan ZX, Sun YR, Li N, Xu YX and Xie Z. Origin and phylogenetic analysis of Tibetan Mastiff based on the mitochondrial DNA sequence. Journal of Genetics and Genomics,2008,35(6):335-340
    23.罗理扬.现代家犬的起源——线粒体DNA的研究.博士学位论文.杨陵:西北农林科技大学,2003.
    24. Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M.. Major patterns of higher teleostean phylogenies:A new perspectivebased on 100 complete mitochondrial DNA sequences [J]. Mol Phylogenet Evol,2003,26:121-138.
    25. Morey DF. The early evolution of the domestic dog. American Scientist,1994,82:336-347.
    26. Pang H, Liu W, Chen Y, Fang L, Zhang X, Cao X. Identification of complete mitochondrial genome of the tufted deer. Mitochondrial DNA.2008,19(4):411-417.
    27. Pang JF, Kluetsch C, Zou XJ, Zhang AB, Luo LY, Angleby H, Ardalan A, Ekstrom C, Skollermo A, Lundeberg J, Matsumura S, Leitner T, Zhang YP, Savolainen P. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol Biol Evol.2009,26(12):2849-2864.
    28. Pereira L, Freitas F, Fernandes V, Pereira JB, Costa MD, Costa S, Maximo V, Macaulay V, Rocha R, Samuels DC. The diversity present in 5140 human mitochondrial genomes. Am J Hum Genet.2009,84(5):628-640.
    29. Rezaei HR, Naderi S, Chintauan-Marquier IC, Taberlet P, Virk AT, Naghash HR, Rioux D, Kaboli M, Pompanon F. Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Mol Phylogenet Evol,2010,54(2):315-326
    30. Saccone C, De Giorgi C, Gissi C, Pesole G and Reyes A 1999. Evolutionary genomics in Metazoa:the mitochondrial DNA as a model system. Gene 238,195-209.
    31. Sambrook J and Russel DW. Molecular Cloning-A laboratory manual. Cold Spring Harbor Press,2001.
    32. Savolainen P, Zhang YP, Luo J, Lundeberg J, Leitner T. Genetic evidence for an East Asian origin of domestic dogs. Science,2002,298(5598):1610-1613.
    33. Savolainen P, Leitner T, Wilton AN, Matisoo-Smith E, Lundeberg J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc Natl Acad Sci USA,2004,101(33):12387-12390.
    34. Stepien CA and Kocher TD 1997. Molecules and morphology in studies of fish evolution. In: Kocher TD and Stepien, C.A. (Eds.), Molecular Systematics of Fishes. Academic Press, San Diego, pp:1-11.
    35. Thinh VN, Mootnick AR, Geissmann T, Li M, Ziegler T, Agil M, Moisson P, Nadler T, Walter L, Roos C. Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evol Biol.2010,10:74.
    36. Tsang LM, Ma KY, Ahyong ST, Chan TY, Chu KH. Phylogeny of Decapoda using two nuclear protein-coding genes:origin and evolution of the Reptantia. Mol Phylogenet Evol, 2008,48(1):359-368.
    37. Verginelli F, Capelli C, Coia V, Musiani M, Falchetti M, Ottini L, Palmirotta R, Tagliacozzo A, De Grossi Mazzorin I, Mariani-Costantini R. Mitochondrial DNA from prehistoric Canids highlights relationships between dogs and South-East European wolves. Mol Biol Evol,2005, 22(12):2541-2551.
    38. Vila C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK. Multiple and ancient origins of the domestic dog. Science,1997, 276(5319):1687-1689.
    39. Ursing BM, Slack KE and Arnason U 2000. Subordinal artiodactyl relationships in the light of phylogenetic analysis of 12 mitochondrial protein-coding genes. Zoologica Scripta 29,83-88.
    40. Vonholdt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, Degenhardt JD, Boyko AR, Earl DA, Auton A, Reynolds A, Bryc K, Brisbin A, Knowles JC, Mosher DS, Spady TC, Elkahloun A, Geffen E, Pilot M, Jedrzejewski W, Greco C, Randi E, Bannasch D, Wilton A, Shearman J, Musiani M, Cargill M, Jones PG, Qian Z, Huang W, Ding ZL, Zhang YP, Bustamante CD, Ostrander EA, Novembre J, Wayne RK. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature.2010 Mar 17. [Epub ahead of print]
    41. Wallace DC. Mitochondrial DNA mutations in diseases of energy metabolism. J Bioenerg Biomember,1994,26:241-250.
    42. Wayne RK, Geffen E, Girman DJ, Koepfli KP, Lau LM, Marshall CR. Molecular systematics of the Canidae. Syst Biol,1997,46(4):622-653.
    43. Webb KM, Allard MW. Mitochondrial genome DNA analysis of the domestic dog: identifying informative SNPs outside of the control region. Journal of forensic sciences,2009, 54:275-288.
    44. Weiss H, Friedrich T, Hofhaus G and Preis D. The respiratory-chain NADH dehydrogenase (complex Ⅰ) of mitochondria. Eur J Biochen,1991,197,563-576.
    1. Arnason U, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA and Vainol R. Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogenet Evol,2006, 41:345-354
    2. Barco A, Claremont M, Reid DG, Houart R, Bouchet P, Williams ST, Cruaud C, Couloux A, Oliverio M. A molecular phylogenetic framework for the Muricidae, a diverse family of carnivorous gastropods. Mol Phylogenet Evol,2010 (Epub ahead of print)
    3. Bertolazzi P, Felici G, Weitschek E. Learning to classify species with barcodes. BMC Bioinformatics,2009,14:S7.
    4. Bjornerfeldt S, Webster M T, Vila C. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res,2006,16:990-994.
    5. Cui P, Ji R, Ding F, Qi D, Gao H, Meng H, Yu J, Hu S, Zhang H. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus):an evolutionary history of camelidae. BMC Genomics,2007,8:241.
    6. Ebach MC, Holdrege C. DNA barcoding is no substitute for taxonomy. Nature,2005,434: 697.
    7. Excoffier L and Lischer HEL. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows, Molecular Ecology Resources,2010, 10(3):564-567.
    8. Germonpre M, Sablin MV, Stevens RE, Hedges REM, Hofreiter M, Stiller M, Despres VR: Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. Journal of Archaeological Science 2009, 36:473-490.
    9. Gray M W, Burger G, Lang B E. Mitochondrial evolution. Science,1999,283:1476-1481.
    10.郭郛,李约瑟,成庆泰.中国古代动物学史.北京:科学出版社,1999.
    11. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. DNA barcodes distinguish species of tropical Lepidoptera. PNAS,2006a,103:968-971.
    12. Hajibabaei M, Smith MA, Janzen DH, Rodriguez JJ, Whitfiel JB, Hebert PDN. A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes,2006b,6: 959-964.
    13. Hebert PDN, Cywinska A, Ball SL, de Waard JR. Biological identifications through DNA barcodes. Proc R Soc Lond B,2003,270:313-321.
    14. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM. Identification of Birds through DNA Barcodes. PLoS Biol.2004,2(10):e312.
    15. Janzen DH, Hajibabaei M, Burns JM, Hallwachs W, Remigio E, Hebert PDN. Wedding biodiversity inventory of a large and complex lepidoptera fauna with DNA barcoding. Phil Trans R Soc B,2005,360:1835-1845.
    16. Knight A, Mindell DP. Substitutions, weighting of DNA sequence evolution, and the phylogeny position of feaps viper. Syst Biol,1993,42(1):18-31.
    17. Kress WJ and Erickson DL. DNA barcodes:Genes, genomics, and bioinformatics. PNAS, 2008,105(8):2761-2762
    18. Kumar S, Dudley J, Nei M & Tamura K. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics,2008,9: 299-306.
    19. Kurten B and Anderson E. Pleistocene mammals of North America. Columbia Univ Press, New York.1980.
    20. Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V. DNA barcoding the floras of biodiversity hotspots. PNAS, 2008,105:2923-2928.
    21. Librado P and Rozas J. DnaSP v5:A software for comprehensive analysis of DNA polymorphism data. Bioinformatics,2009,25:1451-1452.
    22. Li Q, Liu Z, Li Y, Zhao X, Dong L, Pan Z, Sun Y, Li N, Xu Y and Xie Z. Origin and phylogenetic analysis of Tibetan Mastiff based on the mitochondrial DNA sequence. J Genet Genomics,2008,35:335-340.
    23. Lorenz JG, Jackson WE, Beck JC, Hanner R. The problems and promise of DNA barcodes for species diagnosis of primate biomaterials. Philos Trans R Soc Lond B Biol Sci,2005,360: 1869-1877.
    24.罗理扬.现代家犬的起源——线粒体DNA的研究.博士学位论文.杨陵:西北农林科技大学,2003,17-69.
    25.倪正.藏獒.北京:中国青年出版社,2004.
    26.彭居俐,王绪桢,何舜平.DNA条形码技术的研究进展及其应用.水生生物学报,2008,32(6):916-919.
    27. Pang JF, Kluetsch C, Zou XJ, Zhang AB, Luo LY, Angleby H, Ardalan A, Ekstrom C, Skollermo A, Lundeberg J, Matsumura S, Leitner T, Zhang YP, Savolainen P. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol Biol Evol,2009,26(12):2849-2864.
    28. Park SH, Zhang Y, Piao H, Yu DH, Jeong HJ, Yoo GY, Chung U, Jo TH, Hwang JJ. Use of cytochrome c oxidase subunit i (COI) nucleotide sequences for identification of the Korean Luciliinae fly species (Diptera:Calliphoridae) in forensic investigations. J Korean Med Sci, 2009,24(6):1058-1063.
    29. Polzin T, Daneschmand SV. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters,2003,31:12-20.
    30. Puillandre N, Samadi S, Boisselier MC, Sysoev AV, Kantor YI, Cruaud C, Couloux A, Bouchet P. Starting to unravel the toxoglossan knot:molecular phylogeny of the "turrids" (Neogastropoda:Conoidea). Mol Phylogenet Evol,2008,47(3):1122-1134.
    31. Remigio EA, Hebert PDN. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Mol Phylogenet Evol,2003,29:641-647.
    32. Rasmussen RS, Morrissey MT, Hebert PD. DNA barcoding of commercially important salmon and trout species (Oncorhynchus and Salmo) from North America. J Agric Food Chem.2009,57(18):8379-8385.
    33. Ren DR, Yang QY, Ye JH, Xu L, Zhao HA and Wu XP. Strong heterozygote deficit in Tibetan Mastiff of China based on microsatellite loci. Animal,2009,3:1213-1215.
    34. Sambrook J and Russel DW. Molecular Cloning-A laboratory manual. Cold Spring Harbor Press,2001.
    35. Savolainen P, Leitner T, Wilton AN, Matisoo-Smith E, Lundeberg J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. PNAS,2004, 101:12387-12390.
    36. Savolainen P, Zhang YP, Luo J, Lundeberg J, Leitner T. Genetic evidence for an East Asian origin of domestic dogs. Science,2002,298:1610-1613.
    37. Seabra SG, Pina-Martins F, Marabuto E, Yurtsever S, Halkka O, Quartau JA, Paulo OS. Molecular phylogeny and DNA barcoding in the meadow-spittlebug Philaenus spumarius (Hemiptera, Cercopidae) and its related species. Mol Phylogenet Evol,2010 (Epub ahead of print)
    38. Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera:Tachinidae). PNAS,2006,103:3657-3662.
    39. Vila C, Savolainen P, Maldonado J E, Amorim I R, Rice J E, Honeycutt R L, Crandall K A, Lundeberg J, Wayne R K. Multiple and ancient origins of the domestic dog. Science,1997, 276:1687-1689.
    40. Vences M, Thomas M, Meijden AV, van der Meijden A, Chiari Y, Vieites D. Fron Zool,2005a, 2(5):1-12.
    41. Vences M, Thomas M, Bonett RM, Vieites DR. Deciphering amphibian diversity through DNA barcoding:chances and challenges. Phil Trans R Soc B,2005b,360:1859-1868.
    42. Vonholdt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, Degenhardt JD, Boyko AR, Earl DA, Auton A, Reynolds A, Bryc K, Brisbin A, Knowles JC, Mosher DS, Spady TC, Elkahloun A, Geffen E, Pilot M, Jedrzejewski W, Greco C, Randi E, Bannasch D, Wilton A, Shearman J, Musiani M, Cargill M, Jones PG, Qian Z, Huang W, Ding ZL, Zhang YP, Bustamante CD, Ostrander EA, Novembre J, Wayne RK. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature.2010 (Epub ahead of print)
    43. Wang W, Luo Q, Guo H, Bossier P, Van Stappen G, Sorgeloos P, Xin N, Sun Q, Hu S and Yu J. Phylogenetic analysis of Brine Shrimp(Artemia) in China using DNA barcoding. Geno Prot Bioinfo,2008,6:155-162.
    44.王永奇,史丽颍,于大永,冯宝民,宋力.藏獒的考证.大连大学学报,2003,24(6):108-112.
    45. Waugh J. DNA barcoding in animal species:progress, potential and pitfalls. BioEssays,2007, 29:188-197.
    46. Webb KM and Allard MW. Mitochondrial genome DNA analysis of the domestic dog: identifying informative SNPs outside of the control region. J Forensic Sci,2009,54:275-288.
    47. Yoo HS, Eah JY, Kim JS, Kim YJ, Min MS, Paek WK, Lee H, Kim CB. DNA barcoding Korean birds. Mol Cells.2006,22:323-327.
    48.张金梅,王建秀,夏涛,周世良.基于系统发育分析的DNA条形码技术在澄清芍药属牡丹组物种问题中的应用.中国科学(C辑),38(12):1166-1176.
    1. Arnason U, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA and Vainola R. Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogenet Evol, 2006,41:345-354.
    2. Bjornerfeldt S, Webster MT, Vila C. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res,2006,16(8):990-994.
    3. Boyko AR, Boyko RH, Boyko CM, Parker HG, Castelhano M, Corey L, Degenhardt JD, Auton A, Hedimbi M, Kityo R, Ostrander EA, Schoenebeck J, Todhunter RJ, Jones P, Bustamante CD. Complex population structure in African village dogs and its implications for inferring dog domestication history. Proc Natl Acad Sci USA,2009,106(33): 13903-13908.
    4. Ghivizzani SC, Mackay SL, Madsen CS, Laipis PJ, Hauswirth WW. Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J Mol Evol,1993,37(1):36-47.
    5. Gray M W, Burger G, Lang B E. Mitochondrial evolution. Science,1999,283:1476-1481.
    6. Gu Z, Zhao X, Li N, Wu C. Complete sequence of the yak (Bos grunniens) mitochondrial genome and its evolutionary relationship with other ruminants. Mol Phylogenet Evol,2007, 42(1):248-55.
    7. Ishiguro N, Inoshima Y, Shigehara N. Mitochondrial DNA analysis of the Japanese wolf (Canis lupus hodophilax Temminck,1839) and comparison with representative wolf and domestic dog haplotypes. Zoolog Sci,2009,26(11):765-770.
    8. Jansen T, Forster P, Levine MA, Oelke H, Hurles M, Renfrew C, Weber J, Olek K. Mitochondrial DNA and the origins of the domestic horse. Proc Natl Acad Sci USA.2002, 99(16):10905-10910.
    9. Kim KS, Lee SE, Jeong HW and Ha JH. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol Phylogenet Evo,1998,10:210-220.
    10. Knight A and Mindell D P. Substitions bias, weighting of DNA sequence evolution, and the phylogenetic positions of fea's viper. Syst Biol,1993,42 (1):18-31.
    11. Krause J, Briggs AW, Kircher M, Maricic T, Zwyns N, Derevianko A, Paabo S. A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr Biol,2010,20(3): 231-236.
    12. Kumar S, Dudley J, Nei M and Tamura K. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics,2008,9: 299-306.
    13. Kumar S, Nagarajan M, Sandhu JS, et al. Mitochondrial DNA analyses of Indian water buffalo support a distinct genetic origin of river and swamp buffalo. Anim Genet.2007, 38(3):227-232.
    14. Kurten B, Anderson E. Pleistocene Mammals of North America. New York:Columbia University Press,1980.
    15. Lai SJ, Liu YP, Liu YX, et al. Genetic diversity and origin of Chinese cattle revealed by mtDNAD-loop sequence variation. Mol Phylogenet Evol,2006,38(1):146-154.
    16. Lei CZ, Su R, Bower MA, Edwards CJ, Wang XB, Weining S, Liu L, Xie WM, Li F, Liu RY, Zhang YS, Zhang CM, Chen H. Multiple maternal origins of native modern and ancient horse populations in China. Anim Genet.2009,40(6):933-944
    17. Leonard JA, Wayne RK, Wheeler J, Valadez R, Guillen S, Vila C. Ancient DNA evidence for Old World origin of New World dogs. Science,2002,298(5598):1613-1616.
    18.李齐发,李隐侠,赵兴波,潘增祥,刘振山,张庆波,屈旭光,宋大伟,董丽艳,李宁,谢庄.牦牛线粒体DNA D-loop区序列测定及其在牛亚科中分类地位的研究.畜牧兽医学报,2008,39(1):1-6.
    19. Li QF, Liu ZS, Li YX, Zhao XB, Dong LY, Pan ZX, Sun YR, Li N, Xu YX and Xie Z. Origin and phylogenetic analysis of Tibetan Mastiff based on the mitochondrial DNA sequence. Journal of Genetics and Genomics,2008,35(6):335-340
    20. Lopez J V, Cevario S, O'Brien SJ. Complete nucleotide sequences of the Domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics,1996,33(2):229-246.
    21. Luetkemeier ES, Sodhi M, Schook LB, Malhi RS. Multiple Asian pig origins revealed through genomic analyses. Mol Phylogenet Evol,2010,54(3):680-686.
    22.罗理扬.现代家犬的起源——线粒体DNA的研究.博土学位论文.杨陵:西北农林科技大学,2003.
    23. Meng C, Zhang H, Meng Q. Mitochondrial genome of the Tibetan wolf. Mitochondrial DNA, 2009,20(2-3):61-63.
    24. Mignotte F, Gueride M, Champagne AM, et al. Direct repeats in the non-coding region of rabbit mitochondrial DNA. Involvement in the generation of intra- and inter-individual heterogeneity. Eur Biochem,1990,194(2):561-571.
    25.倪正.藏獒.北京:中国青年出版社,2004
    26. Pang JF, Kluetsch C, Zou XJ, Zhang AB, Luo LY, Angleby H, Ardalan A, Ekstrom C, Skollermo A, Lundeberg J, Matsumura S, Leitner T, Zhang YP, Savolainen P. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol Biol Evol,2009,26(12):2849-2864.
    27. Parker H G, Kim L V, Sutter N B, et al. Genetic structure of the purebred domestic dog. Science.2004,304(5674):1160-1164.
    28. Philips CD, Trujillo RG, Gelatt TS, Smolen MJ, Mstson CW, Honeycutt RL, Patton J C, Bickham JW. Assessing substitution patterns, rates and homoplasy at HVRI of Steller sea lions, Eumetopias jubatus. Molecular Ecology,2009,18:3379-3393.
    29. Pires A E, Ouragh L, Kalboussi M, et al. Mitochondrial DNA sequence variation in Portuguese native dog breeds:diversity and phylogenetic affinities. J Hered,2006,97(4): 318-330.
    30. Pereira L, Freitas F, Fernandes V, Pereira JB, Costa MD, Costa S, Maximo V, Macaulay V, Rocha R, Samuels DC. The diversity present in 5140 human mitochondrial genomes. Am J Hum Genet.2009,84(5):628-640.
    31. Ramadan HA, El-Hefnawi MM. Phylogenetic analysis and comparison between cow and buffalo (including Egyptian buffaloes) mitochondrial displacement-loop regions. Mitochondrial DNA,2008,9(4):401-410.
    32. Saccone C, De Giorgi C, Gissi C, Pesole G and Reyes A. Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene,1999,238:195-209.
    33. Sambrook J and Russel DW. Molecular Cloning-A laboratory manual. Cold Spring Harbor Press,2001.
    34. Savolainen P, Zhang YP, Luo J, Lundeberg J, Leitner T. Genetic evidence for an East Asian origin of domestic dogs. Science,2002,298(5598):1610-1613.
    35. Savolainen P, Leitner T, Wilton AN, Matisoo-Smith E, Lundeberg J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc Natl Acad Sci USA,2004,101(33):12387-12390.
    36. Sbisa E, Tanzariello F, Reyes A, Pesole G, Saccone C. Mammalian mitochondrial D-loop region structural analysis:identification of new conserved sequences and their functional and evolutionary implications. Gene,1997,205:125-140.
    37. Tabbada KA, Trejaut J, Loo JH, Chen YM, Lin M, Mirazon-Lahr M, Kivisild T, De Ungria MC. Philippine mitochondrial DNA diversity:a populated viaduct between Taiwan and Indonesia? Mol Biol Evol,2010,27(1):21-31.
    38. van Asch B, Pereira L, Pereira F, et al. MtDNA diversity among four Portuguese autochthonous dog breeds:a fine-scale characterisation. BMC Genet,2005,6(1):37.
    39. Verginelli F, Capelli C, Coia V, Musiani M, Falchetti M, Ottini L, Palmirotta R, Tagliacozzo A, De Grossi Mazzorin I, Mariani-Costantini R. Mitochondrial DNA from prehistoric Canids highlights relationships between dogs and South-East European wolves. Mol Biol Evol,2005, 22(12):2541-2551.
    40. Vigilant L. Elucidating population histories using genomic DNA sequences. Curr Anthropol, 2009,50(2):201-212.
    41. Vila C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK. Multiple and ancient origins of the domestic dog. Science,1997, 276(5319):1687-1689.
    42.王江,方盛国.基于Cyt b基因探讨羚羊亚科原羚属系统发生关系.兽类学报,2005,25(2):105-114.
    43.王永奇,史丽颍,于大永,冯宝民,宋力.藏獒的考证.大连大学学报,2003,24(6)108-112.
    44. Wolstenholme DR. Animal mitochondrial DNA:Structure and evolution in mitochondrial genomes. San Diego:Academic press,2006,173-372.
    45.杨路存,陈桂琛,刘荣堂,聂学敏.3种鼢鼠线粒体DNA控制区结构及其系统发育分析.草业科学,2009,26(2):100-106
    46. Zhang YP, Ryder OA. Mitochondrial DNA sequence evolution in the Arctoidea. Proc Natl Acad Sci USA,1993,90(20):9557-9561.
    1. Alpers DL, van Vuuren BJ, Arctander P, Robinson TJ. Population genetics of the roan antelope (Hippotragus equinus) with suggestions for conservation. Mol Ecol,2004,13(7): 1771-1784.
    2. Avise J C. Phylogeography the History and Formation of Species. Cambridge, Massachusetts London, England:Harvard University Press,2000.
    3. Boyko AR, Boyko RH, Boyko CM, Parker HG, Castelhano M, Corey L, Degenhardt JD, Auton A, Hedimbi M, Kityo R, Ostrander EA, Schoenebeck J, Todhunter RJ, Jones P, Bustamante CD. Complex population structure in African village dogs and its implications for inferring dog domestication history. Proc Natl Acad Sci USA,2009,106(33): 13903-13908.
    4. Gray MW, Burger G, Lang BE. Mitochondrial evolution. Science,1999,283:1476-1481.
    5. Hayano A, Yoshioka M, Tanaka M, et al. Population differentiation in the Pacific white sided dolphin Lagenorhyn-chus obliquidens inferred from mitochondrialDNA and microsatellite analyses. Zoolog Sci,2004,21(9):989-99.
    6. Ivankovic A, Kavar T, Caput P, Mioc B, Pavic V, Dovc P.Genetic diversity of three donkey populations in the Croatian coastal region. Anim Genet,2002,33(3):169-177.
    7. 金鑫,涂政,姜成涛,赵兴春,叶健.藏獒犬11个STR基因座遗传多态性.中国法医学杂志,2009,24(1):39-42.
    8. Joshi MB, Rout PK, Mandal AK, Tyler-Smith C, Singh L, Thangaraj K. Phylogeography and origin of indian domestic ggoats. Mol Biol Evo,2010,455-462.
    9. Kumar S, Dudley J, Nei M and Tamura K. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics,2008,9: 299-306.
    10. Lan, H and L.M.Shi. The origin and genetic differentiation of native breeds of pigs in Southwest China:An approach from mitochondrial DNA polymorphism. Biochem Genet 1993,31:51-60.
    11.兰小平,陈永昌,郭宪,鄢珣,崔泰保.藏獒血液蛋白遗传多样性的研究.湖北农业科学,2009a,48(12):2938-2940.
    12.兰小平,郭宪,陈永昌,杨俊年,鄢珣,崔泰保.藏獒群体遗传结构及遗传分化研究.河南农业科学,2010,(1):110-112.
    13.兰小平,郭宪,陈永昌,鄢珣,崔泰保.藏獒血液蛋白多态性研究.安徽农业科学,2009b,37(33):16274-16276.
    14.兰小平,雒林通,李三相,黄晶,李一婧,王廷璞,鄢珣.2个中国藏獒群体遗传多样性及遗传分化的研究.基因组学与应用生物学,2009c,28(6):1081-1086.
    15. Lee MY, Lissovsky AA, Park SK, Obolenskaya EV, Dokuchaev NE, Zhang YP, Yu L, Kim YJ, Voloshina I, Myslenkov A, Choi TY, Min MS, Lee H. Mitochondrial cytochrome b sequence variations and population structure of Siberian chipmunk (Tamias sibiricus) in Northeastern Asia and population substructure in South Korea. Mol Cells,2008,26(6):566-575.
    16. Lei CZ, Su R, Bower MA, Edwards CJ, Wang XB, Weining S, Liu L, Xie WM, Li F, Liu RY, Zhang YS, Zhang CM, Chen H. Multiple maternal origins of native modern and ancient horse populations in China. Anim Genet.2009,40(6):933-944
    17.李明,蒙世杰,魏辅文,王静,雍严格.羚牛的遗传多样性及其种群遗传结构分析.兽类学报,2003,23(1):10-16.
    18.李明,饶刚,魏辅文,方盛国,汤纯香,玉手英利.小熊猫种群遗传结构和地理分化动物学报,2002,48(4):480-486.
    19. Li Q, Liu Z, Li Y, Zhao X, Dong L, Pan Z, Sun Y, Li N, Xu Y and Xie Z. Origin and phylogenetic analysis of Tibetan Mastiff based on the mitochondrial DNA sequence. J Genet Genomics,2008,35:335-340.
    20. Librado P and Rozas J. DnaSP v5:A software for comprehensive analysis of DNA polymorphism data. Bioinformatics,2009,25:1451-1452.
    21.凌凤俊,李彩霞,商亮,郑秀芬,叶健,涂政,靳大庆.犬线粒体DNA高变区Ⅰ(HVR Ⅰ)的遗传多态性研究.中国比较医学杂志,2005,15(6):350-354.
    22. Messina F, Scorrano G, Labarga CM, Rolfo MF, Rickards O. Mitochondrial DNA variation in an isolated area of Central Italy. Ann Hum Biol,2010 (Epub ahead of print)
    23. Muchadeyi F C, Eding H, Simianer H, Wollny CB, Groeneveld AE, Weigend S. Mitochondrial DNA D-loop sequences suggest a Southeast Asian and Indian origin of Zimbabwean village chickens. Animal Genetics,2008,39:615-622.
    24. Nei M, Maruyama T, Chakraborty R. The bottlenack effect and genetic variability. Evol, 1975,29:1-10
    25. Ota T. DISPAN:genetic distance and phylogenetic analysis. Pennsylvania State University, USA,1993.
    26. Pakendorf B, Stoneking M. Mitochondrial DNA and human evolution. Annual Review of Genomics and Human Genetics,2005,6:165-183.
    27. Philips CD, Trujillo RG, Gelatt TS, Smolen MJ, Mstson CW, Honeycutt RL, Patton J C, Bickham JW. Assessing substitution patterns, rates and homoplasy at HVRI of Steller sea lions, Eumetopias jubatus. Molecular Ecology,2009,18:3379-3393.
    28. Pires AE, Ouragh L, Kalboussi M, Matos J, Petrucci-Fonseca F, Bruford MW. Mitochondrial DNA sequence variation in Portuguese native dog breeds:diversity and phylogenetic affinities. J Hered,2006,97(4):318-330.
    29. Rebekah L. Gundry, Marc W. Allard,Tamyra R. Moretti, Rodney L. Honeycutt, Mark R. Wilson, Keith L. Monson, David R. Foran Mitochondrial DNA Analysis of the Domestic Dog:Control Region Variation Within and Among Breeds. J Forensic Sci,2007, 52(3):562-572.
    30. Ren DR, Yang QY, Ye JH, Xu L, Zhao HA and Wu XP. Strong heterozygote deficit in Tibetan Mastiff of China based on microsatellite loci. Animal,2009,3:1213-1215.
    31. Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol,1987,4(4):406-425.
    32. Stock F, Edwards CJ, Bollongino R, Finlay EK, Burger J, Bradley DG. Cytochrome b sequences of ancient cattle and wild ox support phylogenetic complexity in the ancient and modern bovine populations. Anim Genet,2009,40(5):694-700.
    33. Tamada T, Siriaroonrat B, Subramaniam V, Hamachi M, Lin LK, Oshida T, Rerkamnuaychoke W, Masuda R. Molecular diversity and phylogeography of the Asian leopard cat, Felis bengalensis, inferred from mitochondrial and Y-chromosomal DNA sequences. Zoolog Sci,2008,25(2):154-163.
    34. Yasukochi Y, Nishida S, Han SH, Kurosaki T, Yoneda M, Koike H. Genetic structure of the asiatic black bear in Japan using mitochondrial DNA analysis. J Hered,2009,100(3): 297-308.
    35. Ye JH, Ren DR, Xie AF, Wu XP, Xu L, Fu PF, Zhao HA, Yang QY. Microsatellite-based genetic diversity and evolutionary relationships of six dog breeds. Asian Austral J Anim 2009, 22(8):1102-1106.
    36. Zhang DX, Hewitt GM. Nuclear DNA analyses in genetic studies of populations:practice, problems and prospects. Mol Ecol,2003,12(3):563-584.
    37.张嘉伟,冉雪琴,王嘉福.下司犬线粒体DNA的遗传多样性研究.山地农业生物学报.2009,28(2):151-156.
    38.张桂香,郑友民,王志刚,韩旭,贾善刚,陈宏.我国部分黄牛品种线粒体D-loop区遗传多样性与起源分化.遗传,2009,31(2):160-168.
    39. Zhang TJ, Li HF, Chen KW, Chang H, Tang QP, Zhang JX. Genetic diversity and systematic evolution of Chinese domestic ducks along the Yangtze-Huai River. Biochem Genet,2007, 45(11-12):823-837.
    40.周慧,李迪强,张于光,易湘蓉,刘毅.藏羚羊1mtDNA D-loop区遗传多样性研究.遗传,2006,28(3):299-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700