用户名: 密码: 验证码:
嵌入式可重构CNC系统研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可重构制造系统是未来制造系统发展的新趋势,而可重构数控系统是实现可重构制造系统的关键技术。可重构技术可以增强CNC(计算机数控)系统的柔性,快速响应加工需求的变化,并能合理配置系统资源,节约生产制造成本。另外,随着微电子技术和现场可编程逻辑器件的发展,嵌入式数控系统将是今后一个重要的发展方向。从宏观的角度来说,研究嵌入式可重构CNC系统,既顺应国家政策,也符合加工市场的需要。
     目前国内基于嵌入式体系结构的CNC系统研究不多,且结构设计上较少考虑系统的可重构性,逻辑扩展能力不强,系统通用性较差;另外,尽管NURBS插补算法研究的人很多,但几乎没有考虑短样条曲线的插补情况,以致算法的通用性有所欠缺。基于以上原因,本文首先提出一种嵌入式可重构的CNC系统体系结构,然后在此基础上研究了NURBS插补算法和可重构伺服算法。最后,开发和搭建了嵌入式可重构CNC系统,并通过实验和项目应用证实了系统平台的性能。主要研究工作和创新之处体现在:
     1.通过分析基于PC机的数控系统及目前嵌入式数控系统结构存在的局限性,结合开放式数控系统的功能需求,提出了一种模块化、可重构的嵌入式CNC系统体系结构。该系统改进了传统的基于ARM+DSP+FPGA的嵌入式系统设计结构,并扩展了工业以太网功能模块。在此基础上,从软、硬件方面分析了系统的可重构性及网络功能。
     2.在研究和分析伺服工作模式和相应的控制方法的基础上,结合当前市场上出现的商用运动控制器的优缺点,提出了可重构伺服算法模型。同时,基于此模型分析了算法的可重构性,并以数字PID控制器和陷波滤波器作为重点介绍了算法的实现。
     3.提出了一种新颖的、精确的实时NURBS插补算法,克服了现有NURBS曲线插补算法的不足。该算法采用S曲线加减速方法,优化了前瞻过程。同时,算法通过引入环形缓冲区和预插补(非离线),提高了加工效率,并通过合理地安排插补任务增强了系统的实时性。
     4.依据提出的嵌入式可重构CNC系统的体系结构,设计并实现了一个具有工业以太网功能的模块化嵌入式可重构CNC系统,给出了系统关键硬件模块的组成及接口电路的设计,同时介绍了系统应用层和硬件驱动层软件的实现。
     5.基于本文设计的可重构嵌入式CNC硬件平台及提出的相关算法,搭建了一个可重构的嵌入式CNC系统控制平台,并通过实验和项目应用验证了系统的性能。
The reconfigurable manufacturing system (RMS) is a new trend of the futuremanufacturing system, and the reconfigurable computer numerical control (CNC) system is akey technology in the reconfigurable manufacturing systems. The reconfigurable technologycan improve the flexibility of the CNC system, respond quickly to the machining processrequirement, configure reasonably system resources and save the cost of manufacturing.Additionally, with the development of microelectronics and the field-programmable logicdevices, embedded numerical control system will be an important direction of developmentin the future. From a macro perspective, the research of embedded reconfigurable CNCsystem, not only keep with the national policy, but also meet with the needs of the machiningmarket.
     At present, there are few researches of CNC system based on the embedded architecture.In structural design, system reconfigurability is often ignored. Moreover, the logicalextension is not strong, and the system is less universal. In addition, there have been manyresearchers working on NURBS interpolation algorithm, but most of them did not considershort spline curve interpolation, which resulted in the algorithms lacking versatility. Forthese reasons, this paper proposed the architecture of an embedded reconfigurable CNCsystem, then on the base of which, NURBS interpolation algorithm and reconfigurable servoalgorithm have been studied. Finally, an embedded reconfigurable CNC system, whoseperformance was confirmed by experiment and project applications, was developed and built.The major research works and contributions of the thesis are introduced as follows:
     1. By analyzing the limitations of the PC-based CNC system and the present embeddedCNC system, a modular, reconfigurable embedded CNC system architecture was proposed,which combined the functional requirements of the opening numerical control system. Thesystem was improved from the traditional embedded system architecture which was based onthe ARM+DSP+FPGA architecture, and expanded the industrial Ethernet function module. Then, the reconfigurability and network capabilities of the system were analyzed from theperspective of hardware and software.
     2. Based on the research and analysis of the servo operating mode and thecorresponding control method, and combined with the advantages and disadvantages of thepresent commercial motion controller on the market, a reconfigurable servo controlalgorithm model was proposed. Meanwhile, the reconfigurability was analyzed based on theproposed algorithm, and the implementation of the proposed algorithm was introduced byfocusing on the implementation of digital PID controller and notch filters.
     3. A novel and accurate real-time NURBS interpolation algorithm was proposed, whichovercame the deficiencies of the existing NURBS curve interpolation algorithm. An S-curveacceleration/deceleration (Acc/Dec) control was adopted, and the look-ahead process wasoptimized. Meanwhile, it improved machining efficiency by adding the circular buffer andpre-interpolation (non-off-line) and enhanced the real-time performance by reasonablearrangement of the interpolation tasks.
     4. According to the proposed embedded reconfigurable CNC system architecture, amodular, reconfigurable embedded CNC system with industrial Ethernet function wasdesigned and implemented. Then the composition of system key hardware module andinterface circuit design was presented. Finally, the software implementation of theapplication layer and the hardware driver layer was given.
     5. Based on designed reconfigurable embedded CNC hardware platform and theproposed algorithms, an embedded reconfigurable CNC system controller, whoseperformance was confirmed by experiment and project applications, was developed andbuilt.
引文
[1]中华人民共和国国民经济和社会发展第十一个五年规划纲要,中华人民共和国全国人民代表大会常务委员会公报,2006,3:178-221
    [2]马雄波.基于PC机的开放式多轴软数控系统关键技术研究与实现:[博士学位论文].哈尔滨:哈尔滨工业大学图书馆,2007
    [3] Onwubolu G C, Aborhey S, Singh R, et al. Development of a PC-based computernumerical control drilling machine. Proceedings of the Institution of MechanicalEngineers, Part B: Journal of Engineering Manufacture,2002,216(11):1509-1515
    [4] Zhang C, Wang H, Wang J. An USB-based software CNC system. Journal of MaterialsProcessing Technology,2003,139(1-3):286-290
    [5] Altintas Y, Newell Y, Ito M. Modular CNC design for intelligent machining, Part1:design of a hierarchical motion control module for CNC machine tools. Journal ofManufacturing Science and Engineering,1996,118(4):506-513
    [6] Estrin G. Organization of computer systems—the fixed plus variable structurecomputer. Proceedings of the Western Joint Computer Conference, New York, USA,1960,33-40
    [7] Koren Y, Heisel U, Jovane F, et al. Reconfigurable manufacturing systems. CIRPAnnals-Manufacturing Technology,1999,48(2):527-540
    [8] Mondon Y. Adaptable Kanban system helps Toyota maintain just-in-time production.Industrial Engineering,1981,13(5):28-46
    [9] Mondon Y. What makes the Toyota production system really ticks? IndustrialEngineering,1981,13(1):34-46
    [10] Mehrabi M G, Ulsoy A G, Koren Y. Reconfigurable manufacturing systems: Key tofuture manufacturing. Journal of Intelligent Manufacturing,2000,11(4):403-419
    [11]任思成,徐德,王芳等.可重构制造系统研究与发展.制造业自动化,2005,27(3):1-5
    [12]罗振璧,朱耀祥.现代制造系统.北京:机械工业出版社,2000
    [13]罗振壁,盛伯浩,赵晓波等.快速重组制造系统.中国机械工程,2000,11(3):300-303
    [14]王成恩.制造系统的可重构性.计算机集成制造系统,2000,6(4):1-5
    [15]孟凡力,谈大龙,黄雪梅.可重构装配系统中智能体的开发.计算机集成制造系统,2006,12(12):2033-2038
    [16]窦建平,戴先中,孟正大.基于混合层次分析法的可重构制造系统重构方案选择.计算机集成制造系统,2007,13(7):1360-1366
    [17]梁福军,宁汝新.可重构制造系统理论研究.机械工程学报,2003,39(6):36-43
    [18] Malhotra V, Raj T, Arora A. Reconfigurable manufacturing systems: an overview.International Journal of Machine Intelligence,2009,1(2):38-46
    [19] Koren Y, Shpitalni M. Design of reconfigurable manufacturing systems. Journal ofManufacturing Systems,2010,29(4):130-141
    [20] Bi Z M, Lang S Y, Shen T W, et al. Reconfigurable manufacturing systems: the stateof the art. International Journal of Production Research,2008,46(4):967-992
    [21] Mohammad R A, Ashraf W L. A design strategy for reconfigurable manufacturingsystems (RMSs) using analytical hierarchical process (AHP): A case study.International Journal of Production Research,2003,41(10):2273-2299
    [22] Asl F M, Ulsoy A G. Stochastic optimal capacity management in reconfigurablemanufacturing systems. CIRP Annals-Manufacturing Technology,2003,51(1):371-374
    [23] Deif A M, ElMaraghy W H. A control approach to explore the dynamics of capacityscalability in reconfigurable manufacturing systems. Journal of ManufacturingSystems,2006,25(1):12-24
    [24]王国新,宁汝新,王爱民等.可重构制造系统集成设计框架研究.计算机集成制造系统,2007,13(8):1481-1489,1510
    [25] Dhupia J, Powalka B, Katz R. Dynamics of the arch-type reconfigurable machine tool.International Journal of Machine Tools and Manufacture,2007,47(2):326-334
    [26] Walczyk D F, Lakshmikanthan J, Kirk D R. Development of a reconfigurable tool forforming aircraft body panels. Journal of Manufacturing Systems,1998,17(4):287-29
    [27] Kumar S G, Nagarajan T, Srinivasa Y G. Characterization of reconfigurable Stewartplatform for contour generation. Robotics and Computer-Integrated Manufacturing,2009,25(4-5):721-731
    [28] Asada H, By A B. Kinematic analysis of workpart fixturing for flexible assembly withautomatically reconfigurable fixtures. IEEE Journal of Robotics and Automation,1985,1(2):86-94
    [29]李朦.可重构混联机械手模TriViariant的设计理论与方法:[博士学位论文].天津:天津大学,2005
    [30]游有鹏,张晓峰,王珉等.可重构机床的模块化设计.机械科学与技术,2001,20(6):815-818
    [31]蔡宗琰,杨旭东,严新民.可重构模块化机床的集成设计.机床与液压,2002,(5):132-136
    [32]张广鹏,雷小强,肖亚平等.一种可重构机床设计方法研究.制造技术与机床,2006,(4):52-55
    [33] Mekid S, Pruschek P, Hernandez J. Beyond intelligent manufacturing-A newgeneration of flexible intelligent NC machines. Mechanism and Machine Theory,2009,44(2):466-476
    [34] Pritschow G, Altintas Y, Jovane F, et al. Open Architecture Controller-Past, Presentand Future. CIRP Annals-Manufacturing Technology,2001,50(2):463-470
    [35] Amezaga J, Barg J, Brühl J, et al. OSACA Handbook, OSACA Association, Stuttgart,Germany,1997
    [36] Sawada C, Akira O. Open controller architecture OSEC-II: Architecture overview andprototype systems. Proceedings of6thInternational Conference on EmergingTechnologies and Factory Automations, Los Angeles, USA,1997,543-550
    [37] Michaloski J, Birla S, Yen C J, et al. An open system framework for component-basedCNC machines. ACM Computing Surveys,2000,32(23):50-55
    [38] Molina A, Rodriguez C A, Ahuett H, et al. Next-generation manufacturing systems:key research issues in developing and integrating reconfigurable and intelligentmachines. International Journal of Computer Integrated Manufacturing,2005,18(7):525-536
    [39] Guo W, Chen Z Y, Li C X. Investigation on full distribution CNC system based onSERCOS bus. J. Journal of Systems Engineering and Electronics,2008,19(1):52-57
    [40] National Instruments Labview.
    [41] Luis M V, Rene J R, Roque A O, et al. Open-architecture system based on areconfigurable hardware–software multi-agent platform for CNC machines. Journal ofSystems Architecture,2010,56(9):407-418
    [42] Delta Tau.(2005). Turbo PMAC-Lite PCI Data Sheet.
    [43] Galil Motion.(2004). DMC-18×0Series Data Sheet.
    [44] Roque A O, Rene J R, Gilberto H, et al. The application of reconfigurable logic tohigh speed CNC milling machines controllers. Control Engineering Practice,2008,16(6):674-684
    [45] Hassane A, Baron L, Boukas E K. Novel open architecture for high speed CNC.Annual Meeting of the Pulp and Paper Technical Association of Canada,2006, A:341-344
    [46] Armando A, Jesús L, Unai B, et al. FPGA technology for multi-axis control systems.Mechatronics,2009,19(2):258-268
    [47] Song W K, Wang G, Xiao J L, et al. Research on multi-robot open architecture of anintelligent CNC system based on parameter-driven technology. Robotics andComputer-Integrated Manufacturing,2012,28(3):326-333
    [48] Bellini P, Buonopane M, Nesi P. Assessment of a flexible architecture for distributedcontrol. Programming and Computer Software,2003,29(3):147-160
    [49] Oldknow K D, Yellowley I. Design, implementation and validation of a system for thedynamic reconfiguration of open architecture machine tool controls. InternationalJournal of Machine Tools&Manufacture,2001,41(6):795-808
    [50] Mun J, Ryu K, Jung M. Self-reconfigurable software architecture: Design andimplementation. Computers&Industrial Engineering,2006,51(1):163-173
    [51] Minhat M, Vyatkin V, Xu X, et al. A novel open CNC architecture based onSTEP-NC data model and IEC61499function blocks. Robotics andComputer-Integrated Manufacturing,2009,25(3):560-569
    [52] Yamazakia K, Hanakib Y, Mori M, et al. Autonomously proficient CNC controller forhigh-performance machine tools based on an open architecture concept. CIRP Annals-Manufacturing Technology,1997,46(1):275-278
    [53] Park S, Kim S H, Cho H. Kernel software for efficiently building, re-configuring, anddistributing an open CNC controller. Int J Adv Manuf Technol,2007,20(2):13-16
    [54]王文斌.嵌入式可重构数控系统及其关键技术研究:[博士学位论文].上海:上海大学图书馆,2007
    [55]董靖川.可重构数控系统关键技术研究:[博士学位论文].天津:天津大学图书馆,2010
    [56]刘勇.嵌入式可重构计算系统及其任务调度机制的研究:[博士学位论文].上海:中国科学院研究生院图书馆,2006
    [57] Lo C C. A tool-path control scheme for five-axis machine tools. International Journalof Machine Tools and Manufacture,2002,42(1):79-88
    [58] Altintas Y. Manufacturing Automation: Metal Cutting Mechanics, Machine ToolVibrations, and CNC Design. Cambridge: Cambridge University Press,2000
    [59] Erkorkmaz K, Altintas Y. High speed CNC system design. Part III: high speedtracking and contour control of feed drives. International Journal of Machine Toolsand Manufacture,2001,41(11):1637-1658
    [60] Ho H C, Yen J Y, Lu S S. A decoupled path-following control algorithm based uponthe decomposed trajectory error. International Journal of Machine Tools andManufacture,39(10):1619-1630
    [61] Pritschow G. On the influence of the velocity gain factor on the path deviation. CIRPAnnals-Manufacturing Technology,1996,45(1):367-371
    [62] str m K J, Wittenmark B. Computer Controlled Systems: Theory and Design.(2ndEdition). Englewood Cliffs: Prentice-Hall, Inc,1997
    [63] Koren Y, Lo C C. Advanced controllers for feed drives. CIRP Annals-ManufacturingTechnology,1992,41(2):689-698
    [64] Tomizuka M. Zero phase error tracking algorithm for digital control. Journal ofDynamic Systems, Measurement and Control, Transactions of the ASME,1987,109(1):65–68
    [65] Tsao T C, Tomizuka M. Adaptive zero phase error tracking algorithm for digitalcontrol. Journal of Dynamic Systems, Measurement and Control, Transactions of theASME,1987,109(4):349-354
    [66] Torfs D, De Schutter J, Swevers J. Extended bandwidth zero phase error trackingcontrol of nonminimal phase systems. Journal of Dynamic Systems, Measurement andControl, Transactions of the ASME,1992,114(3):347-351
    [67] Clarke D W. Application of generalised predictive control to industrial processes.Control Systems Magazine,1988,8(2):49-55
    [68] Clarke D W, Mohtadi C, Tuffs P S. Generalised predictive control—Part I. The basicalgorithm. Automatica,1987,23(2):137-148
    [69] Clarke D W, Mohtadi C, Tuffs P S. Generalised predictive control—Part II. Extensionsand interpretations. Automatica,1987,23(2):149-160
    [70] Boucher P, Dumur D, Rahmani K F. Generalised predictive cascade control (GPCC)for machine tool drives. CIRP Annals-Manufacturing Technology,1990,39(1):357-360
    [71] Weck M, Ye G. Sharp corner tracking using the IKF control strategy. CIRP Annals-Manufacturing Technology,1990,39(1):437-441
    [72] Renton D, Elbestawi M A. High speed servo control of multi-axis machine tools.International Journal of Machine Tools and Manufacture,2000,40(1):539-559
    [73] Torfs D, Swevers J, De Schutter J. Quasi-perfect tracking control of non-minimalphase systems. Proceedings of the30thIEEE Conference on Decision and Control,1991,1(3):241-244
    [74] Pak H A. Adaptive matching and preview controllers for feed drive systems. Journalof Dynamic Systems, Measurement and Control, Transactions of the ASME,1991,113(2):316-320
    [75] Lo C C. A tool-path control scheme for five-axis machine tools. International Journalof Machine Tools&Manufacture,2002,42(1):79-88
    [76] Poo A N, Bollinger J G, Younkin G W. Dynamic errors in type1contouring systems.IEEE Transactions on Industry Applications,1972,8(4):477-484
    [77] Sencer B, Altintas Y, Croft E. Modeling and Control of Contouring Errors forFive-Axis Machine Tools―Part I: Modeling. ASME J. Manuf. Sci. Eng.,2009,131(3):031006(8pages)
    [78] Koren Y. Cross-coupled biaxial computer control for manufacturing systems. Journalof Dynamic Systems, Measurement and Control,Transactions of the ASME,1980,102(4):265-272
    [79] Koren Y, Lo C C. Variable-gain cross-coupling controller for contouring. CIRP Annals-Manufacturing Technology,1991,40(1):371-374
    [80] Kulkarni P K, Srinivasan K. Optimal contouring control of multi-axis feed driveservomechanisms, Journal of Dynamic Systems,Measurement and Control,Transactions of the ASME,1989,111(2):140-148
    [81] Lo C C, Hsiao C Y. A Method of tool path compensation for repeated machiningprocess. International Journal of Machine Tools and Manufacture,1998,38(3):205-213
    [82] Barakat N A, Spence A D, Elbestawi M A. Adaptive compensation of quasi-staticerrors for an intrinsic machine. International Journal of Machine Tools andManufacture,2000,40(15):2267-2291
    [83] Shih Y T, Chen C S, Lee A C. A novel cross-coupling control design for bi-axismotion. International Journal of Machine Tools and Manufacture,2002,42(14):1539-1548
    [84] Cheng Y M, Chin J H. Machining contour errors as ensembles of cutting, feeding andmachine structure effects. International Journal of Machine Tools and Manufacture,2003,43(10):1001-1014
    [85] Piegl L, Tiller W. The NURBS Books.(2nd Edition). Berlin, Heidelberg: Springer,1997
    [86]施法中.计算机辅助几何设计与非均匀有理B样条.北京:高等教育出版,2001
    [87] Jung H B, Kim K. A New Parameterisation Method for NURBS Surface Interpolation.Int J Adv Manuf Technol,2000,16(11):784-790
    [88] Shipitalni M, Koren Y, Lo C C. Real-time curve interpolators. Computer-AidedDesign,1994,26(11):832-838
    [89] Cheng M Y, Tsai M C, Kuo J C. Real-time NURBS command generators for CNCservo controllers. International Journal of Machine Tools and Manufacture,2002,42(7):801-813
    [90] Lei W T, Sung M P, Lin L Y, et al. Fast real-time NURBS path interpolation for CNCmachine tools, International Journal of Machine Tools&Manufacture,2007,47(10):1530-1541
    [91] X. Zhiming, C. Jincheng, F. Zhengjin. Performance Evaluation of a Real-TimeInterpolation Algorithm for NURBS Curves. Int J Adv Manuf Technol,2002,20(4):270-276
    [92] Yeh S S, Hsu P L. Adaptive-feedrate interpolation for parametric curves with aconfined chord error. Comput-Aided Design,2002,34(3):229-237
    [93] Tikhon M, Ko T J, Lee S H, et al. NURBS interpolator for constant material removalrate in open NC machine tools. International Journal of Machine Tools andManufacture,2004,44(2-3):237-245
    [94] Tsai M S, Nien H W, Yau H T. Development of integrated acceleration/decelerationlook-ahead interpolation technique for multi-blocks NURBS curves. Int J Adv ManufTechnol,2011,56(5-8):601-618
    [95] Du D S, Liu Y D, Yan C L, et al. An accurate adaptive parametric curve interpolatorfor NURBS curve interpolation. Int J Adv Manuf Technol,2007,32(9-10):999-1008
    [96] Park J, Nam S, Yang M Y. Development of a real-time trajectory generator forNURBS interpolation based on the two-stage interpolation method. Int J Adv ManufTechnol,2005,26(4):359-365
    [97] Liu X B, Ahmad F, Yamazaki K, et al. Adaptive interpolation scheme for NURBScurves with the integration of machining dynamics. International Journal of MachineTools&Manufacture,2005,45(4-5):433-444
    [98] Lin M T, Tsai M S, Yau H T. Development of a dynamics-based NURBS interpolatorwith real-time look-ahead algorithm. International Journal of Machine Tools&Manufacture,2007,47(15):2246-2262
    [99] Sekar M, Narayanan V N, Yang S H. Design of jerk bounded feedrate with rippleeffect for adaptive nurbs interpolator. Int J Adv Manuf Technol,2008,37(5-6):545-552
    [100] Shen H Y, Fu J Z, Fan Y Q. A new adaptive interpolation scheme of NURBS based onaxis dynamics. Int J Adv Manuf Technol,2011,56(1-4):215-221
    [101] Du D S, Liu Y D, Guo X G, et al. An accurate adaptive NURBS curve interpolatorwith real-time flexible acceleration/deceleration control. Robotics andComputer-Integrated Manufacturing,2010,26(4):273-281
    [102] Erkorkmaz K, Altintas Y. High speed CNC system design. Part I: jerk limitedtrajectory generation and quintic spline interpolation. International Journal of MachineTools&Manufacture,2001,41(9):1323-1345
    [103] Suh S H, Kang S K, Chung D H, et al. Theory and Design of CNC Systems. London:Springer-Verlag,2008
    [104] Jahanpour J, Imani B M. Real-time P–H curve CNC interpolators for high speedcornering. Int J Adv Manuf Technol,2008,39(3-4):302-316
    [105] Fleisig R V, Spence A D. A constant feed and reduced angular accelerationinterpolation algorithm for multi-axis machining. Comput-Aided Design,2001,33(1):1-15
    [106] Langeron J M, Duc E, Lartigue C, et al. A new format for5-axis tool path computation,using Bspline curves. Computer-Aided Design,2004,36(12):1219-1229
    [107] Wang Y Z, Ma X B, Chen L J, et al. Realization methodology of a5-axis splineinterpolator in an open CNC system. Chinese Journal of Aeronautics,2007,20(4):362-369
    [108] Li W, Liu Y D, Yamazaki K, et al. The design of a NURBS pre-interpolator forfive-axis machining. Int J Adv Manuf Technol,2008,36(9-10):927-935
    [109] Qiao Z F, Wang T G, Wang Y F, et al. Bézier polygons for the linearization of dualNURBS curve in five-axis sculptured surface machining. International Journal ofMachine Tools&Manufacture,2012,53(1):107-117
    [110] Zhe Y, Feng J C, Wang Y H. Dual NURBS curve interpolation algorithm for5-axismachining. Journal of Shanghai Jiaotong University,2008,42(2):235-244
    [111]周祖德,龙毅宏,刘泉.嵌入式网络数控技术与系统.机械工程学报,2007,43(5):1-7
    [112]周凯.数控系统体系结构研究.中国机械工程,2002,13(5):406-409
    [113]杨晓京,陈子辰.微机数控系统开发体系结构的研究.组合机床与自动化加工技术,2003,(5):29-32
    [114]谢经明,周祖德,陈幼平.基于现场总线的开放式数控系统体系结构研究.华中科技大学学报(自然科学版),2002,30(4):1-3
    [115]谭平,韩红,何凯等. NC嵌入PC型开放式网络化数控系统的研究.合肥工业大学学报(自然科学版),2004,27(2):144-147
    [116]林胜.网络化数控技术现状和发展.航空制造技术,2003,(8):22-25
    [117] Zhang X L, Tang X Q, Chen J H, et al. Hierarchical real-time networked CNC systembased on the transparent model of industrial Ethernet. Int J Adv Manuf Technol,2007,34(1-2):161-167
    [118] Long Y H, Zhou Z D, Liu Q, et al. Embedded-based modular NC systems. Int J AdvManuf Technol,2009,40(7-8):749–759
    [119] Wang T, Wang L W, Liu Q J. A three-ply reconfigurable CNC system based on FPGAand field-bus. Int J Adv Manuf Technol,2011,57(5-8):671-682
    [120]王涛,刘清建,王太勇等.具有3层重构能力的可重构数控系统.中国机械工程,2011,22(2):197-201
    [121] Xu Y, Wang T Y, Zhao Y J, et al. Design of reconfigurable CNC system based onembedded technology. In:7thWorld Congress on Intelligent Control and Automation(WCICA,2008). Chongqing, China,2008,6061-6064
    [122] Zhang J H, Zhou Z D. Study on modular design-based reconfigurable embeddednetwork numerical control. In: Eighth ACIS International Conference on SoftwareEngineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing.Qingdao, China,2007,135-139
    [123] Wang W B, Yu T, Liu T. A research on reconfigurable numerical controller based onembedded system. In: IEEE3rd International Conference on Mechatronics (ICM,2006). Budapest, Hungary,2006,189-193
    [124]徐跃,王太勇,赵艳菊等.基于ARM和DSP的可重构数控系统.吉林大学学报(工学版),2008,38(4):848-851
    [125] Texas Instruments. TMS320C6000DSP Host Port Interface (HPI) Reference Guide.2006
    [126] Texas Instruments. Implementing the TMS320C6201/C6701/C6211HPI Boot Process.1999
    [127]齐继阳,竺长安.基于通用串行总线的可重构数控系统的研究.计算机集成制造系统,2004,10(12):1567-1570
    [128]王太勇,李波,万淑敏.基于现场总线的可重构数控系统的研究.计算机集成制造系统,2006,12(10):1662-1667
    [129] Oldknow K D, Yellowley I. Design, implementation and validation of a system for thedynamic reconfiguration of open architecture machine tool controls. InternationalJournal of Machine Tools&Manufacture,2001,41(6):795-808
    [130] Song W K, Wang G, Xiao J L, et al. Research on multi-robot open architecture of anintelligent CNC system based on parameter-driven technology. Robotics andComputer-Integrated Manufacturing,2012,28(3):326-336
    [131] Rajaie H, Zweigle O, H ussermann K, et al. Hardware design and distributedembedded control architecture of a mobile soccer robot. Mechatronics,2011,21(2):455-468
    [132] Aw K C, Xie S Q, Haemmerle E. A FPGA-based rapid prototyping approach forteaching of Mechatronics Engineering. Mechatronics,2007,17(8):457-461
    [133]周凯. PC数控原理、系统及应用.北京:机械工业出版社,2007
    [134] George Elilis.控制系统设计指南(第3版).刘君华,汤晓君.北京:电子工业出版社,2006
    [135] Delta Tau Data System Inc. PMAC USER MANUAL. Chatsworth, USA: Delta TauData System Inc.,2008
    [136] Delta Tau Data System Inc. PMAC/PMAC2Software Reference Manual. Chatsworth,USA: Delta Tau Data System Inc,2010
    [137] Kim M S, Chung S C. A systematic approach to design high-performance feed drivesystems. InternationalJournal of Machine Tools and Manufacture,2005,45(12):1421-1435
    [138]高金源,夏洁.计算机控制系统.北京:清华大学出版社,2007
    [139]杨树兴,李擎,苏中等.计算机控制系统——理论、技术与应用.北京:机械工业出版社,2006
    [140] Guo X G, Wang D C, Li C X, et al. A rapid and accurate positioning method withlinear deceleration in servo system, International Journal of Machine Tools andManufacture,2002,42(7):851-861
    [141] Butler J, Haack B, Tomizuka M. Reference generation for high speed coordinatedmotion of a two axis system. American Society of Mechanical Engineers, DynamicSystems and Control Division (Publication) DSC,1988,113(1):457-470
    [142]何均,游有鹏,陈浩等. S形加减速的嵌套式前瞻快速算法.航空学报,2010,31(4):842-851
    [143] Hu J, Xiao L, Wang Y, et al. An optimal feedrate model and solution algorithm for ahigh-speed machine of small line blocks with look-ahead. Int J Adv Manuf Technol,2006,28(9):930-935
    [144]徐创文.数控进给系统加减速控制研究.仪器仪表学报,2002,23(3):360-362
    [145]潘敏,邬义杰,冷洪滨.数控系统加减速控制方法的研究.制造业自动化,2005,27(9):30-33
    [146]刘敏.数控机床伺服系统加减速控制的指数算法及其分析.机械设计与制造,2002,(6):71-73
    [147] Lee A C, Lin M T, Pan Y R, et al. The feedrate scheduling of NURBS interpolator forCNC machine tools. Computer-Aided Design,2011,43(6):612-628
    [148]郭新贵,李从心. S曲线加减速算法研究.机床与液压,2002,(5):60-62
    [149]李思益,罗为. NURBS曲线高速高精度插补及加减速控制方法研究.计算机集成制造系统,2008,14(6):1142-1147
    [150] Jüttler B, Wagner M G. Rational motion-based surface generation. Computer-AidedDesign,1999,31(3):203-213
    [151]张小明,朱利民,丁汉等.5轴加工刀具姿态球面NURBS曲线设计及优化.机械工程学报,2010,46(17):140-144
    [152]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB19660-200工业自动化系统与集成-机床数值控制-坐标系和运动命名.北京:中国标准出版社,2005
    [153] Paul R P. Robot Manipulators Mathematics, Programming and Control. Cambridge,MA: MIT Press,1981
    [154] Lee R S, She C H. Developing a postprocessor for three types of five-axis machinetools. Int J Adv Manuf Technol,1997,13(9):658-665
    [155] She C H, Chang C C. Design of a generic five-axis postprocessor based ongeneralized kinematics model of machine tool. International Journal of Machine Tools&Manufacture,2007,47(3-4):537-545
    [156] Tutunea-Fatan O R, Feng H Y. Configuration analysis of five-axis machine tools usinga generic kinematic model. International Journal of Machine Tools and Manufacture,2004,44(11):1235-1243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700