用户名: 密码: 验证码:
超宽带天线设计及共形阵列综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电磁理论在辐射及散射问题中的应用在很大程度上都得益于优化技术。然而电磁领域中优化目标函数往往是高度非线性、不可导且具有多极值,这些特点使得经典优化方法在求解实际问题时存在诸多困难。因此对高效的、智能的优化技术的需求日益迫切。
     超宽带技术的发展使得实际系统对超宽带天线的需求急剧增加。然而这一频段内存在已划分给其他通信系统的频段,如5.15-5.35GHz及5.725-5.825GHz的WLAN系统、3.3GHz-3.6GHz的WiMAX系统等,这些频带将会给UWB通信系统带来严重的电磁干扰。因此开展具有陷波性能的超宽带天线的研究具有十分重要的工程应用价值。
     随着无线通信和现代军事不断发展的需要,能够与载体相吻合的天线系统——共形天线的研究近年来日益得到重视,这是因为共形天线不仅可以提供期望的天线性能,而且不会影响载体本身的机动性能。因而共形微带阵列天线研究则具有广阔的应用场景。
     本文重点围绕高性能混合优化算法、具有陷波特性超宽带天线设计以及共形天线阵列方向图综合等方面展开研究,主要工作概括如下:
     1.针对常规遗传算法(SGA)在解决一些复杂问题时,存在的早熟、收敛速度慢及优化解精度低等缺陷,提出了一种改进的遗传算法(IGA)。采用多个交叉后代竞争择优和变异尺度自适应变化等遗传操作来提高遗传算法的优化效率,并分析改进算子对遗传算法性能的影响,而通过数值模拟结果说明了所提算法的有效性。
     2.在研究粒子群算法(PSO)寻优过程的基础上,提出了一种增强粒子群优化算法(EPSO)改善PSO算法的进化机制。算法通过引入新的速度更新算子、边界控制算子、全局最优粒子扰动算子来提高PSO算法粒子的寻优速率。同时,本文对EPSO算法中的参数选择对其收敛性的影响进行了研究。数值仿真结果证明了所提算法的有效性。
     3.借鉴植物学嫁接思想,将改进遗传算法和增强粒子群算法相结合,充分发挥这两种算法各自的优势,扬长避短,设计出一种新型混合改进遗传粒子群优化算法(HIGAPSO)。由于算法结合了两种不同的进化机制,不仅提高了粒子的多样性,而且平衡了全局与局部搜索,因而整个算法的寻优速度得到了改善。另外,给出了HIGAPSO算法计算复杂度分析并得出在单次进化过程中其计算复杂度与遗传算法基本相当的结论。而典型测试函数及对阵列方向图综合应用实例的数值模拟结果说明了所提算法的有效性。
     4.利用所提的混合优化算法结合HFSS,设计了一款铁锹结构的超宽带印刷天线。通过在天线辐射体或地板上嵌入缝隙或在辐射体的下方加寄生支节等谐振结构的方法使天线在某些特定频段具有陷波特性。进一步,讨论了谐振结构长度的变化对陷波频段位置的影响,制作了具有双陷波特性的超宽带天线。在此基础上,针对现有陷波结构将5-6GHz的WLAN频段全部滤除致使5.35-5.725GHz之间的有用信息丢失的缺陷,设计了一款新型的三阻带超宽带天线,能够有效保证5.35-5.725GHz之间信号的传输。此外,研究了天线对地板和加工容差的敏感度以及天线上不同谐振结构之间的相互影响。最后实际加工、测量了所设计出的天线。
     5.研究了圆柱共形阵列的低副瓣综合和方向图可重构技术。首先设计了圆柱共形相控阵列以及非均匀分布的低副瓣稀疏圆柱共形阵列,考虑到载体及阵元互耦在优化设计过程中对共形阵方向图综合带来的影响,将单元在阵列中的有源方向图直接叠加用于计算阵列方向图,以提高计算结果的可靠性。其次,分别设计了均匀分布及非均匀分布方向图可重构的共形阵列。最后,根据优化结果,制作了均匀分布圆柱共形阵列的原理样机,并对其辐射特性进行了测量,而良好的测试结果验证了本文设计的正确性和有效性。
     6.研究了锥台阵和球面阵三维方向图的综合方法。首先设计了具有双馈线极化特性的阵列单元,以方便调整阵列扫描过程中的极化分量。其次,详细分析了阵元间距对共形阵列辐射特性的影响,确定了本文所设计的锥台阵以及球面阵合理的阵列布局形式。最后,利用修正的波恩斯坦多项式对锥台以及球面共形阵列进行综合得到平滑的幅度分布,以克服相控阵列综合中高度振荡的幅度分布的缺陷并且大幅降低方向图综合过程中变量个数。仿真结果表明,本章所设计的阵列均达到了设计要求,从而证明了所提方法的有效性。
The applications of modern electromagnetic theory in radiation and scattering problems benefit from the optimization technique to a large extent. However, the optimization cost functions in electromagnetic field are always highly nonlinear, nondifferentiable and have multiple peaks, which bring about much challenges for the classically mathematic programming methods in solving the practical problems. Therefore efficient and intelligent optimization methods are urgently desired.
     The development of ultrawideband (UWB) technique spurs the demand of UWB antennas in practical system. However, there still exists several narrow bands for other communication systems over the designated frequency band, such as:the wireless local area network (WLAN) operating at5.15-5.35GHz and5.725-5.825GHz, WiMAX system operating at3.3-3.6GHz, which may cause severe electromagnetic interference to the UWB system. Therefore, the investigation on the design of the UWB antennas with band-notched characteristic has great values for the practical engineering problems.
     With the development of wireless communication and modern military, conformal antenna arrays have attracted more and more attention in recent years. This is because conformal antenna arrays can not only provide the desired performance, but also have slight effect on the aerodynamic performance and the antenna performance. Thus, the research on the conformal arrays has broad engineering applications.
     This dissertation makes deeply insight into the design of efficient hybrid optimization algorithm, ultrawideband printed antenna with band-notched characteristics, together with the synthesis of conformal antenna arrays. The author's major contributions can be summarized as follows:
     1. Aiming at overcoming the drawbacks of standard genetic algorithm (SGA), such as prematurity and easily trapping in local optimum in solving complex problems, an improved genetic algorithm (IGA) is proposed, in which some improved mechanisms according to non-linear ranking selection, competition and selection among several crossover offspring and adaptive change of mutation scaling are adopted. Besides, the effects of these improved mechanisms on the proposed algorithm have been analyzed. The numerical results validate the performance of the improved genetic algorithm.
     2. On the basis of investigating the search process of particle swarm optimization (PSO), a novel enhanced particle swarm optimization (EPSO) algorithm is proposed. The optimum search ability of PSO is improved by introducing a new velocity updating process, novel exceeding boundary control strategy and global best perturbation manipulation. Then, the influences of different parameter values on the convergence of EPSO are investigated. The effectiveness of EPSO is verified by the numerical simulation results.
     3. Motivated by the idea of grafting in botany, a new hybrid improved genetic particle swarm optimization algorithm called HIGAPSO is proposed by combining IGA with EPSO to integrate their advantages. The combination of these two different optimization mechanisms, not only improves the diversity of the offspring, but also maintains the balance of global search and local search, so the entire optimum search speed of the algorithm is accelerated. What's more, the computation complexity of the proposed algorithm is analyzed and conclusion can be drawn that HIGAPSO basically has the same computation complexity as GA in each iteration. Typical benchmark functions and pattern synthesis of different arrays are used to illustrate the efficiency of the proposed algorithm.
     4. Employing the proposed hybrid algorithm and HFSS, a spade-shaped ultrawideband printed planar monopole antenna is designed. By embedding different shapes of slots on the radiating patch and the ground plane, or by introducing resonant structures behind the radiating patch, different notched frequency bands can be achieved. The variations of the notched bands with different lengths of resonant structures have been studied. Then, a planar ultra-wideband monopole antenna with dual band-notched characteristics is fabricated. Besides, to overcome the disadvantages that band-notched antennas rejecting the WLAN bands up-to-date has rejected entire5-6GHz frequency band which makes any useful information contained in the frequency band of5.35-5.725GHz lost, a novel planar UWB antenna with triple notched bands is provided to efficiently guarantee the information transmission between the frequency band of5.35and5.725GHz. Furthermore, the sensitivities of the finite ground size and fabrication variation to the designed triple notched bands antenna as well as the mutual influences among these notched bands are investigated. Finally, the proposed antenna has been successfully fabricated and measured.
     5. The low sidelobe and pattern reconfigurable of cylindrical conformal arrays are studied. Firstly, uniform and nonuniform cylindrical conformal arrays with low sidelobe are designed. During the optimized design process, considering the effects of the platform and the coupling between elements on pattern reconfiguration, the array patterns are obtained by directly importing all of the active element patterns to improve the reliability of the designed results. Then, the uniform and the nonuniform reconfigurable cylindrical conformal arrays are designed respectively. Finally, according to the optimized results, the uniform cylindrical conformal array is manufactured and its radiation characteristic is measured. The good measurement results indicate the validity and efficiency of the proposed synthesis.
     6. Three dimensional pattern syntheses of conical and spherical conformal phased arrays are investigated. Firstly, dual polarized patch antenna using two individual feeds is designed to conveniently adjust the desired polarization in the scanning process. Then, effects of the distance between array elements on the radiation pattern of the conformal arrays are discussed in detail to determine the rational arrangements of the conical and spherical conformal arrays. Finally, the modified Bernstein polynomial is employed to obtain the excitation amplitudes of the conical and spherical conformal phased arrays, with the purpose of overcoming the drawbacks of high oscillation amplitude weights across the phased array and significantly reducing the optimized variables in the syntheses process. Simulation results show that the optimized array patterns can totally achieve the design targets, which reveal the validity of the proposed method.
引文
[1]许殿.仿生优化算法及其在电磁工程中的应用.博士论文.西安电子科技大学.2005.
    [2]Y.-Y. Yang, Q.-X. Chu, and Z.-A. Zheng. Time domain characteristics of band-notched ultrawideband antenna. IEEE Trans. Antennas Propag.,2009,57(10):3426-3430.
    [3]First Report and Order. Revision of Part 15 of the Commission's Rule Regarding Ultra-Wideband Transmission System FCC02-48, Federal Communications Commission, 2002.
    [4]G. R. Aiello and G. D. Rogerson. Ultra-wideband wireless systems. IEEE Microw. Mag.,2003, 4(2):36-47.
    [5]张中兆,沙学军.超宽带无线电技术.北京:电于工业出版社,2005.
    [6]C. Dohmen, J. W. Odendaal, and J. Joubert. Synthesis of conformal arrays with optimized polarization. IEEE Trans. Antennas Propag.,2007,55(10):2922-2925.
    [7]E. D. Cohen. Active electronically scanned arrays. IEEE MTT S Int. Microwave Symp. Dig., 1323-1326,1994.
    [8]Y. Suzuki, E. Kudoh, and F. Adachi. Impact of arrival angle spread of each cluster of irresolvable paths on adaptive antenna array and antenna diversity in DS-CDMA mobile radio. IEICE Trans. Commun.,2004,87(4):1037-1040.
    [9]崔斌.毫米波阵列天线技术及其在小型雷达前端中的应用.博士论文.中国科学院研究生院(上海微系统与信息技术研究所).2007.
    [10]尤佳庆.宽带相控阵列天线新技术的研究.硕士论文.电子科技大学.2008.
    [11]M. C. Behnke, A. T. Villeneuve, and W. H. Kummer. Advanced Conformal Array Antenna Techniques. Final rept., United States 1972,145.
    [12]K. Wincza, S. Gruszczynski, and K. Sachse. Conformal four-beam antenna arrays with reduced sidelobes. Electron. Lett.,2008,44(3):174-175.
    [13]L. Josefsson and P. Persson. Conformal array antenna theory and design:Wiley-IEEE Press, 2006.
    [14]B. Tomasic, J. Turtle, S. Liu, R. Schmier, S. Bhari, and P. Oleski. The geodesic dome phased array antenna for satellite control and communication-subarray design, development and demonstration. IEEE International Symposium on Phased Array Systems and Technology, 411-416,2003.
    [15]Z. Sipus, S. Skokic, M. Bosiljevac, and N. Burum. Study of mutual coupling between circular stacked-patch antennas on a sphere. IEEE Trans. Antennas Propag.,2008,56(7):1834-1844.
    [16]G. Caille, E. Vourch, M. J. Martin, J. R. Mosig, and A. M. Polegre. Conformal array antenna for observation platforms in low earth orbit. IEEE Antennas Propag. Mag.,2002,44(3): 103-104.
    [17]V. K. Varadan, K. J. Vinoy, K. A. Jose, and V. V. Varadan. Conformal fractal antennas and FSS for low RCS applications. Proc SPIE Int. Soc. Opt. Eng.,2000,138-145,2000.
    [18]B.-H. Wang and X.-M. Cao. Frequency-invariant pattern synthesis for conformal array with space-time-polarization weighting. IEEE Asia Pacific Conference on Circuits and Systems, 1082-1085,2008.
    [19]J. H. Holland. Adaptation in natural and artificial system:an introduction analysis with applications to biology, control, and artificial intelligence. USA:The Univ. of Michigan Press, 1975.
    [20]X. Yang, Z. Yang, X. Yin, and J. Li. Chaos gray-coded genetic algorithm and its application for pollution source identifications in convection-diffusion equation. Commun. Nonlinear Sci. Numer. Simul.,2008,13(8):1676-1688.
    [21]S. S. Kim, I.-H. Kim, V. Mani, and H. J. Kim. Real-coded genetic algorithm for machining condition optimization. Int. J. Adv. Manuf. Technol.,2008,38(9):884-895.
    [22]Q.-Y. Zhang and S.-C. Chang. An improved crossover operator of genetic algorithm. Proc. of the 2009 Second Int. Symp. Comput. Intelligence and Design,82-86,2009.
    [23]R. L. Haupt. Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium,1034-1037,2000.
    [24]T. Renyuan, Y. Shiyou, L. Yan, W. Geng, and M. Tiemin. Combined strategy of improved simulated annealing and genetic algorithm for inverse problem. IEEE Trans. Magn.,1996, 32(3):1326-1329.
    [25]K. P. Wong, Suzannah, and Y. W. Wong. Hybrid genetic/simulated annealing approach to short-term multiple-fuel-constrained generation scheduling. IEEE Trans. Power Syst.,1997, 12(2):776-784.
    [26]K. P. Wong and S. Yin Wa Wong. Combined genetic algorithm/simulated annealing/fuzzy set approach to short-term generation scheduling with take-or-pay fuel contract. IEEE Trans. Power Syst.,1996,11(1):128-136.
    [27]J.-T. Tsai, T.-K. Liu, and J.-H. Chou. Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Trans. Evol. Comput.,2004,8(4):365-377.
    [28]Y. W. Leung and Y. Wang. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput.,2001,5(1):41-53.
    [29]J. E. Lansberry and L. Wozniak. Adaptive hydrogenerator governor tuning with a genetic algorithm. IEEE Trans. Energy Convers.,1994,9(1):179-185.
    [30]F. Aminifar, C. Lucas, A. Khodaei, and M. Fotuhi-Firuzabad. Optimal placement of phasor measurement units using immunity genetic algorithm. IEEE Trans Power Delivery,2009,24(3): 1014-1020.
    [31]S. Y. Yuen and C. K. Chow. A genetic algorithm that adaptively mutates and never revisits. IEEE Trans. Evol. Comput.,2009,13(2):454-472.
    [32]M. Ding, R. Jin, J. Geng, Q. Wu, and G. Yang. Auto-design of band-notched UWB antennas using mixed model of 2D GA and FDTD, Electron. Lett.,2008,44(4):257-258.
    [33]Y. Kim and E. K. Walton. Automobile conformal antenna design using non-dominated sorting genetic algorithm (NSGA). IEE Proc. Microwaves Antennas Propag.,2006,153(6):579-582.
    [34]Y. Ge, K. P. Esselle, and Y. Hao. Design of low-profile high-gain EBG resonator antennas using a genetic algorithm. IEEE Antennas Wirel. Propag. Lett.,2007,6:480-483.
    [35]D. Arnaud-Cormos, R. Loison, and R. Gillard. Fast Multistructure Method of Moments Combined With a Genetic Algorithm (MSMoM/GA) for Efficient Optimization of Printed Antennas. IEEE Antennas Wirel. Propag. Lett.,2007,6:172-174.
    [36]S. Santarelli, T.-L. Yu, D. E. Goldberg, E. Altshuler, T. O'Donnell, H. Southall, and R. Mailloux. Military antenna design using simple and competent genetic algorithms. Math. Comput. Model.,2006,43(9):990-1022.
    [37]M. Schamberger and U. Navsariwala. Genetic algorithm optimization for small antenna design. IEEE Antennas Propag. Soc. AP S Int. Symp.,2217-2220,2007.
    [38]Z. Xu, H. Li, Q. Z. Liu, and J. Y Li. Pattern synthesis of conformal antenna array by the hybrid genetic algorithm. Prog. Electromagn. Res.,2008,79:75-90.
    [39]B. Kadri and F. T. Bendimered. Linear antenna synthesis with a fuzzy genetic algorithm. EUROCON 2007. International Conference on "Computer as a Tool",942-947,2007.
    [40]L. Cen, W. Ser, Z. L. Yu, and S. Rahardja. An improved genetic algorithm for aperiodic array synthesis. IEEE International Conference on Acoustic, Speech and Signal Processes, 2465-2468,2008.
    [41]Y. J. Zhang, S. X. Gong, and Y. X. Xu. Radiation pattern synthesis for arrays of conformal antennas mounted on an irregular curved surface using modified genetic algorithms. J. Electromagn. Waves Appl.,2009,23(10):1255-1264.
    [42]R. J. Mitchell, B. Chambers, and A. P. Anderson. Array pattern synthesis in the complex plane optimised by a genetic algorithm. Electron. Lett.,1996,32(20):pp.1843-1845.
    [43]K.-K. Yan and Y. Lu. Sidelobe reduction in array-pattern synthesis using genetic algorithm. IEEE Trans. Antennas Propag.,1997,45(7):1117-1122.
    [44]D. W. Boeringer, D. H. Werner, and D. W. Machuga. A simultaneous parameter adaptation scheme for genetic algorithms with application to phased array synthesis. IEEE Trans. Antennas Propag.,2005,53(1):356-371.
    [45]尚飞,蔡亚星,张颖,高本庆.阵列天线的双种群遗传算法综合,电波科学学报,2007,22(2):224-228.
    [46]李东风,龚中麟.遗传算法应用于超低副瓣线阵天线方向图综合,电子学报,2003,31(1):82-84.
    [47]N.-W. Kang, C. Cheon, and H.-K. Jung. Feasibility study on beam-forming technique with 1-D mechanical beam steering antenna using niching genetic algorithm. IEEE Microw. Wirel. Compon. Lett.,2002,12(12):494-496.
    [48]J. Wei, W. Ju, and W. Siliang. Pattern synthesis for separated sub-array radar using genetic algorithm. IET International Radar Conference,1-4,2009.
    [49]D. S. Weile and E. Michielssen. Community genetic algorithm design of symmetric E-plane microwave filters. Microw. Opt. Technol. Lett.,1999,21(1):28-35.
    [50]G. L. Nicholson and M. J. Lancaster. Coupling matrix synthesis of cross-coupled microwave filters using a hybrid optimisation algorithm. IET Microw. Antennas Propag.,2009,3(6): 950-958.
    [51]S. Chakravarty and R. Mittra. Design of microwave filters using a binary coded genetic algorithm. IEEE Antennas and Propagation Society International Symposium,144-147,2000.
    [52]T. Nishino and T. Itoh. Evolutionary generation of 3-D line-segment circuits with a broadside-coupled multiconductor transmission-line model. IEEE Trans. Microw. Theory Tech., 2003,51(10):2045-2054.
    [53]T. Gunel, A genetic approach to the synthesis of composite right/left-handed transmission line impedance matching sections. Int. J. Electron. Commun.,2007,61(7):459-462.
    [54]K. M. Hock. Impedance matching for the multilayer medium-Toward a design methodology. IEEE Trans. Microw. Theory Tech.,2003,51(3):908-914.
    [55]C. Ciflikli and A. C. Yapici. Genetic algorithm optimization of a hybrid analog/digital predistorter for RF power amplifiers. Analog Integr Circuits Signal Process,2007,52(1): 25-30.
    [56]R. Sperlich, J. A. Sills, and J. S. Kenney. Closed-loop digital pre-distortion with memory effects using genetic algorithms. IEEE MTT-S International Microwave Symposium, 1557-1560,2005.
    [57]M. Chu and D. J. Allstot. Elitist nondominated sorting genetic algorithm based RF IC optimizer. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,2005,52(3):535-545.
    [58]J. Kennedy and R. Eberhart. Particle swarm optimization. IEEE Int Conf Neural Networks Conf Proc,1942-1948,1995.
    [59]Y. Shi and R. Eberhart. Modified particle swarm optimizer. IEEE World Congress on Computational Intelligence,69-73,1998.
    [60]M. Clerc. The swarm and the queen:towards a deterministic and adaptive particle swarm optimization. Proceedings of the Congress on Evolutionary Computation,1951-1957,1999.
    [61]P. N. Suganthan. Particle swarm optimiser with neighbourhood operator. Proceedings of the Congress on Evolutionary Computation,1958-1962,1999.
    [62]J. Kennedy. Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance. Proceedings of the Congress on Evolutionary Computation,1931-1938, 1999.
    [63]B. Al-kazemi and C. K. Mohan. Multi-phase generalization of the particle swarm optimization algorithm. Proceedings of the Congress on Evolutionary Computation,489-494,2002.
    [64]N. Jin and Y. Rahmat-Samii. Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag.,2005,53(11):3459-3468.
    [65]C. Lin, F.-S. Zhang, G. Zhao, F. Zhang, and Y.-C. Jiao. Broadband low-profile microstrip antenna design using gpso based on MOM. Microw. Opt. Technol. Lett.,2010,52(4):975-979.
    [66]W. T. Wang, S. X. Gong, Y. J. Zhang, F. T. Zha, J. Ling, and T. T. Wan. Low RCS dipole array synthesis based on MoM-PSO hybrid algorithm. Prog. Electromagn. Res.,2009,94:119-132.
    [67]J. Lu, D. Ireland, and A. Lewis. Multi-objective optimization in high frequency electromagnetics-An effective technique for smart mobile terminal antenna (SMTA) design. IEEE Trans. Magn.,2009,45(3):1072-1075.
    [68]N. Jin and Y. Rahmat-Samii. Parallel PSO/FDTD algorithm for the optimization of patch antennas and EBG structures. IEEE/ACES Int. Conf. Wireless Commun. Applied Comput. Electromagnetics,584-587,2005.
    [69]X. F. Liu, Y. C. Jiao, F. S. Zhang, and Y. B. Chen. Design of a low-profile modified U-slot microstrip antenna using PSO based on IE3D. Microw. Opt. Technol. Lett.,2007,49(5): 1111-1114.
    [70]X. F. Liu, Y. B. Chen, Y. C. Jiao, and F. S. Zhang. Modified particle swarm optimization for patch antenna design based on IE3D. J. Electromagn. Waves Appl.,2007,21(13):1819-1828.
    [71]S. Baskar, A. Alphones, P. M. Suganthan, and J. J. Liang. Design of Yagi-Uda antennas using comprehensive learning particle swarm optimisation. IEE Proc., Microw. Antennas Propag., 2005,152(5):340-346.
    [72]N. Jin and Y. Rahmat-Samii. Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Antennas Propag.,2007,55(3):556-567.
    [73]M. M. Khodier and C. G. Christodoulou. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans. Antennas Propag.,2005,53(8):2674-2679.
    [74]P. J. Bevelacqua and C. A. Balanis. Minimum sidelobe levels for linear arrays. IEEE Trans. Antennas Propag.,2007,55(12):3442-3449.
    [75]P. Demarcke, H. Rogier, R. Goossens, and P. De Jaeger. Beamforming in the presence of mutual coupling based on constrained particle swarm optimization. IEEE Trans. Antennas Propag.,2009,57(6):1655-1666.
    [76]J. R. Perez and J. Basterrechea. Particle swarm optimization for antenna far-field radiation pattern reconstruction. Proc. Eur. Microwave Conf.,687-690,2007.
    [77]D. W. Boeringer and D. H. Werner. Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Trans. Antennas Propag.,2004,52(3):771-779.
    [78]黄冀卓,王湛.结合梯度法的混合微粒群优化算法.计算机工程与应用,2008,44(35):40-42.
    [79]H. Rezaei, S. Azadi, and M. Ghorbani. A hybrid particle swarm/steepest gradient algorithm for elastic brain image registration. Proceedings of the 2009 Second International Conference on Machine Vision,54-58,2009.
    [80]Y. Kimura and K. Hirasawa. CMA adaptive array with digital phase shifters by a genetic algorithm and a steepest descent method. IEEE Antennas and Propagation Society International Symposium,914-917,2000.
    [81]S. Oh and Y. Hori. Parameter optimization for NC machine tool based on golden section search driven PSO. IEEE Int. Symp. Ind. Electron.,3114-3119,2007.
    [82]刘凌子,周永权.基于模拟退火和文化粒子群的优化算法.2009,45(32):31-34.
    [83]Z. Hu, Q. Su, S. Xiong, and F. Hu. Self-adaptive Hybrid differential evolution with simulated annealing algorithm for numerical optimization. IEEE Congress on Evolutionary Computation, 1189-1194,2008.
    [84]J.-P. Chiou, C.-F. Chang, and C.-T. Su. Ant direction hybrid differential evolution for solving large capacitor placement problems. IEEE Trans. Power Syst.,2004,19(4):1794-1800.
    [85]王鼎,吴瑛,基于改进遗传算法的矩阵联合对角化.电子与信息学报,2007,29(3):578-581.
    [86]H. C. W. Lau, T. M. Chan, and W. T. Tsui. Item-location assignment using fuzzy logic guided genetic algorithms. IEEE Trans. Evol. Comput.,2008,12(6):765-780.
    [87]J. Robinson, S. Sinton, and Y. Rahmat-Samii. Particle swarm, genetic algorithm, and their hybrids:Optimization of a profiled corrugated horn antenna. IEEE Antennas and Propagation Society International Symposium,314-317,2002.
    [88]C.-F. Juang. A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent Network Design. IEEE Trans. Syst. Man Cybern. B, Cybern.,2004,34(2):997-1006.
    [89]F. Grimaccia, M. Mussetta, and R. E. Zich. Genetical swarm optimization:Self-adaptive hybrid evolutionary algorithm for electromagnetics. IEEE Trans. Antennas Propag.,2007,55(3): 781-785.
    [90]G. Dubost and S. Zisler. Antennas a large bande. Paris, NewYork, Masson,128-129,1976.
    [91]S. Honda, M. Ito, H. Seki, and Y. Jinbo. A disk monopole antenna with 1:8 impedance bandwidth and omnidirectional radiation pattern. International Symposium on Antennas and Propogation,1145-1148,1992.
    [92]E. Lee, P. S. Hall, and P. Gardner. Compact wideband planar monopole antenna. Electron. Lett., 1999,35(25):2157-2158.
    [93]M. J. Ammann. Control of the impedance bandwidth of wideband planar monopole antennas using a beveling technique. Microw. Opt. Technol. Lett.,2001,30(4):229-232.
    [94]钟顺时,梁仙灵,延晓荣.超宽带平面天线技术.电波科学学报,2007,22(2):308-315.
    [95]Z. N. Chen, M. Y. W. Chia, and M. J. Ammann. Optimization and comparison of broadband monopoles. IEE Proc., Microw. Antennas Propag.,2003,150(6):429-435.
    [96]P. V. Anob, K. P. Ray, and G. Kumar. Wideband orthogonal square monopole antennas with semi-circular base. IEEE Antennas and Propagation Society International Symposium,294-297, 2001.
    [97]S.-Y. Suh, W. L. Stutzman, and W. A. Davis. A new ultrawideband printed monopole antenna: the planar inverted cone antenna (PICA). IEEE Trans. Antennas Propag.,2004,52(5): 1361-1365.
    [98]K.-L. Wong, S.-W. Su, and C.-L. Tang. Broadband omnidirectional metal-plate monopole antenna. IEEE Trans. Antennas Propag.,2005,53(1):581-583.
    [99]J. Jung, W. Choi, and J. Choi. A small wideband microstrip-fed monopole antenna. IEEE Microw. Wirel. Compon. Lett.,2005,15(10):703-705.
    [100]S.-W. Qu, C. Ruan, and B.-Z. Wang. Bandwidth enhancement of wide-slot antenna fed by CPW and microstrip line. IEEE Antennas Wirel. Propag. Lett.,2006,5:15-17.
    [101]J. Liang, C. C. Chiau, X. Chen, and C. G. Parini. Printed circular disc monopole antenna for ultra-wideband applications. Electron. Lett.,2004.40(20):1246-1248.
    [102]T. Yang and W. A. Davis. Planar half-disk antenna structures for ultra-wideband communications. IEEE Antennas and Propagation Society Symposium,2508-2511,2004.
    [103]J. Liang, C. C. Chiau, X. Chen, and C. G. Parini. Printed circular ring monopole antennas. Microw. Opt. Technol. Lett.,2005,45(5):372-375.
    [104]W. S. Chen, S. C. Wu, and K. N. Yang. A study of the printed heart monopole antenna for IEEE 802.16a/UWB applications. IEEE Antennas and Propagation Society International Symposium, 1685-1688,2006.
    [105]G. Ruvio and M. J. Ammann. A novel wideband semi-planar miniaturized antenna. IEEE Trans. Antennas Propag.,2007,55(10):2679-2685.
    [106]A. M. Abbosh. Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance. IEEE Antennas Wirel. Propag. Lett.,2009,8:690-692.
    [107]S. Radiom, H. Aliakbarian, G. A. E. Vandenbosch, and G. G. E. Gielen. An effective technique for symmetric planar monopole antenna miniaturization. IEEE Trans. Antennas Propag.,2009, 57(10):2989-2996.
    [108]J. Yeo, Y. Lee, and R. Mittra. Wideband slot antennas for wireless communications. IEE Proc., Microw. Antennas Propag.,2004,151(4):351-355.
    [109]T.-G. Ma and S.-K. Jeng. A compact tapered-slot-feed annular slot antenna for ultra-wideband applications. IEEE Antennas and Propagation Society Symposium,2943-2946,2004.
    [110]C. Morales-Silva and J. Wang. CPW-fed arrow-shaped slot antenna design for ultra wideband (UWB) applications. IEEE 10th Annual Wireless and Microwave Technology Conference,1-4, 2009.
    [Ill]K. Y. Yazdandoost and R. Kohno. Slot antenna for ultra wideband system. IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics,212-216,2005.
    [112]W.-F. Chen, Z.-S. Ye, J.-M. Wu, and C.-Y. Huang. Slot antennas for UWB applications. Asia Pacific Microwave Conference,1-4,2008.
    [113]A. Kerkhoff and H. Ling. Design of a planar monopole antenna for use with ultra-wideband (UWB) having a band-notched characteristic. IEEE Antennas and Propagation Society International Symposium,830-833,2003.
    [114]H. G. Schantz, G. Wolenec, and E. M. Myszka Iii. Frequency notched UWB antennas. IEEE Conference on Ultra Wideband Systems and Technologies,214-218,2003.
    [115]J.-B. Jiang, Y. Song, Z.-H. Yan, X. Zhang, and W. Wu. Band-notched UWB printed antenna with an inverted-L-slotted ground. Microw. Opt. Technol. Lett.,2009,51(1):260-263.
    [116]T. Dissanayake and K. P. Esselle. UWB performance of compact L-shaped wide slot antennas. IEEE Trans. Antennas Propag.,2008,56(4):1183-1187.
    [117]Y. J. Cho, K. H. Kim, D. H. Choi, S. S. Lee, and S.-O. Park. A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Trans. Antennas Propag.,2006,54(5):1453-1460.
    [118]K.-L. Wong, Y.-W. Chi, C.-M. Su, and F.-S. Chang. Band-notched ultra-wideband circular-disk monopole antenna with an arc-shaped slot. Microw. Opt. Technol. Lett.,2005,45(3):188-191.
    [119]Q.-X. Chu and Y.-Y. Yang. A compact ultrawideband antenna with 3.4/5.5 GHz dual band-notched characteristics. IEEE Trans. Antennas Propag.,2008,56(12):3637-3644.
    [120]Y.-L. Zhao, Y.-C. Jiao, G. Zhao, L. Zhang, Y. Song, and Z.-B. Wong. Compact planar monopole UWB antenna with band-notched characteristic. Microw. Opt. Technol. Lett.,2008.50(10): 2656-2658.
    [121]R. Zaker, C. Ghobadi, and J. Nourinia. Novel modified UWB planar monopole antenna with variable frequency band-notch function. IEEE Antennas Wirel. Propag. Lett.,2008,7:112-114.
    [122]C. Y. Huang, S. A. Huang, and C. F. Yang. Band-notched ultra-wideband circular slot antenna with inverted C-shaped parasitic strip. Electron. Lett.,2008,44(15):891-892.
    [123]H. J. Zhou, B. H. Sun, Q. Z. Liu, and J. Y. Deng. Implementation and investigation of U-shaped aperture UWB antenna with dual band-notched characteristics. Electron. Lett.,2008, 44(24):1387-1388.
    [124]J. Y. Deng, Y. Z. Yin, S. G. Zhou, and Q. Z. Liu. Compact ultra-wideband antenna with tri-band notched characteristic. Electron. Lett.,2008,44(21):1231-1233.
    [125]Y. Zhang, W. Hong, C. Yu, Z.-Q. Kuai, Y.-D. Don, and J.-Y. Zhou. Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line. IEEE Trans. Antennas Propag.,2008,56(9),3063-3068.
    [126]J. H. G. Ender. On compressive sensing applied to radar. Signal Process,2010,90(5): 1402-1414.
    [127]Y. Luan and Y. Li. Velocity measurement of compound radar system. ICIC Express Lett.,4(1): 155-160.
    [128]S. Montebugnoli, G Pupillo, E. Salerno, S. Pluchino, and M. di Martino. The bistatic radar capabilities of the Medicina radiotelescopes in space debris detection and tracking. Adv. Space Res.,2010,45(5):676-682.
    [129]V. M. Patel, G. R. Easley, D. M. Healy Jr, and R. Chellappa. Compressed synthetic aperture radar. IEEE J. Sel. Top. Sign. Proces.,2010,4(2):244-254.
    [130]M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim. Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode. Opt. Commun.,2010, 283(2):304-308.
    [131]R. C. Willatt, K. A. Giles, S. W. Laxon, L. Stone-Drake, and A. P. Worby. Field investigations of Ku-band radar penetration into snow cover on antarctic sea ice. IEEE Trans. Geosci. Remote Sens.,2010,48(1):365-372.
    [132]H. Steyskal. Pattern Synthesis for a Conformal Wing Array. IEEE Aerospace Conference Proceedings,819-824,2002.
    [133]周义.近看以色列“费尔康”预警机.国防科技参考,2000,2:24-27.
    [134]王昊,赵玉洁.预警机发展现状与趋势.国防技术基础,2005,5:43-44.
    [135]朱丽莉,冯存前,张永顺.预警机系统关键技术分析.情报指挥控制系统与仿真技术,2005,27(5),67-70.
    [136]G. G. Sanford. Conformal microstrip phased array for aircraft tests with ATS-6. IEEE Trans. Antennas Propag.,1978,26(5):642-646.
    [137]苏鑫鑫,王永寿.欧美空军新一代机载精确制导武器.飞航导弹,2009,12:13-19.
    [138]M. S. A. S. Rizk, G. Morris, and M. P. Clifton. Projected aperture synthesis method for the design of conformal array antennas. Fourth International Conference on Antennas and Propagation,48-52,1985.
    [139]O. M. Bucci, G. Franceschetti, G. Mazzarella, and G. Panariello. Intersection approach to array pattern synthesis. IEE Proc. H, Microw. Antennas Propag.,1990,137(6):349-357.
    [140]E. Botha and D. A. McNamara. Conformal array synthesis alternating projections, with maximal likelihood estimation used in one the projection operators. Electron. Lett.,1993, 29(20):1733.
    [141]G. Mazzarella and G. Panariello. Pattern synthesis of conformal arrays. IEEE Antennas and Propagation Society International Symposium,1054-1057,1993.
    [142]A. Tennant. Numerical pattern synthesis of difference beams in conformal arrays. Electron. Lett.,1995,31(12):938-939.
    [143]P. N. Fletcher and M. Dean. Least squares pattern synthesis for conformal arrays. Electron. Lett.,1998,34(25):2363-2365.
    [144]L. I. Vaskelainen. Phase synthesis of conformal array antennas. IEEE Trans. Antennas Propag., 2000,48(6):987-991.
    [145]L. I. Vaskelainen. Constrained least-squares optimization in conformal array antenna synthesis. IEEE Trans. Antennas Propag.,2007,55(3):859-867.
    [146]J.-C. Creput, A. Koukam, T. Lissajoux, and A. Caminada. Automatic mesh generation for mobile network dimensioning using evolutionary approach. IEEE Trans. Evol. Comput.,2005, 9(1):18-30.
    [147]E. J. Hastings, R. K. Guha, and K. O. Stanley. Interactive evolution of particle systems for computer graphics and animation. IEEE Trans. Evol. Comput.,2009,13(2):418-432.
    [148]C.-K. Goh, E.-J. Teoh, and K. C. Tan. Hybrid multiobjective evolutionary design for artificial neural networks. IEEE Trans. Neural Netw.,2008,19(9):1531-1548.
    [149]玄光男,程润伟,于歆杰.遗传算法与工程优化.北京:清华大学出版社,2004.
    [150]段海滨.蚁群算法原理及其应用.北京:科学出版社,2005.
    [151]张泽明.人工免疫算法及其应用研究.中国科学技术大学,2007.
    [152]田景文,高美娟.人工神经网络算法研究及应用.北京:北京理工大学出版社,2006.
    [153]侯云鹤,鲁丽娟,熊信艮,程时杰,吴耀武.改进粒子群算法及其在电力系统经济负荷分配中的应用.中国电机工程学报,2004,24(7):95-100.
    [154]武志峰.差异演化算法及其应用研究.博士论文.北京交通大学.2009.
    [155]潘正君,康立山,陈毓屏,演化计算.北京:清华大学出版社,南宁:广西科学技术出版社,2000.
    [156]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.
    [157]J. H. Holland. Adaptation in natural and artificial systems. MIT press Cambridge, MA,1992.
    [158]M. Zbigniew. Genetic Algorithms+Data Structures=Evolution Programs. New York: Springer-Verlag,1992.
    [159]F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S.Tam. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans. Neural Netw.,2003,14(1):79-88.
    [160]任子武,伞冶.实数遗传算法的改进及性能研究.电子学报,2007,35(2):269-274.
    [161]吕湛.果树嫁接优质高产技术.北京:气象出版社,1994.
    [162]J. Zhang, P. V. Orlik, Z. Sahinoglu, A. F. Molisch, and P. Kinney. UWB systems for wireless sensor networks. Proc. IEEE,2009,97(2):313-331.
    [163]高国平.超宽带天线设计及其阵列研究.硕士学位论文.兰州大学.2009.
    [164]汪茂光,吕善伟,刘瑞祥.阵列天线分析与综合.成都:电子科技大学出版社,1989.
    [165]束成荣,何炳发,高铁.相控阵雷达天线.北京:国防工业出版社,2007.
    [166]卢万铮.天线理论与技术.西安:西安电子科技大学出版社,2004.
    [167]A. Ludwig. The definition of cross polarization.1973,21(1):116-119.
    [168]G. K. Mahanti, S. Das, A. Chakrabarty, J. C. Bregains, and F. Ares. Design of Reconfigurable Array Antennas With Minimum Variation of Active Impedances. IEEE Antennas Wirel. Propag. Lett.,2006,5:541-544.
    [169]X. Diaz, J. A. Rodriguez, F. Ares, and E. Moreno. Design of phase-differentiated multiple-pattern antenna arrays. Microw. Opt. Technol. Lett.,2000,26(1):52-53.
    [170]J. A. Rodriguez, A. Trastoy, J. C. Bregains, F. Ares, and G. Franceschetti. Beam reconfiguration of linear arrays using parasitic elements. Electron. Lett.,2006,42(3):131-133.
    [171]R. J. Mailloux. Phased array antenna handbook. New York:Artech. House Inc.,1994.
    [172]O. Franek, G. F. Pedersen, and J. B. Andersen. Numerical modeling of a spherical array of monopoles using FDTD method. IEEE Trans. Antennas Propag.,2006,54(7):1952-1963.
    [173]B. Rafaely. The spherical-shell microphone array. IEEE Trans. Audio, Speech, Lang. Process., 2008,16(4):740-747.
    [174]D. W. Boeringer and D. H. Werner. Efficiency-constrained particle swarm optimization of a modified Bernstein polynomial for conformal array excitation amplitude synthesis. IEEE Trans. Antennas Propag.,2005,53(8):2662-2673.
    [175]J.-L. Guo and J.-Y. Li. Pattern synthesis of conformal array antenna in the presence of platform using differential evolution algorithm. IEEE Trans. Antennas Propag.,2009,57(9):2615-2621.
    [176]张钧.微带天线理论与工程.北京:国防工业出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700