用户名: 密码: 验证码:
气动板形仪测控系统实验研究及板形理论建模仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板形是板带产品的主要质量指标之一,随着板厚品质的不断提高,人们对带材板形质量提出了越来越高的要求。板形控制成为现代高精度板带轧机关键技术的重要发展方向之一。板形检测、板形识别与板形控制理论及数学建模则是此项技术的理论基础和关键问题,同时也是板形控制的难点。目前,只有国外的大公司如西门子、ABB等研发出了应用于实际板形控制的板形闭环控制系统。国内板形检测和板形控制系统基本处于研发阶段。本文在燕山大学王益群教授课题组研发的七段式气动板形检测辊的基础上,对气动板形检测辊重新进行了动态特性标定,采用光纤传感技术对检测辊鉴相定位的方法较好的消除了检测辊圆周误差,进一步完善了气动板形检测装置。运用虚拟仪器LabVIEW技术开发了气动板形检测系统,实现了对板形信号的在线实时检测;针对现代板带轧制的特点,在模糊分类原理模式识别基础上,结合粒子群理论和单纯形优化算法对模式识别的结果作了进一步优化,使其更好的反映了实际板形状况。通过计算机网络通讯技术,将板形模式识别结果传输到300四辊可逆轧机的板厚控制系统中,通过控制四辊可逆轧机弯辊和倾辊装置完成板形的闭环控制。由于弯辊系统是板形闭环控制的关键环节之一,它的动态特性和稳态性能对于整个板形控制系统的性能起着至关重要的作用。针对其非线性、时变性及不确定性的特点,为充分发挥液压弯辊力对板形的调整作用,改善轧机系统的动态特性,设计了模糊自适应PID控制器应用于液压弯辊控制中。
     随着计算机技术的迅猛发展,虚拟仿真技术越来越成为系统设计、模拟的重要组成部分。虚拟轧制技术的出现对了解系统性能、改进控制技术以及研究工艺过程具有重要的理论意义和实际应用价值。可以为现代化轧机的设计和现有轧机的改造提供技术支撑和仿真试验环境;可以探索现有轧机工艺特性,改善工艺参数,以提高产品的质量与产量。本课题在考虑伺服阀的非线性,综合考虑了液压系统中油缸位移、轧制力、弯辊力等因素对板形的影响,建立了液压压下、弯辊系统模型;根据完整的板形理论分别建立了轧件金属三维变形数学模型、辊系弹性变形数学模型、轧制力数学模型。为提高虚拟轧制板形控制的仿真速度,对金属三维变形模型进行了一些简化;辊系变形采用轧制工程上应用较广的影响函数法;在以上模型基础上,建立了较完备的虚拟板形控制系统。
Strip flatness is the main quality standard. Following the improving of the quality of strip thickness, the request to the one of strip flatness is higher and higher. Flatness control becomes the important technique’s developing direction of the modern high-precision rolling mill. Flatness measuring, pattern identification, flatness control theory and mathematical modeling are the theory base and the key problem of the flatness control. Currently, only foreign companies, such as Siemense and ABB, can explore the flatness closed-loop control systems, which are applied in the practical flatness control. Domestic flatness control and measuring lies in the research phase. The dynamic characteristic of the pneumatic flatness measuring rolls is calibrated again on the base of the seven-segment pneumatic flatness measuring roll explored by the research group led by Professor Wang Yiqun. It adopted the method of optical fiber phase Correction Compensation to eliminate the circle error of the measuring rolls and perfecting pneumatic flatness measuring equipment. On this base, Virtual Instrument LabVIEW is used to explore the software system of pneumatic flatness measuring, which realizes the on-line measuring. Aimed at the characteristics of modern rolling, on the base of the pattern recognition based on fuzzy classification theory, the result of the pattern identification is optimized, combining with the Particle Swarm theory and simplex method, which reflects the real flatness state better. By the computer Ethernet communication technique, the result of the flatness pattern identification can be transmitted to the automatic gauge control system of the 300 4-roll reverse rolling mill which can realize the flatness closed-loop control by the bending equipment and the incline roll equipment. As the bending system is the key technique of the flatness closed-loop control, its dynamic and static characteristics are important for the performance of the flatness closed-loop control system. Aimed at its characteristics of nonlinear, time-variant and uncertainty, Fuzzy Self-adaptive PID is designed in bending system for improving the adjusting role of hydraulic bending system on flatness and dynamic characteristic of the rolling mill.
     With the development of the computer technique, the technique of the virtual simulation increasingly becomes the important constituent of the system design and simulation. Virtual rolling technique has important practical values for learning the performance of the system, improving the control technique and studying the technics process. It can provide the technique support and the simulation experiment environment for the design of modern rolling mill and rolling mill modification, and it also can explore the new characteristics of the current rolling mill and improve technics parameters to improve the quality and the output of the product. Considering the influence such as nonlinearity of servo valve, the hydraulic cylinder position, rolling power and bending power on the flatness, this subject builds the model of hydraulic screw-down system and the bending system. According to the whole flatness theory, strip metal transmutation model, rollers elasticity transmutation model and rolling power model are built respectively. To improve the simulation velocity, strip 3-dimension metal transmutation model is simplified. The influence function method is applied on rollers elasticity transmutation model, which is used widely in the practice. On the base of the model above, a whole virtual flatness control system is built
引文
1孙一康.带钢冷连轧机计算机控制,北京:冶金工业出版社, 2002: 216-218
    2华建新,王贞祥.全连续式冷连轧机过程控制.北京:冶金工业出版社, 2000:55-60
    3易贵科,李静姗,吴国良译.日本热轧带钢生产技术.沈阳:东北大学出版社,1993: 16-27
    4日本钢铁协会.板带轧制理论与实践.北京:中国铁道出版社,1990: 125-135
    5孙一康.带钢热连轧的模型与控制.北京:冶金工业出版社,2002: 120-131
    6 Anon. Non-contact measurement of strip flatness. Steel Times International,2003,5(27):16-17
    7孙一康.适用于轧钢过程的计算机控制系统.中国工程科学, 2000, 2(1): 73-76
    8 Garcia, Daniel F. Garcia, Manuel; Obeso, Faustino. Flatness measurement system based on a nonlinear optical triangulation technique. Transactions on Instrumentation and Measurement, 2002, 2(51):188-195.
    9 Spreitzhofer, Gunter; Duemmler, Alfred; Trautwig, Juergen Contactless flatness measurement improves measurement quality in cold rolling mills. SEAISI Quarterly,2003,1(32):43-50
    10 Fischer, Franz Dieter, Friedl, Nikolaus, Noe, Andreas. A study on the buckling behaviour of strips and plates with residual stresses. Steel Research International, 2005,4(76): 327-335
    11 Agureev, V.A.; Kuryakin, A.V.; Rudnev, V.S.; Trusillo, S.V.; Shershelyuk, V.P. Use of gage IP-4-gp to measure the flatness of strip on a hot-strip mill. Metallurgist,2004,1(48):23-30.
    12 Lopez, Carlos; Garcia, Daniel F. Real time system for flatness inspection of steel strips. Proceedings of SPIE - The International Society for Optical Engineering2005,2005:228-238.
    13 Gai, Shao-Yan; Da, Fei-Peng New model of 3D shape measurement system based on phase measuring profilometry and its calibration. Zidonghua Xuebao,2007,9(33):902-910.
    14 Duckworth, Sarah .New generation of on-line shape measurement for flat rolling. Aluminium Today,1994,3(6):33.
    15刘宏民.板形理论的研究现状与发展方向.钢铁,1993,28(2):75-79
    16刘宏民,连家创,段振勇.模拟带材轧制过程的条元法.机械工程学报,1993,29(4):36-42
    17刘才,杜凤山,连家创.薄板带张力轧制时金属流动的计算机模拟.钢铁,1992,27(1):35-38
    18刘相华.刚塑性有限元及其在轧制中的应用.北京冶金工业出版社,1994:139-142
    19王益群,刘涛,姜万录,等.冷连轧机工作辊温度场分析及膨胀量预报.中国机械工程.2006,17(5):15-98
    20 Zhang, Cai (School of Mechanical and Electrical Engineering, Central South University); Tan, Jian-Ping. Strip flatness pattern recognition based on genetic algorithms-back propagation model.2006,2(36):294299.
    21张清东.宽带钢冷轧机自动控制系统的研究.[北京科技大学工学博士学位论文]. 1994: 48-52
    22 Liu, Jiang; Wang, Changsong; Jiang, Lihua; Liu, Beiying Gaussian decomposition for strip flatness defect patterns. Journal of University of Science and Technology Beijing,2003,5(23):455-457.
    23 Zhang, Xiuling; Liu, Hongmin GA-BP model of flatness pattern recognition and improved least-squares method. Kang T'ieh/Iron and Steel,2003,10(38):29-34
    24 He, Hai-Tao ; Li, Nan An RBF network approach to flatness pattern recognition based on SVM learning. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, ICMLC 2006,2006:2959-2962
    25 Liu, Yuli; Jin, Xiaoguang; Lian, Jiachuang; Kong, Xiangdong Development of DC mill with work rolls deviated and crossed. Chinese Journal of Mechanical Engineering, 1998,4(11):294-299
    26 Shigematsu, Kenjiro; Kaneko, Toru; Matsushige, Takehiko; Development of cold rolling technology for high thickness accuracy and excellent tensile property sheet. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan,1997,1(83):54:59
    27 Tanomura, Tadao; Hishinuma, Itaru; Adachi, Akio; Crown control of hot-rolled stainless stainless steel coils . Kawasaki Steel Technical Report,1986,14:42-49
    28 Hong, W.K, Choi, J.J.; Kim, J.S.; Yi, J.J. Flatness adaptive control of a hot strip in finishing mills. Proceedings of the Institution of Mechanical Engineers, 2003,9(217): 1243-1252
    29 Zhu, H.T.; Jiang, Z.Y.; Tieu, A.K.; Wang, G.D. Zhu, H.T., A fuzzy algorithm for flatness control in hot strip mill. Journal of Materials Processing Technology,2003,1(140):123-128.
    30 Wang, Jian-Hui ; Huang, Min; Gu, Shu-Sheng PSO-based decoupling PID control using wavelet neural network for strip flatness/gauge. Journal of Northeastern University,2005,3(26):224-227.
    31 G?kdere, Levent U.; Benlyazid, Etc. A virtual prototype for a hybrid electric vehicle. Mechatronics , 2002, 12 (12): 575-593
    32熊光愣.先进仿真技术与仿真环境.北京:国防工业出版社, 1997: 4-8
    33肖田元,张燕云,陈加栋.系统仿真导论.北京:清华大学出版社, 2000: 34-41
    34吴重光.仿真技术.北京:化学工业出版社, 2000: 9-11
    35廖瑛,梁加红.实时仿真理论与支撑技术.北京:国防科技大学出版社, 2002: 1-4
    36徐庚宝.系统仿真的过去.现在和未来.计算机仿真, 1998, (7): 1-4
    37王子才.关于仿真理论的探讨.系统仿真学报, 2000, (11): 605-608
    38 Li, J.R.; Khoo, L.P.; Tor, S.B. Desktop virtual reality for maintenance training: an object oriented prototype system (V-REALISM). Computers in Industry, 2003, 52 (2): 109-125
    39 Imperio, Ernesto; Sacco, Etc. Virtual reality system for machining: A virtual lathe prototype. Precision Engineering. 1997, 20 (2): 151-154
    40彭艳.基于条元法的HC冷轧机板形预设定控制理论研究及工业应用.[燕山大学工学博士学位论文].2000:1-50
    41连家创,刘宏民.板厚板形控制.北京:兵器工业出版社,1996:41-99
    42王国栋.板形控制和板形理论.北京:冶金工业出版社,1986:1-20
    43 Amokrane, S., Bouaskame, M.. Shape of the Liquid-vapor Coexistence Curve for Temperature and Density Dependent Effective Interactions. Physical Review E- Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2002,65 (51):1-10
    44 Lin Zenbo, Duan Zhengyong, Lian Jiachuang, etc. Analysis on Shape Standard Curve of Cold Rolling Mill and Its Selection. Journal of Iron and Steel Research, 1997,9 (3):55-58
    45 Grossman Tovi, Balakrishnan Ravin, Sinqh Karan. An Interface for Creating and Manipulating Curves Using A High Degree-of-freedom Curve Input Device. Conference on Human Factors in Computing Systems - Proceedings, 2003:185-192
    46贾春玉,尚志东.冷轧板形目标曲线的补偿设定.钢铁研究学报,2000,8:64-67
    47岳晓丽,连家创,李俊洪.热带钢连轧机轧辊热凸度在线计算模型的研究.冶金设备2002,(6):1-3,43
    48邸洪双,张晓峰,刘相华,等.冷轧薄带板形检测信号正交多项式分解及数学模型.钢铁,1995, 3(9):33-36
    49张秀玲.冷带轧机板形智能识别与智能控制研究.[燕山大学工学博士学位论文].2002:25-60
    50张秀玲,刘宏民.变结构神经网络在板形信号模式识别方面的应用.钢铁研究学报,2001, 13(2):62-66
    51乔俊飞.板形模式的一种模糊识别方式.钢铁,1998,33(6):37-40
    52 Hasegawa, Akihiko, Taki, Fumio. Development of fuzzy set theory-based shape control system for cold strip mill. Nippon Steel Technical Report, 1991, 49: 59-62.
    53肖健华.智能模式识别方法.广州:华南理工出版社,2006:106-108.
    54罗文广.一种改进的单纯形优化算法及其仿真研究.计算机仿真,2003,10(20):62-64.
    55许扬模糊模式识别及其应用.成都:西南交通大学出版社,1999:75-80
    56吴启迪,汪镭,智能微粒群算法研究及应用.江苏:江苏教育出版社,2005:90-97
    57刘建,王益群,孙福,宁淑荣.基于粒子群理论的板形模糊模式识别方法.机械工程学报, 2008.1(44):173-178
    58王益群,尹国芳.板形信号模式识别方法的研究.机械工程学,2003,39(8):91-95.
    59尹国芳,王益群,孙旭光.基于神经网络的板形信号模式识别方法的研究.中国机械工程,2004,15(24):15-18.
    60 Baumgartner U, Magele Ch, Renhart W. Pareto optimality and particle swarm optimization. IEEE Transactions on magnetics[J], 2004, 40(2):1172-1175.
    61高海昌,冯博琴,朱利.智能优化算法求解TSP问题.控制与决策,2006,3(21):241-247.
    62刘建,王益群,姜万录,宁淑荣.引入单纯形算子的粒子群优化算法在板形模式识别中的应用.中国机械工程, 2007,18(23):2877-2880
    63 Zadeh LA. Fuzzy Algorithm Information Control,1968,12:94-102
    64 Zadeh LA. A rational for fuzzy control. Trans. ASME J. Dynamic System Measure Control, 1972,94:3-4
    65刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003:138-140
    66贾春玉,赵炳利,宗家富,等.模糊逻辑控制器应用于四辊轧机液压弯辊系统的研究.中国机械工程,2002,13(14):1183-1185
    67 Hasegawa, Akihiko, Taki, Fumio Development of fuzzy set theory-based shape control system for cold strip mill. Nippon Steel Technical Report[C].1991,49:59-62.
    68 Mamdani E H. Application of fuzzy algorithms for simple dynamic plant. Proc. IEEE, 1974,121:1585-1588
    69张化光,何希勤.模糊自适应控制理论及其应用.北京:北京航空航天大学出版社,2002:297-298
    70王立新.模糊系统与模糊控制教程.北京:清华大学出版社,2003:17-39
    71何克忠.计算机控制系统.北京:清华大学出版社,1998: 134-161
    72 Jamal.Rahman Applicability of the visual programming language LavVIEW to large real-world applications IEEE Symp Visual Languages,Proc 2000:42-55
    73 National Instruments Corp. Signal Processing Toolset Reference Manual. Austin, Texas USA,1999,(1):25-85
    74 WANG Yiqun, LIU Jian, NING Shurong, ZHANG Wei. Hydraulic Bend Control System Research of Fuzzy Self-adaptive PID Based on Virtual Instrument. In: International Technology and Innovation Conference 2006—Advanced Manufacturing Technologies, Hangzhou, China, 2006:209
    75彭开香,童朝南,董洁,等. 1400mm铝带箔冷轧机板形控制系统.冶金自动化,2004,4(28):32-35.
    76孙旭光,王益群,尹国芳.气动板形检测辊及其主要技术性能.钢铁研究学报,2006,18(12):47-49
    77孙旭光,王益群,尹国芳.气动板形检测辊及其主要技术性能.钢铁研究学报, 2006,18(12):47-49
    78孙旭光,王益群,尹国芳,等.气动板形检测辊主要技术性能试验研究.自动化仪表, 2005,26(4):14-16
    79尹国芳.高精度铝箔板形测试系统的研究. [燕山大学工学博士学位论文]. 2006:65-70
    80杨铁林,孙旭光,王益群.分段式气动板形检测辊.机床与液压,2000,(4):58-62
    81尹国芳,王益群,孙旭光.气动板形检测辊静态特性研究.液压与气动, 2004,8:28-30
    82孙旭光,胡晓明,李立丰.气动板形检测辊设计和气膜压力场数值求解.流体传动与控制,2004,4:13-15
    83孙旭光.高精度气动板形仪研制与板形检测.[燕山大学博士后出站报告].2001:1-44
    84刘建,王益群,党凯.气动板形检测仪动态标定及其系统圆周误差的鉴相定位动态补偿方法. 2007全国博士生论坛,同济大学主办
    85 G. Anders, O. Keijser. Modern Approach to Flatness Measurement and Control in Cold Rolling. Iron and Steel Engineer, 1991, 68(1): 34-37.
    86 Lee, L.F, Berger, C.S. Identification of shape control system of sendzimir mill. National Conference Publication - Institution of Engineers, 1990, 90:17-21
    87王国栋,刘相华.金属轧制过程人工智能.北京:冶金工业出版社, 2000: 6-7
    88贾生晖,尹晓青,曹建国,等.冷连轧机板形控制对策的仿真分析.冶金设备,2002,10(5):20-23
    89王哲,邸洪双,王国栋,等.四辊轧机板形测控系统的设计.冶金自动化, 2002, 26(2): 34-37
    90张清东,陈先霖,何安芮,等.冷轧宽带钢板形检测与自动控制.钢铁,1999, 34(10): 69-72
    91张清东.宽带钢冷轧机自动控制系统的研究.[北京科技大学工学博士学位论文]. 1994: 48-52
    92唐谋凤.现代带钢冷连轧机的自动化.北京:冶金工业出版社, 1995: 146-152
    93李庆尧.带钢冷连轧机过程控制计算机及应用软件设计.北京:冶金工业出版社,1995:228-234
    94王国栋.人工智能在轧制中的应用(一).轧钢, 1996, 23(3): 36-38
    95王国栋.人工智能在轧制中的应用(二).轧钢, 1996, 24(4): 41-43
    96丁修堃.轧制过程自动化.北京:冶金工业出版社, 2005: 24-51
    97黄纶伟,陈先霖,张清东,等.板带冷轧机板形控制技术调控功效的比较研究.冶金设备,2000(11): 4-7
    98王长松,张云鹏,张清东.效应函数在冷轧机板形控制中的应用.轧钢,1999, (4): 28-30
    99王炎,孙一康.基于板形板厚综合控制目标函数的冷连轧机轧制参数智能优化新方法.冶金自动化,2002, 26(3): 11-14
    100徐悦,柴天佑,毛志忠.四辊可逆冷轧机板形控制系统的研究.冶金自动化,1995, 19(1): 8-12
    101 LabVIEW User Manual. National Instruments. 1998:50-116
    102 LabVIEW Data Application Basics Manual. National Instruments.1998:60-89
    103张易之.虚拟仪器的设计与实现.西安:西安电子科技大学出版社,2002:205-256
    104 Aaron, K.R.; Foster, N.L.; Hazel, D.P.; Hasanul Basher, A.M.; Closed-loop position control system using LabVIEW SoutheastCon, 2002. Proceedings IEEE5-7 April 2002 Page(s):283–286
    105 Swain.Nikunjak, Anderson.James Remote Data Acquisition,Control and Analysis using LabVIEW Front Panel and Real Time Engine. Proceedings IEEE SoutheastCon2003”Bridging the Digtal Divide”Ocho Rios,St.Ann,Jamaica,2003,Institute of Electrical and Electronics Engineers Inc,2003:1-6
    106 Remn Min Guo. Evaluation of Dynamic Characteristics of HAGC System. Iron and Steel Engineer, 1991, (8): 36-39
    107 Prodip BHOWAL. Modeling and Simulation of Hydraulic Gap Control System in a Hot Strip Mill. ISIJ International, 1996: 553-562
    108张伟.基于冷连轧过程的虚拟轧制系统中轧制设备关键技术研究.[燕山大学工学博士学位论文].2004:35-36
    109刘玉.基于自适应遗传算法的电液弯辊模糊智能控制系统研究. [燕山大学工学硕士学位论文].2006:
    110 Liu Hongmin, Lian Jiachuang. Transverse Distributions of Front and Back Tension Stresses in Cold Strip Rolling. Chinese Journal of Metal Science and Technology, 1992,8(6):427-434
    111 Liu Hongmin, Lian Jiachuang, Duan Zhengyong. Study of the 3-D Stresses of Cold Strip Rolling Under Center Wave. Chinese Journal of Mechanical Engineering, 1994,7 (2):91-96
    112王宏旭,连家创.四辊冷轧带材中张应力横向分布的求解.钢铁研究学报,1996,8(1):16-19
    113刘宏民.四辊冷轧机冷轧带材压力摩擦力张力横向分布的理论和实验研究.[东北重型机械学院工学博士学位论文].1988:66-87
    114彭艳,刘宏民.HC轧机板形凸度控制策略的研究.钢铁,2002,37(4):35-38
    115刘玉礼.HC轧机板形控制机能研究.[燕山大学工学硕士学位论文].1986:23-45
    116刘宏民.三维轧制理论及其应用——模拟轧制过程的条元法.北京:科学出版社,1999:1-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700