用户名: 密码: 验证码:
双波长外腔共振和频产生的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光在人们生产生活的各个领域发挥着重要的作用,然而由于增益介质的缺乏,某些特殊波段的激光不能采用直接受激辐射的方法获得,因此需要非线性频率转换技术。非线性频率转换其本质是光与物质相互作用所产生的一种非线性光学效应,该效应突破了传统光学中光波线性叠加和独立性传播的局限性,揭示了介质中光波场之间相位关联、能量的交换的变化过程。非线性频率变换主要包括光的倍频、和频、差频及光学参量振荡。与倍频相比,和频是一种三波相互作用,基频光有两种不同的波长,因此特殊性和复杂性也有所增加,但它可以在倍频技术不能达到的某个短波长处实现相干辐射,因此成为人们研究和探索的热点。非线性光学和频转化效率主要取决于基频光的功率密度,双波长外腔共振技术就是将两基频光同时耦合到外部谐振腔中共振,从而放大基频光功率,并对基频光的腰斑半径进行控制,提高和频转化效率。
     在本文中,我们主要以938nm和1583nm两基频光和频产生589nm钠黄光为例,对双波长外腔共振和频过程中涉及的基本理论进行简要介绍,对晶体的相位匹配角度和有效非线性系数进行模拟计算,对激光到外腔耦合过程中的模式匹配和阻抗匹配进行详细分析。然后围绕系统的频率级联锁定、外腔的腔参数优化、和频光的波长调谐与锁定三方面展开详细的研究,其具体的研究内容如下:
     1、从理论和实验上分别对双波长外腔系统的频率级联锁定进行研究,从而使得两基频光能在腔内同时共振。首先对常用的锁频技术进行比较,选择了操作简单并适合双波长外腔系统进行频率级联锁定的Hansch-Couillaud (HC)技术。然后研究单KTP晶体和键合KTP晶体对HC锁频技术的影响。结果表明对于单KTP晶体,激光会在晶体内发生走离,相互走离的两个偏振光束不能在环形腔内共振,从而使得HC技术不能用于Ⅱ类相位匹配的和频过程,而利用键合KTP晶体或者周期极化晶体就可以克服此缺点。实验中,我们将外腔腔模频率锁定到938nm激光器的输出频率上,然后将1589nm激光输出频率锁定到外腔腔模频率上,从而使三者之间级联锁定,实现了两基频光在腔内的共振。此外为了优化锁频系统中的反馈电路,基于基本的控制理论研究了伺服系统的设计原则,并通过测量激光-腔系统的传递函数设计出了伺服反馈电路,提高了稳频性能。
     2、从理论和实验上分别对双波长外腔共振和频系统的外腔参数进行优化,以满足最佳的Boyd-Kleinman (BK)因子与系统的阻抗匹配。首先建立了双波长外腔共振和频产生的理论模型,分析了BK因子与腔增强因子对和频转化效率的影响,然后详细研究了影响BK因子的因素,建立了BK因子与腔长参数的依赖关系,详细研究了影响腔增强因子的因素,建立了腔增强因子与入射腔镜反射率的依赖关系,从而通过计算模拟优化了腔长参数与入射腔镜镀膜参数,提高和频转化效率。实验上利用938nm激光与1583nm激光在蝶形环形腔内的PPLN晶体中共振和频获得了波长为589nm,功率大于0.2W的钠黄光,在考虑了两基频光到环形腔的耦合过程中不完全的模式匹配以及晶体和出射腔镜对和频光的损耗之后,实验得出的结果与理论计算的结果符合的很好。
     3、从理论和实验上分别对双波长外腔共振和频系统产生的和频光进行波长调谐、频率锁定和参数测量。首先从理论上分析了双波长外腔系统在级联锁定的情况下的频率扫描。为了将和频光锁定到标准的参考频率上,详细研究了和频光通过气体吸收池之后不同温度下的直接吸收光谱和饱和荧光谱。实验上,我们将扫描信号加载到调谐范围较大的938nm基频激光器上,通过扫描其频率来获得和频光的波长调谐;利用高精细度的F-P腔对和频光的线宽进行测量;通过温控装置的设计,测量了不同温度下Na原子的直接吸收光谱和饱和荧光谱;利用波长调制的一次谐波技术将和频产生的589nm激光锁定到Na的D2a线上;最后测量了频率失锁到锁定误差信号的变化,反映了锁频前后和频光的频率稳定度。实验结果表明在双波长外腔级联锁定情况下589nm和频光的最大扫描范围为2.2GHz,线宽为7MHz,将589nm和频光精确锁定到Na的D2a线上,将频率稳定度由400MHz改善到了4MHz。
     在上述的研究工作中,属于创新性的内容有以下几方面:
     1、对双波长外腔共振和频系统进行了详细地研究,在基频光受限的情况下分析了影响和频转化效率的因素,通过对腔长参数的优化获得了最佳的BK因子,通过对入射腔镜反射率的优化使系统达到完全的阻抗匹配,提高了腔增强因子,从而提高了和频转化效率。
     2、分析了单块晶体中两相互垂直偏振光的走离效应对HC锁频技术的影响,并设计利用键合晶体或者周期极化晶体来克服这种影响,使得相互垂直的两束偏振光能够基于HC锁频技术在双波长外腔系统中共振,实现Ⅱ类相位匹配的和频。
     3、利用HC锁频技术实现了两基频光到环形腔的频率级联锁定,即先将环形腔腔模频率锁定到激光器Ⅰ的输出频率上,然后将激光器Ⅱ的输出频率锁定到环形腔腔模频率上,从而实现了两基频光在腔内的共振。
     4、基于双波长外腔频率级联锁定技术实现了和频光的波长调谐,只要通过调谐主激光的频率,就可以实现和频光的可调谐输出。
     5、采用1583nm和938nm两波段在双波长外腔共振系统中进行高效和频,产生589nm的钠黄光,其中1583nm激光器为光纤激光器,938nm激光器为外腔二极管激光器,所用的非线性晶体为PPLN晶体,938nm激光的和频效率达到42.8%
The laser plays an important role in many fields of industry and daily life. However, due to the lack of appropriate gain mediums, some special bands cannot be obtained directly by laser radiation. The nonlinear frequency conversion technique will be need. The nature of the nonlinear frequency conversion is a nonlinear optical effect produced in the process of the interaction between laser and medium. The nonlinear optical effect breaks with conventional limitations of linear superposition and independent propagation of lightwaves and reveals the exchanges of energy and phase association of lightwaves. Nonlinear frequency conversion technique includes second harmonic generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), and optical parametric oscillator (OPO) and so on. Compared with SHG, SFG is a three-wave interaction because the wavelengthes of two fundamental lights are different. Therefore it is complex. However, SFG can achieve coherent radiation in the specific short-wavelength that can not be achieved by SHG and become a focus of research and exploration. The sum-frequency conversion efficiency is directly proportional to the product of two fundamental laser power densities. The doubly resonant technique in an external cavity is that the two fundamental lights should be frequency resonant with the external cavity simultaneously. In the application, the laser power in cavity will be amplified and the waist radius in cavity will be controlled, thereby improving the conversion efficiency of SFG.
     In this thesis, the example treated here is589nm generation by mixing938nm and1583nm fundamental lights. The basic theories of SFG in a doubly resonant external cavity were briefly analyzed, the phase matching angle and effective nonlinear coefficient of nonlinear cry stral were calculated, the mode matching and impedance matching in the process of coupling a laser beam to external cavity were detailedly analyzed. Then we introduce our works mainly around the serial locking of the sum-frequency system, the optimization of external cavity parameters and the wavelength tuning, frequency locking of sum-frequency output. The key parts contain following aspects:
     1. The serial locking of the sum-frequency system based on doubly resonant external cavity have been studied theoretically and experimentally. First, the common frequency locking techniques were compared. The Hansch-Couillaud (HC) frequency locking technique was selected for achieving the serial locking of the sum-frequency system based on doubly resonant external cavity. Then the HC frequency locking schemes based on a single KTP crystal and diffusion bonded KTP crystals were analyzed. The results show that two orthogonal linearly polarized components are seriously departed in a single KTP crystal and are not resonant with the external cavity simultaneously. That makes HC frequency locking schemes can not be used for type II phase matching SFG. The use of diffusion bonded KTP crystals (or periodically poled crystal) can overcome this drawback. In experiment, the cavity mode frequency of bow-tie cavity was locked the frequency of938nm laser firstly, and then the frequency of1583nm laser was locked to the cavity mode frequency of bow-tie cavity. The serial locking of three components were realized. In addition, in order to optimize the feedback circuit of the frequency locking system, the design principles of servo system were studied based on the basic control theory. The servo feedback circuit was design by measuring the transfer function of the laser-cavity system and the performance of frequency stabilization was improved.
     2. The cavity parameters of SFG in doubly resonant external cavity have been optimizated theoretically and experimentally. In theory, a theoretical model of SFG in a doubly resonant external cavity is established. The influence of BK factor and cavity enhanced factor on SFG conversion efficiency was analyzed. Then the factors that influence BK factor, the dependent relationship of BK factor and cavity structure parameters were detailed studied. Similarly, the factors that influence enhancement factors, the dependent relationship of enhancement factors and the reflectivities of the input couplers were detailed studied. Thereby the cavity structure parameters and the reflectivities of the input couplers were optimized by computational simulation and the conversion efficiency of SFG was improved. In experiment, the continuous-wave589nm emission with an output power of larger than0.2W has been obtained by mixing the938nm and1583nm fundamental lights in a bowtie-configured cavity containing a PPLN crystal and using the optimum cavity parameters that obtained by previous theoretical calculations. The experimental results and the prediction agree well considering the imperfect mode matching and reflection losses of cavity mirror and PPLN crystal.
     3. The wavelength tuning, frequency locking and parameter measurement of sum-frequency output generated in a doubly resonant external cavity have been studied theoretically and experimentally. First, the frequency scanning is analyzed theoretically when doubly resonant external cavity system is serially locked. In order to lock the frequency of sum-frequency output to reference frequency, the direct absorption spectrum and saturated fluorescence spectrum produced by leading the sum-frequency output to the gas cell was studied in detail. In experiment, a scanning signal was added to the port of frequency modulation of938nm laser source with large tuning range. The frequency of sum-frequency output can be scanned as soon as we scan the938nm frequency. The linewidth of sum-frequency output was measured by scanning the cavity length of a high-finesse F-P cavity. The sodium absorption spectrum and saturated fluorescence spectrum at different temperatures were measured by the design of the temperature control device. The frequency locking of589nm sum-frequency output to sodium D2a line was realize using wavelength modulation frequency locking technique. Finally, the variation of error signal with frequency locking was measured and was compared with the variation of error signal without frequency locking. The results show that the maximum scanning range of589nm frequency is about2.2GHz, the linewidth is7MHz. When the frequency of589nm sum-frequency output is locked to sodium D2a line, the frequency stability is improved from400MHz to4MHz.
     The creative works are as follows:
     1. The sum-frequency in doubly resonant external cavity system is studied in detail. When the fundamental beam is fixed, the factors that influence the SFG conversion efficiency is analyed. The optimum BK factor can be obtained by optimizing the cavity length parameters, the perfect impedance matching can be achived and the cavity enhanced factor can be improved by optimizing the reflectivities of the input couplers, thereby improving the SFG conversion efficiency
     2. The impact of walk-off effect of two orthogonal linearly polarized components in a single crystal on HC frequency locking technique is analyzed. This impact can be eliminated by using bonded crystal or periodically poled crystal. Therefore the type II phase matching SFG can be achieved in the doubly resonant external cavity based on HC frequency locking technique.
     3. The phase correlated locking of a doubly resonant external cavity are realized based on HC frequency locking technique. The cavity mode frequency of bow-tie cavity is locked the frequency of938nm laser firstly, and then the frequency of1583nm laser is locked to the cavity mode frequency of bow-tie cavity, thereby two fundamental beams resonant with the external cavity simultaneously.
     4. The wavelength tuning of sum-frequency output is achived when doubly resonant external cavity system is serially locked. The sum-frequency output is tuned as soon as tuning the frequency of the master laser
     5. The589nm sum-frequency output is generated by mixing938nm and1583nm fundamental lights in a doubly resonant external cavity. The1583nm laser source is a fiber laser, the938nm laser source is a semiconductor laser and the nonlinear crystal is PPLN. The sum-frequency conversion efficiency is42.8%
引文
[1.1]T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature,1960,187,493-494
    [1.2]P. A. Franken, A. E. Hill, C. W. Peter and G. Weinreich, Generation of Optical Harmonics, Phys. Rev. Lett.1961,7,118-119
    [1.3]王长青,沈德元,卢建仁,邵宗书,蒋民华,激光二极管泵浦的1.34 μm及其腔内倍频红光Nd:YVO4激光器,中国激光,1997,A24,577-580
    [1.4]张恒利,竺乃宜,杨乾锁,何京良,侯玮,许祖彦,LD泵浦的Nd:YVO4晶体KTP腔内倍频红光激光器,光子学报,2000,29,470-473
    [1.5]Y. Inoue, S. Konno, T. Kojima, S. Fujikawa, High-power Red Beam Generation by Frequency-Doubling of a Nd:YAG Laser, IEEE J Quantum Electron,1999,35, 1737-1740
    [1.6]B. J. Le Garrec, G. J. Raze, P. Y. Thro and M. Gilbert, High-Average-Power Diode-Array-Pumped Frequency-Doubled YAG Laser, Opt. Let.1996,21, 1990-1992
    [1.7]S. Konno, T.Kojima, S. Fujikawa and K.Yasui, High-Brightness 138W Green Laser Based on an Intracavity-Frequency-Doubled Diode-Side-Pumped Q-Switched Nd:YAG Laser, Opt. Lett.2000,25,105-107
    [1.8]姜东升,赵鸿,王建军,赵海霞,周寿恒,平均功率达68W的LD抽运倍频Nd:YAG激光器,中国激光,2004,31,641-645
    [1.9]M. Pierrou and F. Laurell, Generation of 740mW of Blue Light by Intra-Cavity Frequency Doubling with a First-Order Quasi-Phase-Matched KTP Crystal, Opt. Lett.1999,24,205-208
    [1.10]何淑芳,霍玉晶,刘伟仁,激光二极管抽运的全固态457nm深蓝激光器,光学学报,2002,22,980-982
    [1.11]A. Fix and G. Ehret, intracavity frequency mixing in pulsed optical parametric oscillation for the efficient generation of continuously tunable ultraviolet radiation, Appl. Phys. B,1998,67,331-338
    [1.12]冯衍,毕勇,张鸿博,姚爱芸,王桂玲,林学春,汪家升,许祖彦,朱镛,陈创天,3W全固态355nm Nd:YAG激光器,中国激光,2002,A29,766
    [1.13]D. A. Richter, N. S. Higdon and W. D. Marsh, Tunable UV Generation with a Frequency-Mixed Type Ⅱ OPO, Aerospace Conference Proceeding,2000,3, 35-41
    [1.14]J. R. Gao, H. Wang, M. Q. Huang, C. D. Xie, K. C. Peng, Z. G. Yu, C. Q. Ma, and X. N. Wang, Intracavity frequency-doubled and stabilized cw ring Nd:YAG laser with a pair of KTP crystals, Appl. Opt,1995,34,1519-1522
    [1.15]王海波,马艳,翟泽辉,郜江瑞,彭堃墀,LD端面抽运1.5W单频稳频绿光激光器,中国激光,2002,29,119-122
    [1.16]Y. H. Zheng, H. D. Lu, F.Q. Li, K. S. Zhang, and K. C. Peng, Four watt long-term stable intracavity frequency-doubling Nd:YVO4 laser of single-frequency operation pumped by a fiber-coupled laser diode, Appl. Opt.2007,46,5336-5339
    [1.17]常冬霞,刘侠,王宇,葛青,贾晓军,彭堃墀,连续波Nd:YVO4/LBO稳频倍频红光全固态激光器,中国激光,2008,35,323—327
    [1.18]A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, and J. Ye, Quantum-Noise-Limited Optical Frequency Comb Spectroscopy, Phys. Rev. Lett. 2011,107,233002
    [1.19]K. Sugiyama, S. Kawajiri, N. Yabu, K. Matsumoto and M. Kitano, Sum-Frequency Mixing of Radiation from Two Extended-Cavity Laser Diodes Using a Doubly Resonant External Cavity for Laser Cooling of Trapped Ytterbium Ions, Appl. Opt.2010,49,5510-5516
    [1.20]I. Courtillot, A. Ouessada, R. P. Kovacich, J.-J. Zondy, A. Landragin, A. Clairon and P. Lemonde, Efficient Cooling and Trapping of Strontium Atoms, Opt. Lett. 2003,28,468-470
    [1.21]D. Jaque, J. J. Romero, and J. Garcia Sole, Intracavity Second Harmonic Generation in the Green from a Diode-End-Pumped Nd3+:Ca3Ga2Ge3O12 Laser Garnet Crystal, J. Appl. Phys.2002,92,3436-3442
    [1.22]H. Gunter, B. Bernd, D. Friedhelm, H. Petra, H. Peter, K. Uwe and V. Herrmann, RGB Laser for Projection Displays, Proceedings of SPIE,2000,3954-3965
    [1.23]M. Abe, K. Takahata, and H. Sasada, Sub-Doppler Resolution 3.4μm Spectrometer with an Efficient Difference-Frequency-Generation Source, Opt. Lett. 2009,34,1744-1746
    [1.24]Y. Feng, S. Huang, A. Shirakawa, and K. I. Ueda,589nm Light Source Based on Raman Fiber Laser, Japanese Journal of Applied Physics 2004,43,722-724
    [1.25]C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond and R. Q. Fugate,50W CW Single Frequency 589-nm FASOR, Advanced Solid-State Photonics,2005,698-702
    [1.26]耿爱丛,薄勇,毕勇,孙志培,杨晓东,鲁远甫,陈亚辉,郭林,王桂玲,崔大复,许祖彦,V型腔腔内和频产生3W连续波589nm黄光激光器,物理学报,2006,55,5527-5531
    [1.27]R. L. Jepsen, Harmonic Generation and Frequency Mixing in Ferromagnetic Insulators, J. Appl. Phys.1961,32,2627-2630
    [1.28]J. A. Giordmine, Mixing of Light Beams in Crystals. Phys. Rev. Lett.1962,8, 19-20
    [1.29]P. D. Maker, R. W. Terhune, M. Nisenoff and C. M. Savage, Effects of Dispersion and Focusing on the Production of Optical Harmonics, Phys. Rev. Lett.1962,8, 21-22
    [1.30]J. E. Midwinter, J. W. Brit, the Effects of Phase Matching Method and of Uniaxial Crystal Symmetry on the Polar Distribution of Second-Order Nonlinear Optical Polarization, J. Appl. Phys,1965,16,1135-1142
    [1.31]M. V. Hobden, Phase-Matched Second-Harmonic Generation in Biaxial Crystals, J. Appl. Phys,1967,38,4365-4372
    [1.32]H. Ito, H. Naito, H. Inaba, New Phase-Matchable Nonlinear Optical Crystals of the Formate Family, IEEE J Quantum Electron,1974,10,247-252
    [1.33]H. Ito, H. Naito, H. Inaba, Generalized Study on Angular Dependence of Induced Second-Order Nonlinear Optical Polarizations and Phase Matching in Biaxial Crystals, J. Appl. Phys,1975,46,3392-3398
    [1.34]J. Q. Yao, T. S. Fahlen, Caculations of Optimum Phase Match Parameters for the Biaxial Crystal KTiOPO4J, Appl. Phys,1984,55,65-68
    [1.35]J. Q. Yao, W. D. Sheng, W. Q. Shi, Accurate Calculation of the Optimum Phase-Matching Parameters in Three-Wave Interactions with Biaxial Nonlinear-Optical Crystals, J. Opt. Soc. Am. B,1992,9,891-902
    [1.36]N. Bloembergen, Nonlinear Optics:a Lecture Note and Reprint Volun, W. A. Benjamin,1965,229
    [1.37]R. Masse, J. C. Grenier, Bull. Soc. Fr. Mineral. Gristtallogr.1971,94,437-439
    [1.38]吴以成,陈创天,使用基团理论计算KB5O8·4H2O晶体的倍频系数,物理学报,1986,19,1-6
    [1.39]陈天创,吴柏昌,江爱栋,中国科学(B),1984,7,598
    [1.40]C. T. Chen, Y. C Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li and S. J. Lin, New Nonlinear Optical Crystal:LiB3O5, J. Opt. Soc, Am,1989, B6,4,616-621
    [1.41]J. A. Akmstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Interaction Between Light Wave in a Nonlinear Dielectric, Phys. Rev.1962,127,1981-1939
    [1.42]B. F. Levine, C. G. Bethea and R. A. Logan, Phase-matched Second Harmonic Generation in a Liquid-Filled Waveguide, Appl. Phys. Lett,1975,26,375-377
    [1.43]K. Nassau, H. J. Levinstein, Ferroelectric Behavior of Lithium Niobate, Appl. Phys. Lett,1965,7,69-70
    [1.44]L. L. Pendergrass, Ferroelectric Microdomain Reversal at Room Temperature in Lithium Niobate, J. Appl. Phys.1987,62,231-236
    [1.45]M. Yamada, N. Nada, M. Saitoh and K. Watanabe, First-Order Quasi-Phase Matched LiNbO3 Waveguide Periodically Poled by Applying an External Field for Efficient Field Blue Second-Harmonic Generation, Appl. Phys. Lett.1993,62,435
    [1.46]J. Hellestrom, V. Pasiskevicius, H. Karlsson and F. Laurell, High-Power Optical Parametric Oscillation in Large-Aperture Periodically Poled KTiOPO4, Opt. Lett. 2000,25,173-175
    [1.47]T. Baer, M. S. Keirstead. Intracavity Doubling of a Nd:YAG Laser pumped by a Laser Diode Array, Post-Deadline Papers. Conf Lasers Electro-Opat., Soc. Amer Washington DC,1985, paper ThZZI
    [1.48]W. J. Kozlovsky, C. D. Nabor and R. L. Byer, Second Harmonic Generation of a CW Diode-Pumped Nd:YAG Laser Using an Externally Resonant Cavity, Opt. Lett.1988,13
    [1.49]B. J. Le Garrec, G. J. Raze, P. Y. Thro and M. Gilbert, High-Average-Power Diode-Array Pumped Frequency-Doubled YAG Laser, Opt. Lett.1996,21, 1991-1992 B.
    [1.50]R. J. St. Pierre, G. W. Holleman, M. Valley, H. Irrjeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, Active Tracker Laser (ATLAS), IEEE J. Sel. Top. Quantum Electron, 1997,3,64-70
    [1.51]Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime,100-W Class Diode-Pumped Nd:YAG MOPA System with a Double-Stage Relay-Optics Scheme, Opt. Commun,1999,170,275-280
    [1.52]S. Yamamoto, Y. Koyata, N. Pavel, Y. Hirano, Advanced High-Power Lasers, PorcSPIE,1999,3889,1-5
    [1.53]H. Moosmuller, J. D. Vance, Sum-Frequency Generation of Continuous-Wave Sodium D2 Resonance Radiation, Optical Letters,1997,22,1135-1137.
    [1.54]C. B. Joshua, A. D. Craig, W. G. Brent, D. H. Paul, T. M. Gerald, and M. T. John, 20W of Continuous Cave Sodium D2 Resonance Radiation from Sum Frequency Generation with Injection Locked Lasers, Opt. Lett.,2003,28,2219-2221.
    [1.55]A. D. Craig, D. H. Paul, T. M. Gerald, M. T. John, E. P. Joseph, D. D. Jack and Q. F. Robert,50-W CW Single Frequency 589-nm FASOR, Advanced Solid-State Photonics 2005,698-702
    [1.56]E. Mimoun, L. D. Sarlo, J.-J. Zondy, J. Dalibard and F. Gerbier, Solid-State Laser System for Laser Cooling of Sodium, Applied Physics B 2010,99,31-40
    [1.57]E. Mimoun, L. D. Sarlo, J.-J. Zondy, J. Dalibard and F. Gerbier, Sum-Frequency Generration of 589nm Light with Near-Unit Efficiency, Opt. Express 2008,16, 18684-18690.
    [1.58]任国光,地基激光反卫的发展现状与大气补偿实验,激光与红外,2007,37,3-9
    [1.59]贾富强,卜轶坤,郑权,薛庆华,谭成桥,LD泵浦腔内和频连续589nm黄光激光器,激光与红外,2004,34,439-441
    [1.60]梁兴波,苑利钢,姜东升,王建军,赵书云,10.5W准连续波589nm黄光激光器,激光与红外,2008,38,876-878
    [1.61]刘东,鲁燕华,吗毅,张雷,王卫民,二极管泵浦全固态589nm脉冲激光器,强激光与粒子束,2008,20,1625-1628
    [1.62]S. Xie, Y. Bo, J. Xu, Y. Shen, P. Wang, Z. Wang, F. Yang, Q. Peng, D. Cui, J. Zhang, and Z. Xu, A 7.5W Quasi-Continuous-Wave Sodium D2 Laser Generated from Single-Pass Sum-Frequency Generation in LBO Crystal, Applied Phyics B 2011,102,781-787
    [1.63]J. W. Dawson, R. Beach, A. Brobshoff, Z. Liao, D. M.Pennington, S. Payne, L. Taylor, W. Hackenberg, and D.Bonaccini,938nm Nd-doped High Power Cladding Pumped Fiber Amplifier, Advanced Solid-State Photonics 18th Topical Meeting and Tabletop Exhibit,2003, (San Antonio)
    [1.64]Y. Feng, L. R. Taylor and D. B. Calia,25 W Raman-Fiber-Amplifier-Based 589 nm Laser for Laser Guide Star, Optics Express 2009,17,19021-19026
    [1.65]L. R. Taylor, Y. Feng and D. B. Calia,50W CW Visible Laser Source at 589nm Obtained via Frequency Doubling of Three Coherently Combined Narrow-Band Raman Fibre Amplifiers, Optics Express 2010,18,8540-8
    [1.66]http://www.wipm.cas.cn/xwzx/kydt/201011/t20101129_3034162.html,实现高空钠激光导星成像,2010
    [1.67]王锋,叶一东,鲁燕华,颜宏,何丽,廖原,钠激光导星的共孔径发射接收与谱线匹配技术,强激光与粒子束,2010,22,1829-1833
    [1.68]Y. Kaneda and S. Kubota, Continuous-Wave 355-nm Laser Source Based on Doubly Resonant Sum-Frequency Mixing in an External Resonator, Optics Letters 1995,20,2204-2206
    [1.69]Y. Kaneda and S. Kubota, CW 355 nm Generation by Doubly-Resonant Sum-Frequency Mixing in an External Resonator, Advanced Solid-State Lasers 1996,1,352-355
    [1.70]Y. Kaneda and S. Kubota, Theoretical Treatment, Simulation, and Experiments of Doubly Resonant Sum-Frequency Mixing in an External Resonator, Applied Optics 1997,36,7766-7775
    [1.71]H. Kumagai, Y. Asakawa, T. Fujii, K. Midorikawa and M. Obara, High Power Deep UV CW Coherent Light Source for Laser Cooling of Silicon Atoms, RIKEN Review:Focus on Coherent Science,2001,3-5
    [1.72]H. Kumagai, Fine Frequency Tuning in Sum Frequency Generation of Continuous Wave Single Frequency Coherent Light at 252 nm with Dual Wavelength Enhancement, Optics Letters 2007,32,62-64
    [2.1]陈纲,廖理几,郝伟,晶体物理学基础,科学出版社,2007,376
    [2.2]N. Bloembergen, Nolinear Optics, W. A. Benjamin. Inc.1977
    [2.3]Y. S. Shen, The Principles of Nonlinear Optics, New York, John Wiley & Sons. Inc,1984
    [2.4]J. M. Manley, H. E. Rowe, the Manley-Rowe Relations, Proc, IRE,1959,47,2115
    [2.5]G. D. Boyd and D. A. Kleinman, Parametric Interaction of Focused Gaussian Light Beams, Journal of Applied Physics,1968,42,3597-3639
    [2.6]E. Mimoun, L. D. Sarlo, J.-J. Zondy, J. Dalibard and F. Gerbier, Solid-state Laser System for Laser Cooling of Sodium, Applied Physics B,2009,99,31-40
    [2.7]N. Bloembergen, Nonlinear Optics:a Lecture Note and Reprint Volun, W. A. Benjamin,1965,229
    [2.8]姚建铨,徐德刚,全固态激光及非线性光学频率变换技术,科学出版社,2007,666
    [2.9]A. Yariv, P. Yeh, Optical Waves in Crystals, New York, John Wiley & Sons. Inc, 1984
    [2.10]范琦康,吴存恺,毛少卿,非线性光学,江苏科学技术出版社,1988
    [2.11]李家泽,朱宝亮,魏光辉,晶体光学,北京理工大学出版社,1988
    [2.12]M. V. Hobden, Phase-Matched Second-Harmonic Generation in Biaxial Crystals, J. Appl. Phys,1967,38,4365-4372
    [2.13]J. A. Akmstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Interaction Between Light Wave in a Nonlinear Dielectric, Phys. Rev.1962,127,1981-1939
    [2.14]L. E. Myers, G. D. Miller, R. C. Eckardart, Quasi-Phase-Matched 1.064μ m-Pumped Optical Parametric Oscillator in Bulk Periodically Poled LiNbO3, Opt. Lett.1995,20,52-45
    [2.15]H. Ito, H. Naito, H. Inaba, New Phase-Matchable Nonlinear Optical Crystals of the Formate Family, IEEE J Quantum Electron,1974,10,247-252
    [2.16]H. Ito, H. Naito, H. Inaba, Generalized Study on Angular Dependence of Induced Second-Order Nonlinear Optical Polarizations and Phase Matching in Biaxial Crystals, J. Appl. Phys,1975,46,3392-3398
    [2.17]谢绳武,郭嘉荣,赵家驹,沈利,双轴晶体中三波相互作用时的最佳相位匹配问题,光学学报,1983,3,697-701
    [2.18]王恭明,光学学报,1985,5,416
    [2.19]谢绳武,上海交通大学学报,1984,1,39
    [2.20]任江文,邵宗书,光学学报,1989,9,145
    [2.21]尹鑫,双轴晶体有效倍频系数的计算,中国激光,1991,18,156-160
    [2.22]J. Q. Yao, T. S. Fahlen, Caculations of Optimum Phase Match Parameters for the Biaxial Crystal KTiOPO4J, Appl. Phys,1984,55,65-68
    [2.23]J. Q. Yao, W. D. Sheng, W. Q. Shi, Accurate Calculation of the Optimum Phase-Matching Parameters in Three-Wave Interactions with Biaxial Nonlinear-Optical Crystals, J. Opt. Soc. Am. B,1992,9,891-902
    [2.24]F. C. Zumsteg, J. C. Bierlein, T. E. Gier, KxRb1-xTiOPO4:a New Nonlinear Optical Material, J. Appl. Phys,1976,47,4980-4985
    [2.25]D. Z. Shen, C. E. Huang, a New Nonlinear Optical Crystal KTP, Prog Crystal Growth Characterization,1985,11,269
    [2.26]Y. G. Liu, B. Xu, J. R. Han, X.Y. Liu and M. H. Jiang, The Growth of KTiOPO4 Crystals for High Efficiency SHG Devices and Its Main Properties, Chinese Journal of Lasers,1986, A13,438
    [2.27]吴以成,陈创天,使用基团理论计算KB5O8·4H2O晶体的倍频系数,物理学报,1986,19,1-6
    [2.28]陈天创,吴柏昌,江爱栋,中国科学(B),1984,7,598
    [3.1]J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore and J. M. Telle,20W of Continuous Wave Sodium D2 Resonance Radiation from Sum Frequency Generation with Injection Locked Lasers, Optics Letters,2003,28, 2219-2221
    [3.2]C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond and R. Q. Fugate,50-W CW Single Frequency 589-nm FASOR, Advanced Solid-State Photonics,2005,698-702
    [3.3]Y. Feng, S. Huang, A. Shirakawa, and K. I. Ueda,589nm Light Source Based on Raman Fiber Laser, Japanese Journal of Applied Physics,2004,43
    [3.4]Y. Feng, L. R. Taylor, and D. B. Calia,25 W Raman-Fiber-Amplifier-Based 589 nm Laser for Laser Guide Star, Opt. Express,2009,17
    [3.5]L. R. Taylor, Y. Feng, and D. B. Calia, "50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers," Opt. Express,2010,18
    [3.6]耿爱丛,薄勇,毕勇,孙志培,杨晓冬,鲁远甫,陈亚辉,郭林,王桂玲,崔大复,许祖彦,V型腔腔内和频产生3W连续波589nm黄光激光器,物理学报,2006,55
    [3.7]贾富强,卜轶坤,郑权,薛庆华,谭成桥,LD泵浦腔内和频连续589nm黄光激光器,激光与红外,2004,34
    [3.8]梁兴波,苑利钢,姜东升,王建军,赵书云,10.5W准连续波589nm黄光激光器,激光与红外,2008,38
    [3.9]刘东,鲁燕华,吗毅,张雷,王卫民,二极管泵浦全固态589nm脉冲激光器,强激光与粒子束,2008,20
    [3.10]S. Xie, Y. Bo, J. Xu, Y. Shen, P. Wang, Z. Wang, F. Yang, Q. Peng, D. Cui, J. Zhang, Z. Xu, A 7.5W Quasi-Continuous-Wave Sodium D2 Laser Generated from Single-Pass Sum-Frequency Generation in LBO Crystal, Appl. Phys. B,2011,102, 781-787
    [3.11]熊小华,刀口法测量高斯光束腰斑大小实验设计,南昌航空工业学院学报,2000,14,73-75
    [3.12]Y. Kaneda and S. Kubota, Theoretical Treatment, Simulation, and Experiments of Doubly Resonant Sum-Frequency Mixing in an External Resonator, Applied Optics 1997,36,7766-7775
    [3.13]Xiaojuan Yan, Gang Zhao, Zhixin Li, Wei Tan, Xiaofang Fu, Yongzhi Zhang, Weiguang Ma, Lei Zhang, Lei Dong, Wangbao Yin, Suotang Jia, Theoretical Optimization of Cavity Parameters and Experiments of Sum-Frequency Generation in Doubly Resonant External Cavity, Janpanese Journal of Applied Physics,已投出
    [4.1]E. Mimoun, L. D. Sarlo, J.-J. Zondy, J. Dalibard and F. Gerbier, Solid-State Laser System for Laser Cooling of Sodium, Applied Physics B 2009,99,31-40
    [4.2]E. Mimoun, L. D. Sarlo, J.-J. Zondy, J. Dalibard and F. Gerbier, Sum-Frequency Generation of 589nm Light with Near-Unit Efficiency, Opt. Experss.2008,16, 18684-18691
    [4.3]H. Kumagai, Fine Frequency Tuning in Sum-Frequency Generation of Continuous Wave Single Frequency Coherent Light at 252 nm with Dual Wavelength Enhancement, Optics Letters 2007,32,62-64
    [4.4]H. Kumagai, Y. Asakawa, T. Fujii, K. Midorikawa and M. Obara, High power deep UV cw coherent light source for laser cooling of silicon atoms, RIKEN Review:Focus on Coherent Science,2001,3-5
    [4.5]Y. Kaneda and S. Kubota, Continuous-Wave 355-nm Laser Source Based on Doubly Resonant Sum-Frequency Mixing in an External Resonator, Optics Letters, 1995,20,2204-2206
    [4.6]Y. Kaneda and S. Kubota, CW 355 nm Generation by Doubly-Resonant Sum-Frequency Mixing in an External Resonator, Advanced Solid-State Lasers, 1996,1,352-355
    [4.7]J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore and J. M. Telle,20W of Continuous Wave Sodium D2 Resonance Radiation from Sum Frequency Generation with Injection Locked Lasers, Optics Letters,2003,28, 2219-2221
    [4.8]C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond and R. Q. Fugate,50-W CW Single Frequency 589-nm FASOR, Advanced Solid-State Photonics,2005,698-702
    [4.9]K. Sugiyama, S. Kawajiri, N. Yabu, K. Matsumoto and M. Kitano, Sum-Frequency Mixing of Radiation from Two Extended-Cavity Laser Diodes Using a Doubly Resonant External Cavity for Laser Cooling of Trapped Ytterbium Ions, Appl. Opt.2010,495510-5516
    [4.10]R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, Laser Phase and Frequency Stabilization Using an Optical Resonator, Applied Physics B Photophysics and Laser Chemistry,1983,31,97-105
    [4.11]E. D. Black, an Introduction to Pound-Drever-Hall Laser Frequency Stabilization, American Association of Physics Teachers,2000,69,79-87
    [4.12]T. W. Hansch and B. Couillaud, Laser Frequency Stabilization by Polarization Spectroscopy of a Reflecting Reference Cavity, Optics Communications,1980,35, 441-444
    [4.13]J. M. Boon-Engering, W. E. van der Veer, E. A. J. M. Bente and W. Hogervorst, Stabilization of an Optical Cavity Containing a Birefringent Element, Optics Communications,1997,285-288
    [4.14]A. Banerjee, D. Das, U. D. Rapol, and V. Natarajan. Frequency Locking of Tunable Diode Lasers to a Stabilized Ring-Cavity Resonator, Applied Optics, 2004,43,2528-2531
    [4.15]D. A. Shaddock, M. B. Gray, and D. E. McClelland. Frequency Locking a Laser to an Optical Cavity by Use of Spatial Mode Interference, Optics Letters,1999,24, 1499-1501
    [4.16]R. L. Barger, M. S. Sorem and J. L. Hall. Frequency Stabilization of a CW Dye Laser, Applied Physics Letters,1973,22,573-575
    [4.17]崔前进,徐一汀,宗楠,鲁远甫,程贤坤,彭钦军,薄勇,崔大复,许祖彦,物理学报,2009,58,3
    [4.18]刘晶,谢常德,廉毅敏,郜江瑞,彭堃墀,双KTP晶体倍频过程的实验研究,光学学报,1991,11,409-411
    [4.19]M. Gharavi, G. Lehnasch, S. G. Buckley,20012nd Joint Meeting of the US Sections of the Combustion Institute March
    [4.20]李志新,张永智,闫晓娟,王乐,胡志裕,马维光,张雷,尹王保,贾锁堂,基于非线性晶体及Hansch-Couillaud技术的激光环形腔频率锁定技术研究,光学学报,2011,31,0714004
    [4.21]闫晓娟,李志新,张永志,王乐,胡志裕,马维光,张雷,尹王保,贾锁堂,基于KTP键合晶体的Hansch-Couillaud双波长外腔频率锁定机理,物理学报,2011,60,104210
    [4.22]J. L. Hall, M. S. Taubman and J. Ye, Laser Stabilization
    [5.1]G. D. Boyd and D. A. Kleinman, Parametric Interaction of Focused Gaussian Light Beams, Journal of Applied Physics,1968,42,3597-3639
    [5.2]H. Moosmuller, J. D. Vance, Sum-Frequency Generation of Continuous-Wave Sodium D2 Resonance Radiation, Optical Letters,1997,22,1135-1137
    [5.3]E. Mimoun, L. D. Sarlo, J.-J. Zondy, J. Dalibard and F. Gerbier, Solid-state Laser System for Laser Cooling of Sodium, Applied Physics B,2009,99,31-40
    [5.4]E. Mimoun, L. D. Sarlo, J.-J. Zondy, J. Dalibard and F. Gerbier, Sum-Frequency Generation of 589 nm Light with Near-unit Efficiency, Optics Express 2008,16, 18684-18691
    [5.5]Y. Kaneda and S. Kubota, Theoretical Treatment, Simulation, and Experiments of Doubly Resonant Sum-Frequency Mixing in an External Resonator, Applied Optics,1997,36,7766-7775
    [5.6]Y. Kaneda and S. Kubota, Continuous-Wave 355-nm Laser Source based on doubly resonant sum-frequency mixing in an external resonator,1995, Optics Letters 20,2204-2206
    [5.7]Y. Kaneda and S. Kubota, CW 355 nm Generation by Doubly-Resonant Sum-Frequency Mixing in an External Resonator, Advanced Solid-State Lasers, 1996,1,352-355
    [5.8]闫晓娟,李志新,张永智,谭巍,付小芳,马维光,张雷,尹王保,贾锁堂,双波长外腔共振和频中Boyd-Kleinman因子优化的理论研究,量子光学学报,2012,18
    [5.9]Xiaojuan Yan, Gang Zhao, Zhixin Li, Wei Tan, Xiaofang Fu, Yongzhi Zhang, Weiguang Ma, Lei Zhang, Lei Dong, Wangbao Yin, Suotang Jia, Theoretical Optimization of Cavity Parameters and Experiments of Sum-Frequency Generation in Doubly Resonant External Cavity, Janpanese Journal of Applied Physics,已投出
    [5.10]K. Sugiyama, S. Kawajiri, N. Yabu, K. Matsumoto and M. Kitano, Sum-Frequency Mixing of Radiation from Two Extended-Cavity Laser Diodes Using a Doubly Resonant External Cavity for Laser Cooling of Trapped Ytterbium Ions, Appl. Opt.2010,49 5510-5516
    [5.11]J. Ye, Ultrasensitive High Resolution Laser Spectroscopy and Its Application to Optical Frequency Standards, Ph. D dissertation, Colorado University,1997
    [5.12]http://www.as-photonics.com/snlo
    [5.13]姚建铨,徐德刚,全固态激光及非线性光学频率变换技术,科学出版社,2007,715
    [5.14]T. W. Hansch and B. Couillaud, Laser Frequency Stabilization by Polarization Spectroscopy of a Reflecting Reference Cavity, Optics Communications,1980,35, 441-444
    [5.15]J. M. Boon-Engering, W. E. van der Veer, E. A. J. M. Bente and W. Hogervorst, Stabilization of an Optical Cavity Containing a Birefringent Element, Optics Communications,1997,285-288
    [6.1]阚瑞峰,刘文清,张玉钧,刘建国,董凤忠,王敏,高山虎,陈东,基于可调谐激光吸收光谱的大气甲烷监测仪,光学学报,2006,26,67-70
    [6.2]阳华,邱仁和,伍浩成,吴建国,用于光通信的可调谐激光光源,光通信技术,2001,25
    [6.3]B. L. Fawcett, A. M. Parkes, D. E. Shallcross and A. J. Orr-Ewing, Trace Detection of Methane Using Continuous Wave Cavity Ring-Down Spectroscopy at 1.65μm, Phys. Chem. Chem. Phys,2002,4,5960-5965
    [6.4]杨小燕杨继庆,半导体激光器的医学应用,医疗卫生装备,2005,2,21-23
    [6.5]郑耀辉,张宽收,顾世杰,李凤琴,彭堃墀,单频可调谐激光器,发明专利,专利号200510012831.1,2006
    [6.6]M. Akhrarov, B. I. Vasil'ev, A. Z. Grasyuk and A. B. Yastrebkov, Continuous Tuning of the Frequency of an NH3 Laser within the Gain Profile, Sov. J. Quantum Electron,1983,13,357-360
    [6.7]S. Mujumdar, A. F. Koenderink, T. Sunner, B. C. Buchler, M. Kamp, A. Forchel and V. Sandoghdar, Near-Field Imaging and Frequency Tuning of a High-Q Photonic Crystal Membrane Microcavity, Opt. Express,2007,15,17214-17220
    [6.8]H. Kiroshi, Fine Frequency Tuning in Sum-Frequency Generation of Continuous-Wave Single-Frequency Coherent Light at 252nm with Dual-Wavelength Enhancement, Opt. Lett.2007,32,62-64
    [6.9]郝秀晴,陈根祥,可调谐半导体激光器的发展和应用,光通信技术,2010,11,4-7
    [6.10]王军民,杨炜东,谢常德,闪耀光栅弱反馈GaAlAs单模半导体激光器的频率调谐特性,光学学报,1999,4
    [6.11]H. S. Ashour, Tuning the Lasing Frequency and Reducing the Laser Linewidth of GaAs Semiconductor Laser Using External Oscillating Driving Field, H. Ashour, J. Al-Aqsa Unv.2006,10(S. E.),222-237
    [6.12]马维光,李志新,闫晓娟,尹王保,肖连团,贾锁堂,波长可调谐的双波长外腔共振激光频率转换装置,发明专利,专利号:201010241204.6
    [6.13]X. J. Yan, G. Zhao, Z. X. Li, W. Tan, X. F. Fu, Y. Z. Zhang, W. G. Ma, L. Zhang, L. Dong, W. B. Yin, S. T. Jia, Theoretical Optimization of Cavity Parameters and Experiments of Sum-Frequency Generation in Doubly Resonant External Cavity, Janpanese Journal of Applied Physics,已投出
    [6.14]D. A. Steck, Sodium D line data,2008,31
    [6.15]C. Y. She, J. R. Yu, Doppler-Free Saturation Fluorescence Spectroscopy of Na Atoms for Atmospheric Application, Applide Optics,1995,34,1063-1075
    [6.16]闫晓娟,李志新,张永志,王乐,胡志裕,马维光,张雷,尹王保,贾锁堂,基于KTP键合晶体的Hansch-Couillaud双波长外腔频率锁定机理,物理学报,2011,60,104210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700