用户名: 密码: 验证码:
基于时间序列的复杂脑网络构建与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大脑是由上千亿神经元组成的有机整体,神经元网络是大脑进行信息加工和处理的信息通路,网络中拓扑或节点的改变会导致网络特性发生改变,从而导致大脑的病变。本文从复杂网络角度研究脑网络的构建及其动力学演化机制。
     针对抑郁症等精神疾病无具体病灶的特点,本文首次采用了全脑域、可达大脑深部的磁刺激方案,通过脑电图分析表明该方案能有效改善抑郁状态,为了研究脑网络状态改善的内在机制,获得网络的节点动力学方程和拓扑是研究的前提和基础。对于有病灶区域的癫痫疾病,分析了病灶区切除前后脑电的不同,发现脑电信号的非线性特性存在明显区别;由于脑电信号的非线性分析并不能反映脑网络拓扑的演化特征,而传统的脑网络构建方法由于网络节点数过少难以反映网络结构的复杂性,因而必须探索新的时间序列的复杂网络构建方法。
     由于神经元的动力学方程和神经元网络拓扑是未知的,本文从动力学系统角度出发,提出了仅利用含噪时间序列估计神经元动力学方程和神经元网络拓扑结构的方法。首先利用最小二乘自适应控制方法和压缩传感恢复算法实现了节点的动力学方程估计;然后利用稀疏贝叶斯学习方法辨识无标度网络和小世界网络的拓扑结构,通过仿真表明所提出的方法具有较强鲁棒性和准确性。
     首次提出了混沌时间序列构建复杂网络的直接法,发现构建的Lorenz及R ssler系统的网络拓扑图与它们的混沌吸引子存在形态相似性。分析洛伦兹系统相空间重构方法构建的复杂网络,发现随着嵌入维数的增加平均路径长度逐渐增加、聚类系数逐渐减小。为克服可视图建网方法无法体现时间依赖性的缺陷,提出了局部可视图建网方法,通过分析神经元混沌簇放电时间序列,发现了网络的拓扑和统计特性能反映时间序列随时间的演化特征。
     通过分析睁眼和闭眼情况下脑电信号递归图的确定性,发现了闭眼情况下确定性明显高于睁眼时,并且利用构建的复杂网络同样反映了闭眼情况下的拓扑图规则有序的确定性特征。利用提出的复杂网络构建方法研究癫痫脑电信号,发现从网络拓扑和统计特性上能明显区分癫痫发作和发作间歇期的信号;对强直性阵挛癫痫发作前、中、后的脑电信号分析,发现了滑动局部网络的聚类系数在癫痫发作时显著升高,可以用于强直性发作的预测。
     本文提出的复杂网络拓扑估计方法以及时间序列的复杂网络构造方法能够刻画脑网络的动力学特性,为精神疾病治疗提供了新的思路。
The human brain as an organic whole contains nearly100billion neurons.Neuronal networks is the neural channel of information processing and treatment inthe brain. Networks characteristics will change along with networks topology or nodechange, and the change may lead to brain lesions. This paper investigate dynamicalevolution mechanism of the brain networks in complex networks terms.
     Considering the fact that there is no obvious focus area for depression, a brainnetwork magnetic stimulus scheme, which can act on the whole brain domain and thedeep of cerebrum, was first adopted. This scheme can effectively be used fordepression treatment, which is confirmed by EEG analysis. In order to investigate theinternal mechanism of improvement in the brain networks, it is the premise and basisto obtain dynamical equations of node and topology of networks. For epilepsy withfocus area, we investigated the difference between the brainwave obtained from pre-and post-resection of focus area. The results show that there is significant differencein nonlinear characteristics. However, the nonlinear analysis methods cannot reflectthe brain network topological evolution properties, and there are too few networknodes to reflect the network complexity when using traditional network constructionmethods, therefore it is necessary to explore new networks construction method oftime series.
     Given that neuronal dynamical equations and neuronal networks topology are notyet fully understood. This paper, viewed from dynamical system perspective,proposed a method of estimating neuronal dynamic equations and neuronal networkstopology using only noisy time series. Least squares adaptive control strategy andcompressive sensing are applied to dynamical equations estimation. Sparse Bayesianlearning is proposed to identify the topology of the scale-free network andsmall-world network, and the simulation results show that the strategies have bettereffect of identification and strong robustness to noise.
     This paper first proposed direct method of complex networks construction fromchaotic time series. There are morphological resemblance between networks topologyand chaotic attractor of Lorenz and R ssler system. Lorenz system are used to analyzewhat role did embedding dimension play in networks characteristics. The results showthat average path length increase as does embedding dimension, and cluster coefficient on the contrary. According to the fact that visibility graph method cannotpresent time-dependent statistical characteristics of the complex networks, this paperproposed a local visibility graph method for constructing complex networks from timeseries. The topology and statistical characteristics of the network constructed fromneuronal chaotic bursting can reflect time-evolution of time series.
     According to determinism analysis of recurrence plot for eyes-closed andeyes-open EEG signals, determinism in eyes-closed states is higher than that ofeyes-open. The methodical networks topology constructed from the eyes-closed statesalso reflect the determinism characteristic. By analyzing epileptic brainwave usingproposed complex networks construction method, we found that epileptic seizure isdifferent from seizure-free intervals in network topology and statistical characteristics.Epileptic EEG of before, during and after a tonic-clonic seizure indicate that clustercoefficients of the sliding local networks significantly increased during a seizure, sothis result provides clonic seizure prediction.
     Topology estimation method of complex networks and its construction approachfrom time series can depict dynamical characteristic of brain networks. The ideologyproposed in this paper provides a new way for the treatment of neurological andpsychiatric disease.
引文
[1] Rogawski M A, L scher W. The neurobiology of antiepileptic drugs, NatureReviews Neuroscience,2004,5:553~564.
    [2] Kelly K M, Chung S S. Surgical Treatment for Refractory Epilepsy: Review ofPatient Evaluation and Surgical Options, Epilepsy Research and Treatment,2011,303624.
    [3] Sackeim H A. The definition and meaning of treatment-resistant depression, TheJournal of Clinical Psychiatry,2001,62(16):10~17.
    [4] Fregni F, Thome-Souza S, Bermpohl, F, et al. Antiepileptic effects of repetitivetranscranial magnetic stimulation in patients with cortical malformations: anEEG and clinical study, Stereotact Funct Neurosurg,2005,83:57~62.
    [5] Andrzejak R G, Lehnertz K, Mormann F, et al. Indications of nonlineardeterministic and finite dimensional structures in time series of brain electricalactivity: Dependence on recording region and brain state, Physical Review E,2001,64(6):061907.
    [6] Garcia-Toro M, Pascual_Leone A, Romera M, et al. Prefrontal repetitivetranscranial magnetic stimulation as add on treatment in depression. Journal ofNeurology, Neurosurgery&Psychiatry,2001,71:546~548.
    [7] Avery D H, Holtzheimer P E, Fawaz W, et al. A controlled study of repetitivetranscranial magnetic stimulation in medication-resistant major depression,Biological Psychiatry,2006,59(2):187~194.
    [8] Rosensch ld P M, Engelholm S, Ohlhues L,et al. Photon and proton therapyplanning comparison for malignant glioma based on CT, FDG-PET, DTI-MRIand fiber tracking, Acta Oncologica,2011,50(6):777~783.
    [9] Ungureanu M, Bigan C, Strungaru R. Independent component analysis appliedin biomedical signal processing, Measurement Science Review,2004,4(2):1~8.
    [10] Asaduzzaman K, Reaz M B I, Mohd-Yasin F, et al. A study on discretewavelet-based noise removal from EEG signals, Advances in ExperimentalMedicine and Biology,2010,680(6):593~599.
    [11] Khasawneh N, Fraiwan M. Time frequency analysis for automated sleep stageidentification in fullterm and preterm neonates, Journal of Medical systems,2011,35:693~702.
    [12] Akin M. Comparison of wavelet transform and FFT methods in the analysis ofEEG signals, Journal of Medical Systems,2002,26(3):241~247.
    [13]边洪瑞,王江,韩春晓等.基于复杂度的针刺脑电信号特征提取,物理学报,2011,60(11):118701.
    [14] Luo X L, Wang J, Han C X, et al. Characteristics analysis of acupunctureelectroencephalograph based on mutual information Lempel Ziv complexity,Chinese Physics B,2012,21(2):028701.
    [15] Aftanas L I, Golocheikine S A. Non-linear dynamic complexity of the humanEEG during meditation, Neuroscience Letters,2002,330(2):143~146.
    [16] Aftanas LI, Lotova NV, Koshkarov VI, et al. Non-linear analysis of emotionEEG: calculation of Kolmogorov entropy and the principal Lyapunov exponent,Neuroscience Letters,1997,226(1):13~16.
    [17] Bruhn J, R pcke H, Hoeft A. Approximate entropy as anelectroencephalographic measure of anesthetic drug effect during desfluraneanesthesia, Anesthesiology,2000,92(3):715~726.
    [18] Bruzzo A A, Gesierich B, Santi M,et al. Permutation entropy to detectvigilance changes and preictal states from scalp EEG in epileptic patients. apreliminary study, Neurological Science,2008,29:3~9.
    [19] Escudero J, Abasolo D, Hornero R, et al. Analysis of electroencephalograms inAlzheimer's disease patients with multiscale entropy, PhysiologicalMeasurement,2006,27(11):1091.
    [20] Carmeli C, Knyazeva M G, Innocenti G M, et al. Assessment of EEGsynchronization based on state-space analysis, NeuroImage,2005,25(2):339~354.
    [21] Dauwels J, Vialatte F, Musha T, et al. A comparative study of synchronymeasures for the early diagnosis of Alzheimer's disease based on EEG,NeuroImage,2010,49(1):668~693.
    [22] Vatta F, Bruno P, Inchingolo P. Accuracy of EEG source reconstruction in thepresence of brain lesions: modelling errors and surface electrodes' placement,Biomedical Sciences Instrument,2002,38:423~428.
    [23] Wang Y H, Gotman J. The influence of electrode location errors on EEGdipole source localization with a realistic head model, ClinicalNeurophysiology,2001,112(9):1777~1780.
    [24] Barton M J, Robinson P A, Kumar S, et al. Evaluating the performance ofKalman-filter-based EEG source localization, IEEE Transactions onBiomedical Engineering,2009,56(1):122~136.
    [25] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks,Nature,1998,393(6684):440~442.
    [26] Barabási A L, Albert R. Emergence of scaling in random networks, Science,1999,286(5439):509~512.
    [27]汪小帆,李翔,陈关荣,复杂网络理论及其应用,北京:清华大学出版社,2006.
    [28] Strogatz S H. Exploring complex networks, Nature,2001,410:268~276.
    [29] Newman M E J, Scientific collaboration networks: I Network construction andfundamental results, Physical Review E,2001,64:016131.
    [30] Newman M E J. The structure of scientific collaboration networks, Proc. Natl.Acad. Sci. USA,2001,98:404~409.
    [31] Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolicnetworks, Nature,2000,407(6804):651~654.
    [32] Jeong H, Mason S, Barabási A L, et al. Lethality and centrality in proteinnetworks, Nature,2001,411(6683):41~42.
    [33] Valencia M, Pastor M A, Fernández~Seara M A, et al. Complex modularstructure of large-scale brain networks, CHAOS,2009,19:023119.
    [34] Stam C J. Functional connectivity patterns of human magnetoencephalo-graphic recordings: a ‘small-world’ network?, Neuroscience Letters,2004,355:25~28.
    [35] Albert R, Jeong H, Barabási A L, Diameter of the world-wide web, Nature,1999,401:130~131.
    [36] Barabási A L, Albert R, Jeong H. Scale-free characteristics of random networks:The topology of the world wide web, Physica A,2000,128:9~77.
    [37] Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of theInternet topology, Computer Communications Review,1999,29:251~262.
    [38] Zhou S, Mondragon R J. Accurately modeling the Internet topology, PhysicalReview E,2004,70:066108.
    [39] Cornelis J Stam, Jaap C Reijneveld. Graph theoretical analysis of complexnetworks in the brain, Nonlinear Biomedical Physics.2007,1:3.
    [40] Ma C, Liu H W, Zuo D C, et al. Research on key nodes of wireless sensornetwork based on complex network theory, Journal of Electronics,2011,28(3):396~401.
    [41] Guimera R, Amaral L A N. Modeling the world-wide airport network. TheEuropean Physics Journal B,2004,38:381~385.
    [42] Modha D S, Singh R. Network architecture of the long-distance pathways inthe macaque brain, Proc. Natl. Acad. Sci. USA,2010,107(30):13485~13490.
    [43]方小玲,姜宗来.基于脑电图的大脑功能性网络分析,物理学报,2007,56(12):7330~7339.
    [44] Sporns O, Tononi G, Kotter R. The human connectome: a structuraldescription of the human brain, PLOS Computational Biology,2005,1(4):245~251.
    [45]梁夏,王金辉,贺永.人脑连接组研究:脑结构网络和脑功能网络,科学通报,2010,55(16):1565~1583.
    [46] Song S, Sj str m P J, Reigl M. Highly nonrandom features of synapticconnectivity in local cortical circuits, PLOS Biology,2005,3(3):507~519.
    [47] Silberberg G, Grillner S, LeBeau F E N, et al. Synaptic pathways in neuralmicrocircuits, TREND in Neurosciences,2005,28(10):541~551.
    [48] Gray R T, Fung C K C, Robinson P A. Stability of small-world networks ofneural populations, Neurocomputing,2009,72:1565~1574.
    [49] Bullmore E, Sporns O. Complex brain networks: Graph theoretical analysis ofstructural and functional systems. Nature Reviews Neuroscience,2009,10:186~198.
    [50] Zhou C S, Zemanova L, Zamora G. Hierarchical organization unveiled byfunctional connectivity in complex brain networks, Physical Review Letters,2006,97:238103.
    [51] Chavez M, Valencia M,Navarro V. Functional modularity of backgroundactivities in normal and epileptic brain networks, Physical Review Letters,2010,104:118701.
    [52] Zhang J, Small M. Complex network from pseudoperiodic time series:topology versus dynamics, Physical Review Letters,2006,96(23):238701.
    [53] Zhang J, Sun J F, Luo X D, et al. Characterizing pseudoperiodic time seriesthrough the complex network approach, Physica D,2008,237:2856~2865.
    [54] Marwan N, Dongesa J F, Zou Y, et al. Complex network approach forrecurrence analysis of time series, Physics Letters A,2009,373(46):4246~4254.
    [55] Donner R V, Zou Y, Donges J F, et al. Recurrence networks-a novel paradigmfor nonlinear time series analysis, New Journal of Physics,2010,12(3):033025.
    [56] Xu X K, Zhang J, Michael S. Superfamily phenomena and motifs of networksinduced from time series, Proc. Natl. Acad. Sci. USA,2008105(50):19601.
    [57] Yang Y, Yang H J. Complex network-based time series analysis, Physica A,2008,387:1381~1386.
    [58] Lacasa L, Luque B, Fernando B F, et al. From time series to complex networks:The visibility graph, Proc. Natl. Acad. Sci. USA,2008,105(13):4972-4975.
    [59] Qi J C, Wang, J Y, Wang J B, et al. Visibility graphs for time series containingdifferent components, Fluctuation and Noise Letters,2011,10(4):371~379.
    [60] Shao Z G. Network analysis of human heartbeat dynamics, Applied PhysicsLetters,2010,96:073703.
    [61] Luque B, Lacasa L, Ballesteros F J, et al. Feigenbaum graphs: a complexnetwork perspective of chaos, PLOS ONE,2011,6(9): e22411.
    [62] Luque B, Lacasa L, Ballesteros F J. Horizontal visibility graphs: Exact resultsfor random time series, Physical Review E,2009,80(4):046103.
    [63] Gao Z K, Jin N D. Flow-pattern identification and nonlinear dynamics ofgas-liquid two-phase flow in complex networks, Physical Review E,2009,79(6):066303.
    [64] Gao Z K, Jin N D. Complex network from time series based on phase spacereconstruction, CHAOS,2009,19(3):033137.
    [65] Eades P. A heuristic for graph drawing. Congraessus Numerantium,1984,42:149~160.
    [66] Kamada T, Kawai S. An algorithm for drawing general undirected graphs, Inf.Process. Lett.,1989,31:7~15.
    [67] Milo R, Shen-Orr S S, Itzkovitz S, et al. Network motifs: simple buildingblocks of complex networks, Science,2002,298:824~827.
    [68] Donoho D L. Compressed sensing, IEEE Transactions on Information Theory,2006,52(4):1289~1306.
    [69] Candès E, Romberg J, Tao T. Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information, IEEETransactions on Information Theory,2006,52(2):489~509.
    [70] Candès E. Compressive sampling. In: Proceedings of International Congress ofMathematicians. Madrid, Spain: European Mathematical Society PublishingHouse,2006,1433~1452.
    [71] Baraniuk R G. Compressive sensing, IEEE Signal Processing Magazine,2007,24(4):118~121.
    [72]李树涛,魏丹.压缩传感综述,自动化学报,2009,35(11):1369~1377.
    [73] Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundantdictionaries, IEEE Transactions on Information Theory,2008,54(5):2210~2219.
    [74]孙玉宝,肖亮,韦志辉等.基于Gabor感知多成份字典的图像稀疏表示算法研究,自动化学报,2008,34(11):1379~1387.
    [75] Candès E, Tao T. Decoding by linear programming, IEEE Transactions onInformation Theory,2005,51(12):4203~4215.
    [76] Tropp J A, Gilbert A C. Signal recovery from random measurements viaorthogonal matching pursuit, IEEE Transactions on Information Theory,2007,53(12):4655~4666.
    [77] Ji S H, Xue Y, Carin L. Bayesian compressive sensing, IEEE Transactions onInformation Theory,200856(6):2346~2356.
    [78] Eldar Y C, Mishali M. Robust recovery of signals drom a structured union ofsubspaces, IEEE Transactions on Information Theory,2009,55(11):5302~5316.
    [79] Khajehnejad A, Xu W Y, Avestimehr S, et al. Analyzing weighted L1minimization for sparse recovery with nonuniform sparse models, IEEETransactions on Signal Processing,2011,59(5):1985~2001.
    [80] Fornasier M. Domain decomposition methods for linear inverse problems withsparsity constraints. Inverse Problems,2007,23(6):2505~2526.
    [81] José Bioucas~Dias and Mário Figueiredo, A new TwIST: two-step iterativeshrinkage/thresholding algorithms for image restoration, IEEE Transactions onImage Processing,2007,16(12):2992~3004.
    [82] Cotter S F, Rao B D, Engan K, et al. Sparse solutions to linear inverseproblems with multiple measurement vectors, IEEE Transactions on SignalProcessing,2005,53(9):2477~2488.
    [83] Varadarajan B, Khudanpur S, Tran T. Stepwise optimal subspace pursuit forimproving sparse recovery, IEEE Letters on Signal Processing,2011,18(1):27~30.
    [84] Babacan S D, Molina R, Katsaggelos A K. Bayesian compressive sensingusing laplace priors, IEEE Transactions on Image Processing,2010,19(1):53~64.
    [85] Donoho D. For most large underdetermined systems of linear equations, theminimal ell-1norm solution is also the sparsest solution, Communications onPure and Applied Mathematics,2006,59(6):797~829.
    [86] Bajwa W, Haupt J, Sayeed A, et al. Joint source-channel communication fordistributed estimation in sensor networks, IEEE Transactions on InformationTheory,2007,53(10):3629~3653.
    [87] Mishali M, Eldar Y C. Reduce and boost: Recovering arbitrary sets of jointlysparse vectors, IEEE Transactions on Signal Processing,2008,56(10):4692~4702.
    [88] Oliveri G, Massa A. Bayesian compressive sampling for pattern synthesis withmaximally sparse non-uniform linear arrays, IEEE Transactions on Antennasand Propagation,2011,59(2):467~481.
    [89] Duarte M, Davenport M, Takhar D, et al, Single-pixel imaging via compressivesampling, IEEE Signal Processing Magazine,2008,25(2):83~91.
    [90] Trzasko J, Manduca A, Borisch E. Highly undersampled magnetic resonanceimage reconstruction via homotopic ell-0-minimization, IEEE Transactions onMedical Imaging,2009,28(1):106~121.
    [91] Mishali M, Eldar Y. Blind multi-band signal reconstruction: compressedsensing for analog signals, IEEE Transactions on Signal Processing,2009,57(30):993~1009.
    [92] Budillon A, Evangelista A, Schirinzi G. Three-dimensional SAR focusing frommultipass signals using compressive sampling, IEEE Transactions onGeoscience and Remote Sensing,2011,49(1):488~499.
    [93] Varshney K R, Cetin M, Fisher J W, et al. Sparse representation in structureddictionaries with application to synthetic aperture radar, IEEE Transactions onSignal Processing,2008,56(8):3548~3561.
    [94] Berger C R, Wang Z H, Huang J Z, et al, Application of compressive sensingto sparse channel estimation, IEEE Communications Magazine,2010,48(11):164~174.
    [95] Gross D, Liu Y K, Flammia S T, et al. Quantum state tomography viacompressed sensing, Physical Review Letters,2010,105:150401.
    [96] Shabani A, Kosut R L, Mohseni M, et al. White, efficient measurement ofquantum dynamics via compressive sensing, Physical Review Letters,2011,106:100401.
    [97] Hodgkin A L, Huxley A F, A quantitative description of membrane current andits application to conduction and excitation in nerve, Journal of Physiology,1952,117(4):500~544.
    [98] FitzHugh R. Impulses and physiological states in theoretical models of nervemembrane, Biophys J,1961,1(6):445~466.
    [99] Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission linesimulating nerve axon, Proceedings of the IRE,1962,50(10):2061~2070.
    [100] Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber,Biophysical Journal,1981,35(1):193~213.
    [101] Hindmarsh J L, Rose R M, A model of neuronal bursting using three coupledfirst order differential equations, Proceedings of the Royal Society of London.Series B. Biological Sciences,1984,221(1222):87~102.
    [102] Chay T R. Chaos in a three-variable model of an excitable cell, Physica D:Nonlinear Phenomena,1985,16(2):233~242.
    [103] Rulkov N F. Modeling of spiking-bursting neural behavior using twodimensional map, Physical Review E,2002,65(4):041922.
    [104] Gong Y F, Xu J X, Ren W, et al. Determine degree of chaos from analysis ofISI time series in nervous system, Biological Cybernetics,1998,78:159~165.
    [105] Rocsoreanu C, Georgescu A, Giurgiteanu N. The fitzhugh-nagumo model:bifurcation and dynamics, New York: Springer,2000.
    [106] Aihara K, Matsumoto G, Ichikawa M. An alternating periodic-chaoticsequence observed in neural oscillators, Physical Review Letters,1985,111A:251~255.
    [107] Matsumoto G, Aihara S, Hanyu Y, et al. Chaos and phase locking in normalsquid axons, Physics Letters A,1987,123:162~166.
    [108] Wang J, Che Y Q, Fei X Y, et al. Multi-parameter Hopf bifurcation inHodgkin-Huxley model exposed to ELF external electric field, Chaos, Solitons&Fractals,2005,26(4):1221~1229.
    [109] Munakata T, Kamiyabu M. Stochastic resonance in the FitzHugh-Nagumomodel from a dynamic mutual information point of view, the EuropeanPhysical Journal B,2006,53,239~243.
    [110] Deng B, Wang J, Wei X L, et al. Vibrational resonance in neuron populations,CHAOS,2010,20(1),013113.
    [111] Shi X, Lu Q S. Coherence resonance and synchronization of Hindmarsh Roseneurons with noise, Chinese Physics,2005,14(6):1088~1094
    [112] Qin Y M, Wang J, Men C, et al. Vibrational resonance in feedforward network,CHAOS,2011,21(2),023133.
    [113] Naofumi Katada, Haruhiko Nishimura. Stochastic Resonance in RecurrentNeural Network with Hopfield-Type Memory. Neural Process Letters,200930:145~154.
    [114] Vladislav Volman1, Herbert Levine. Activity-dependent stochastic resonancein recurrent neuronal networks. Physical Review E,2008,77(6),060903.
    [115] Yu H T, Wang J, Deng B, et al. Chaotic phase synchronization in small-worldnetworks of bursting neurons, CHAOS,201121(1),013127.
    [116] Gan Chun~Biao, Perc Matjaz, Wang Qing~Yun. Delay-aided stochasticmultiresonances on scale-free FitzHugh Nagumo neuronal networks. ChinesePhysics B2010,19(4),040508.
    [117]关新平,彭海朋,李丽香等. Lorenz混沌系统的参数辨识与控制,物理学报,2001,50(1):26~29.
    [118] Ghosh D, Banerjee S. Adaptive scheme for synchronization-basedmultiparameter estimation from a single chaotic time series and its applications,Physical Review E,2008,78(5):056211.
    [119] Zhang H G, Huang W, Wang Z L, et al. Adaptive synchronization between twodifferent chaotic systems with unknown parameters, Physics Letters A,2006,350:363~366.
    [120]高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法,物理学报,2006,55(2):577~582.
    [121] Alsing P M, Gavrielides A, Kovanis V. Using neural networks for controllingchaos, Physical Review E,1994,49:1225~1231.
    [122] Kobravi H R, Erfanian A. A decentralized adaptive robust method for chaoscontrol, CHAOS,2009,19:033111.
    [123] Zhou J, Lu J. Topology identification of weighted complex dynamicalnetworks, Physica A,2007,386(1):481~491.
    [124] Wu X Q. Synchronization-based topology identification of weighted generalcomplex dynamical networks with time-varying coupling delay, Physica A,2008,387:997~1008.
    [125] Chen L, Lu J A, Tse C K. Synchronization: an obstacle to identification ofnetwork topology, IEEE Transactions on Circuits and Systems-II: ExpressBriefs,2009,56(4):310~314.
    [126] Tang S X, Chen L, He Y G. Optimization-based topology identification ofcomplex networks, Chinese Physics B,2011,20(11):110502.
    [127] Yu D, Righero M, Kocarev L. Estimating topology of networks, PhysicalReview Letters,2006,97(18):188701
    [128] Liu H, Lu J A, Lu J H, Hill D J. Structure identification of uncertain generalcomplex dynamical networks with time delay, Automatica,2009,45:1799~1807.
    [129] Gouesbet G, Letellier C. Global vector-field reconstruction by using amultivariate polynomial L2approximation on nets, Physical Review E,1994,49(6):4955~4971.
    [130] Lu J A, Lu J H, Xie J. On reconstruction of the lorenz and chen systems withnoisy observations, Computers and Mathematics with Applications,2003,46:1427~1434.
    [131] Bezruchko B P, Smirnov D A. Constructing nonautonomous differentialequations from experimental time series, Physical Review E,2000,63:016207.
    [132] Wang W X, Yang R, Lai Y C. Predicting catastrophes in nonlinear dynamicalsystems by compressive sensing, Physical Review Letters,2011,106:154101.
    [133] Wang W X, Yang R, Lai Y C. Time-series-based prediction of complexoscillator networks via compressive sensing, Europhysics Letters,2011,94:48006.
    [134] Tipping M E. Sparse bayesian learning and the relevance vector machine,Journal of Machine Learning Research,2001,1:211~244.
    [135] Huang D B. Synchronization-based estimation of all parameters of chaoticsystems from time series, Physical Review E,2004,69:067201.
    [136] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcompleterepresentations in the presence of noise, IEEE Transactions on InformationTheory,2006,52(1):6~18.
    [137] Candes E, Romberg J. http://www.acm.caltech.edu/l1magic,2005.
    [138] Newman M E J, Watts D J. Renormalization group analysis of the small worldnetwork model, Physics Letters A,1999,263:341~346.
    [139]邓自立.最优估计理论及其应用—建模、滤波、信息融合估计,哈尔滨:哈尔滨工业大学出版社,2005.
    [140] durbin J, koopman S J. Time series analysis by state space methods, New York:Oxford University Press,2001.
    [141] Galka A, Wong K F K, Ozaki T. Generalized state space models for modelingnon-stationary EEG time series: modeling phase transitions in the brain,Springer Series in Computational Neuroscience,2010.
    [142] Wong K F K. Multivariate time series analysis of heteroscedastic data withapplication to neuroscience, Kanagawa, Graduate University for AdvancedStudies,2005.
    [143] Pascual-Leone A, Catala M D, Pascual A P. Lateralized effect of rapid-ratetranscranial magnetic stimulation of the prefrontal cortex on mood, Neurology,1996,46:499~502.
    [144] George M S, Wassermann E M, Williams W, et al. Changes in mood andhormone levels after rapid-rate transcranial magnetic stimulation of theprefrontal cortex, The Journal of Neuropsychiatry and Clinical Neurosciences,1996,8(2):172~180.
    [145] Martin JD, George MS, Greenberg BD, et al. Mood effects of prefrontalrepetitive high frequency transcranial magnetic stimulation in healthyvolunteers. CNS Spectrums,1997,2:53~68.
    [146] George M, Ketter T A, Post R M. Prefrontal cortex dysfunction in clinicaldepression, Depression,1994,2:59~72.
    [147] Curtis D, Kauffmann M D, Muhammad A, et al. Slow right prefrontaltranscranial magnetic stimulation as a treatment for medication-resistantdepression: a double-blind, placebo-controlled study, Depression and Anxiety,2004,19:59~62.
    [148] Fitzgerald P B, Benitez J, Castella A, et al. A randomized controlled trial ofsequential bilateral repetitive transcranial magnetic stimulation fortreatment-resistant depression, The American Journal of Psychiatry,2006,163:88~94.
    [149] Knott V, Mahoney C, Kennedy S, et al. EEG power, frequency, asymmetry andcoherence in male depression, Psychiatry Research Neuroimaging,2001,106:123~140.
    [150] Mathersul D, Williams L, Hopkinson P, et al. Investigating models of affect:relationships among EEG alpha asymmetry, depression, and anxiety, Emotion,2008,8:560~572.
    [151] Pop-Jordanova N, Pop-Jordanov J. Spectrum-weighted EEG frequency‘‘brain-rate’’ as a quantitative indicator of mental arousal, Prilozi,2005,26:35~42.
    [152] Hinrikus H, Suhhova A, Bachmann M, et al. Electroencephalographic spectralasymmetry index for detection of depression, Medical&BiologicalEngineering&Computing,2009,47(12):1291~1299.
    [153] Heuvel M P, Stam C J, Kahn R S, et al. Efficiency of Functional BrainNetworks and Intellectual Performance, The Journal of Neuroscience,2009,29(23):7619~7624.
    [154] Micheloyannis S, Pachou E, Stam C J, et al. Small-world networks anddisturbed functional connectivity in schizophrenia, Schizophrenia Research,2006,87:60~66.
    [155] Stam C J, Jones B F, Nolte G, et al. Small-world networks and functionalconnectivity in Alzheimer's disease, Cerebral Cortex,2007,17:92~99.
    [156] Ponten S C, Bartolomei F, Stam C J. Small-world networks and epilepsy:Graph theoretical analysis of intracerebrally recorded mesial temporal lobeseizures, Clinical Neurophysiology,2007,118:918~927.
    [157] Quiroga Q R, Blanco S, Rosso O A, et al. Searching for hidden informationwith gabor transform in generalized tonic-clonic seizures,Electroencephalography and clinical Neurophysiology,1997,103:434~439.
    [158] Andrzejak R G, Lehnertz K, Mormann F, et al. Indications of nonlineardeterministic and finite dimensional structures in time series of brain electricalactivity: Dependence on recording region and brain state. Physical Review E,2001,64(6):061907.
    [159] Peng C K, Buldyrev S V, Havlin S, et al. Mosaic organization of DNAnucleotides, Physical Review E,1994,49(2):1685~1689.
    [160] Lee J M, Kim D J, Kim I Y. Detrended fluctuation analysis of EEG in sleepapnea using MIT/BIH polysomnography data, Computers in Biology andMedicine,2002,32:37~47.
    [161] Jospin M, Caminal P, Jensen E W. Detrended Fluctuation Analysis of EEG as aMeasure of Depth of Anesthesia, IEEE Transactions on BiomedicalEngineering,2007,24(5):840~846.
    [162] Buldyrev S V, Golderger A L, Havlin S, et al. Long-range Correlationproperties of coding and noncoding DNA sequences: GenBank analysis,Physical Review E,1995,51(5):5084~5091.
    [163] Bunde A, Havlin S, Kantelhardt J W, et al. Correlated and uncorrelated regionsin heart-rate fluctuations during sleep, Physical Review Letters,2000,85(17):3736~3739.
    [164] Rossini P M, Rosinni L, Ferreri F. Brain-Behavior Relations: TranscranialMagnetic Stimulation: A Review, IEEE Engineering in Medicine and BiologyMagazine,2010,29(1):84~96.
    [165]刘秉正,彭建华.非线性动力学,北京:高等教育出版社,2007.
    [166] Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, andembedding windows, Physica D,1999,127:48~60.
    [167] Cao L Y. Practical method for determining the minimum embedding dimensionof a scalar time series, Physica D,1997,110:43~50.
    [168] Sackeim H A, Haskett R F, Mulsant B H, et al. Continuation pharmacotherapyin the prevention of relapse following electroconvulsive therapy: a randomizedcontrolled trial, JAMA,2001,285(10):1299~1307.
    [169] Zumsteg D, Lozano A M, Wennberg R A, et al. Mesial temporal inhibition in apatient with deep brain stimulation of the anterior thalamus for epilepsy,Epilepsia,2006,47(11):1958~1962.
    [170] Schutter D J, Van H J. A framework for targeting alternative brain regions withrepetitive transcranial magnetic stimulation in the treatment of depression,Journal of Psychiatry&Neuroscience,2005,30(2):91~97.
    [171] Fisher R, Van Emde Boas W, Blume W, et al. Epileptic seizures and epilepsy:definitions proposed by the International League Against Epilepsy (ILAE) andthe International Bureau for Epilepsy (IBE), Epilepsia,2005,46(4):470~472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700