用户名: 密码: 验证码:
基于能观能控理论的航天器自主导航与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主导航与控制是航天技术领域的重要研究课题。随着航天科技的发展,航天器需要完成的任务更加复杂,对导航方式与控制器的选择提出了更高的要求,加之航天器系统本身具有较强的非线性,对导航与控制系统的设计和分析带来了诸多挑战。为此,本学位论文基于非线性系统的能观性与能控性理论,对航天器自主导航系统的量测方案选择与性能分析以及小推力控制方法进行深入的研究,以期为未来相关技术的发展提供理论依据。论文的主要内容包括以下几个方面:
     研究了自主导航系统的能观性分析方法。首先基于线性系统能观性鲁棒性的研究,建立了基于线性化的非线性系统局部能观性判据,利用该判据分析了基于视线矢量测量的自主导航系统能观性,并以飞越小天体自主导航为例进行仿真验证。其次通过系统微分方程本身的处理和推导,建立系统输出与初始状态之间的映射关系,借助于反函数定理给出一个利用矩阵的秩描述的局部能观性判据。进一步考虑中心引力场下运行的航天器与参考星,将所得能观性结论应用于自主导航系统的量测方案选择问题,并结合仿真算例进行分析和验证。
     研究了能观性度量与自主导航性能评价方法。首先针对确定性非线性系统,给出了基于条件数的能观性度量方法,将其用于圆型限制性三体系统,按参考轨迹给出航天器各位置分量对系统状态的能观度。其次针对随机非线性系统,论证了FIM(Fisher Information Matrix)与能观性之间的关系,进而利用FIM的迹定义系统的能观度,并将其用于视线测量自主导航系统的能观度分析。然后利用FIM与状态估计精度之间的关系严格推导了最优状态估计误差方差阵的传播规律,将其作为衡量自主导航算法性能的指标,为实际导航系统的设计与分析提供理论依据。
     以椭圆轨道转移问题为背景,研究了基于能控性分析的小推力控制方法。鉴于在笛卡尔坐标系下和利用轨道根数描述的小推力控制系统均为仿射非线性系统,本文基于微分几何理论研究了仿射非线性系统的能控性,发展了基于漂移向量场弱Poisson稳定的能控性判据,并利用相关结果论证了小推力控制系统的能控性,进而提出了基于阻尼反馈的小推力椭圆轨道转移控制方法,将其应用于环绕地球椭圆轨道之间的转移,利用仿真分析验证方法的有效性。
     设计了半物理仿真系统对自主导航与小推力控制方法的可行性进行分析。针对环月探测器,建立了基于光学导航相机、月球图像模拟器和Matlab/Simulink/dSPACE的自主导航与控制半物理仿真系统,利用光学导航相机和激光高度计构建探测器到月心的矢量,并利用扩展卡尔曼滤波估计探测器的位置和速度,进一步将自主导航模块的输出用于小推力轨道转移的反馈控制,从而实现了环月探测器从高轨道到低轨道的转移,验证了基于矢量测量的自主导航和基于阻尼反馈的小推力控制方法的可行性。
The development of techniques for autonomous navigation and control has become an important topic in the domain of aerospace science. Because the spacecraft system and its mission are more and more complex, it raises higher demand for advanced navigation and control technology. On the other hand, the nonlinearity of the spacecraft system challenges the design and analysis of the navigation and control system. The present thesis studies the observable selction and performance analysis of spacecraft autonomous navigation, as well as the method of low-thrust orbit transfer from the control point of view by using nonlinear observability and controllability theory. The main contents of this dissertation are as follows:
     Firstly, the observability problem of autonomous navigation systems is studied. The robustness of observability is studied for linear systems under nonlinear perturbations in the state dynamics and the output channel, which demonstrates the validity of linearization for observability analysis of nonlinear systems, corresponding method is used to autonomous navigation system based on line-of-sight (LOS) vector measurement, and simulation of flyby autonomous navigation is given. Then, by using the theory of ordinary differential equation, the functional relationship between the output and the initial state is derived for nonlinear dynamic systems, and a observability criteria is formulated in the form of rank conditions based on inverse function theorem, which is used to analyse the observability of various combinations of measurements for spacecraft and reference point in a central gravitation field.
     Secondly, the measure of observability and performance analysis of autonomous navigation algorithm is studied. An analytical expression of observability index by using condition number for nonlinear determinant systems is presented, by using which the effects of selection of observables on analysis of dynamics for spacecraft in the restricted three body system are given. Then, the observability degree for stochastic nonlinear systems is defined by using the trace of FIM (Fisher Information Matrix), and autonomous navigation system based on LOS measurement is analysed. Further, according to the relationship between FIM and the accuracy of navigation filter, a methodology of performance analysis of autonomous navigation algorithm is presented, which can be used as a standard in design and analysis of practical navigation system.
     Thirdly, the method of low-thrust control for orbit transfer is studied based on controllability analysis. To give a practical controllability criterion for low-thrust spacecraft system, controllability of affine nonlinear systems is studied by using differential geometric theory, the controllability criterion based on weakly positively Poisson stability of drift vector field is developed, by using which the controllalbiltiy property of the low-thrust transfer between elliptic orbits is analysed. A damping feedback stabilizer is then designed to steer a spacecraft from initial elliptic orbit to a given elliptic orbit, and the performance of the proposed cotroller is lillustrated by simulating an orbital transfer between two elliptic orbits around the Earth.
     Lastly, semi-physical simulation system of autonomous navigation and control is built up based on optical navigation camera, lunar picture simulator and Matlab/Simulink/dSPACE integration simulation flatform. The line-of-sight vector from spacecraft to Moon’s center is constructed by using optical navigation camera and laser altimeter, and the expanded Kalman filter is adopted to estimate the inertial position and velocity of the spacecraft.The output of autonomous navigation module is used as the feedback information of spacecraft for Lunar orbital transfer from higher orbit to lower orbit, simulation results demonstrate the feasibility of autonomous navigation based on LOS vector measurement and low-thrust control based on damping feedback.
引文
1 Y. Tang, Y. Wu, M. Wu et al. INS/GPS Integration: Global Observability Analysis. IEEE Trans. on Vehicular Technology. 2009,58(3): 1129~1142
    2 S. P. Bhat, P. K. Tiwari. Controllability of Spacecraft Attitude Using Control Moment Gyroscopes. IEEE Trans. on Automatic Control. 2009,54(3): 585~590
    3 E. B. Lee and L. Markus. Foundations of Optimal Control Theory. John Wiley, New York, 1967
    4 M. Hwang, J.H. Seinfeld. Observability of Nonlinear Systems. J. of Optim. Theory and Applications. 1972,10(2): 67~77
    5 I. Lopez, M. Gamez, S. Molnar. Observability and Observers in a Food Wed. Applied Mathematics Letters. 2007,20(8): 951~957
    6 A. Gadre. Observability Analysis in Navigation Systems with an Underwater Vehicle Application. Ph.d Thesis of Virginia Polytechnic Institute and State University. 2007: 9~12
    7 W. J. Terrell. Local Observability of Nonlinear Differential-Algebraic Equations (DAES) from the Linearization along a Trajectory. IEEE Trans. on Automat. Control, 2001, 46(12): 1947~1950
    8 A. Ben-Zvi, P. J. Mclellan, K.B. Mcauley. Identifiability of Non-linear Differential Algebraic Systems via a Linearization Approach. Canadian Journal of Chemical Engineering, 2006, 84(5): 590~596
    9 A. N. Zhirabok. Observability and Controllability Analysis of Nonlinear Systems by Linear Methods. Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Viet nam, 2008: 1690~1695
    10 Z. Varga. On observability of Fisher’s model of selection. Pure Math. Appl. 1992, Ser B 3(1): 15~25
    11 M. Gámez, R. Carre?o, A. Kósa, Z.Varga. Observability in Strategic Models of Viability Selection. Biosystems, 2003, 71(3): 249~255
    12 R. Hermann, A.J. Krener. Nonlinear Controllability and Observability. IEEE Trans. on Automat. Control. 1977, AC-22: 728~740
    13 D. Aeyels. Generic Observability of Differentiable Systems. SIAM J. Control. 1981,19(5): 595~603
    14 D. Cheng, W. P. Dayawansa, C. F. Martin. Observability of Systems On Lie Groups And Coset Spaces. SIAM J. Control. 1990, 28(3): 570~581
    15 L. Bartosiewicz. Local Observability of Nonlinear Systems. Systems & Control Letters. 1995, (25): 295~298
    16 B. Tibken. Observability of Nonlinear Systems - An Algebraic Approach. Proceeding of the 3rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004, 5: 4824~4825
    17 N. Crasta, P. Bhat. Observability of Nonlinear Input-Affine Systems. Proceedings of the International Conference on Advances in Control and Optimization of Dynamical Systems, Bangalore, India, 2007: 422~427
    18唐万生,李光泉.广义系统的能控、能观性判别条件.自动化学报, 1995, 21(1): 63~66
    19莫以为,萧德云.线性混合系统的可观性分析.控制与决策, 2004, 19(12): 1349~1353
    20朱其新,胡寿松.网络控制系统的能控性和能观性.控制与决策, 2004, 19(2): 157~161
    21韩志涛,段晓东,张嗣瀛.非线性大系统的弱能观性.东北大学学报(自然科学版), 2003, 24(12): 1123~1125
    22 J. P. Le Cadre, C. Jauffret. Discrete-Time Observability and Estimability Analysis for Bearings-Only Target Motion Analysis. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33(1): 178~201
    23 A. M. Schneider. Observability of Relative Navigation Using Range-Only Measurements. IEEE Trans. on Aerospace and Electronic Systems, 1985, AES-21(4): 569~581
    24李强,郭福成,周一宇.单个卫星观测器对卫星仅测角被动跟踪的可观测性研究.宇航学报, 2007, 28(5): 1323~1330
    25吴顺华,辛勤,万建伟.对卫星目标的仅测角天基单站无源定位可观测性分析.航空学报,2009, 30(1): 104~108
    26宁晓琳,房建成.航天器自主天文导航系统的可观测性及可观测度分析.北京航空航天大学学报, 2005, 31(6): 673~677
    27宁晓琳,房建成.一种深空探测器自主天文导航新方法及其可观测性分析.空间科学学报, 2005, 25(4): 286~292
    28张春青,刘良栋,李勇.测量带有常值偏差时卫星自主定轨系统可观性分析.中国空间科学技术, 2006, 26(6): 1~7
    29黄翔宇,崔平远,崔祜涛.深空自主导航系统的可观性分析.宇航学报, 2006, 27(3): 332~337
    30 Y. Liu, P. Cui. Observability Analysis of Deep-Space Autonomous Navigation System. Proc. the 25th Chinese Control Conference. 7-11 August, 2006: 279~282
    31 G. Qiao, D. Wang, T. Li. Observability Analysis of Autonomous Navigation System for Earth-Lunar Transfer Orbit Phase. Proc. 2007 IEEE International Conference on Robotics and Biomimetics, 2007: 946~951
    32 Y. Guo. Self-Contained Autonomous Navigation Systems for Deep Space Mission. Advances in the Astronautical Sciences, 1999, 102(pt2): 1099~1113
    33 F. M. Ham, R. G. Brown. Observability, Eigenvalues, and Kalman Filtering. IEEE Trans. on Aerospace and Electronic Systems, 1983, AES-19(2): 269~273
    34 D. Sun, J. L. Crassidis. Observability Analysis of Six-Degree-of-Freedom Configuration Determination Using Vector Observations. Journal of Guidance, Control and Dynamics. 2002, 25(6): 1149~1156
    35 D. G. Hull, J. L. Speyer, D. B. Burris. Linear-Quadratic Guidance Law for Dual Control of Homing Missiles. Journal of Guidance, Control and Dynamics. 1990, 13(1): 137~144
    36 L. Lin, T. Kirubarajan, Y. Bar-Shalom. 3-D Tracn Initiation in Clutter Using
    2-D Radar Measurements. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(4): 1434~1441
    37 C. Jauffret. Observability and Fisher Information Matrix in Nonlinear Regression. IEEE Trans. on Aerospace and Electronic Systems. 2007, 43(2): 756~759
    38 T. Zhang, B. Wang, Y. Shi. Observability of Inertial Navigation System. Journal of Beijing Institute of Technology, 2005, 14(3):269~272
    39石莹,段广仁,孙德波.视觉导航信息可观性分析的Matlab Symbolic Computation方法.宇航学报, 2004, 25(6): 686~689
    40 B. Friedland. Controllability Index Based on Conditioning Number. Journalof Dynamic Systems Measurement and Control,Transactions of the ASME, 1975, 97 Ser G(4): 444~445
    41钱伟行,刘建业,赵伟,赵文芳.基于转动基座的SINS初始对准方法研究.宇航学报, 2008, 29(3): 928~931
    42 M., R. Cheng, P. Kalata. An Information Theoretic Interpretation of Stability and Observability. Proceedings of the American Control Conference. Green Valley: American Automatic Control Council, 1987: 1957~1962
    43 B. Chen, J. Hu, H. Li, Z. Sun. Measuring Observability by Generalized Information Theoretic Quantities. Journal of Control Theory and Applications. 2008, 6(3): 233~238
    44邢光谦.量测系统的能观度和状态估计精度.自动化学报, 1985, 11(2): 152~158
    45李慷,席裕庚.能控能观测度与多变量控制系统中变量的选择.控制理论与应用, 1994, 11(6): 753~757
    46帅平,陈定昌,江涌. GPS/INS组合导航系统状态的可观侧度分析方法.宇航学报, 2004, 25(2): 219~224
    47刘百奇,房建成.一种基于可观度分析的SINS/GPS自适应反馈校正滤波新方法.航空学报, 2008, 29(2): 430~436
    48刘萍,王大轶,黄翔宇.环月探测器自主天文导航系统的可观度分析.中国空间科学技术, 2007, (6): 12~18
    49 R. Hermann, E. Cartan’s Geometry Theory of Partial Differential Equations. Advances in Math. 1965, 1: 265~315
    50 G.W. Haynes, H. Hermes. Nonlinear Controllability via Lie Theory. SIAM J. Control. 1970, (8): 450~460
    51 R. W. Brochett. System Theory on Group Manifolds and Coset Spaces. SIAM J. Control. 1972, 10(2): 265~284
    52 C. Lobry. Controlabilite des syst`emes non linearies. SIAM J. Contr. 1970, 8: 573~605
    53 D. Elliott. A Consequence of Controllability. J. Diff. Equations, 1971, 10(2): 364~370
    54 H. J. Sussmann. Orbits of Families of Vector Fields and Integrability of Destributions, Trans. American Math. Sci. 1973, 180: 171~188
    55 H. J. Sussmann, V. Jurdjevic. Controllability of Nonlinear Systems. J.Differential Equations. 1972, 12(1): 95~116
    56 A. Krener. A Generalization of Chow’s Theorem and the Bang-Bang Theorem to Nonlinear Control Problems. SIAM J. Control. 1974, 12(1): 43~52
    57程代展,秦化淑.非线性系统的几何方法(上)几何方法与几何基础.控制理论与应用, 1987, 4(1): 1~9
    58 E. J. Davison, E. G. Kunze. Some Sufficient Conditions for the Global and Local Controllability of Nonlinear Time-Varying Systems. SIAM J. Control. 1970, 8(4): 489~498
    59 H. J. Sussmann. A Sujficient Condition for Local Controllability. SIAM J. Control. 1978, 16: 790~802
    60 H. Hermes. On Local Controllability. SIAM J. Control. 1982, (20):211~220
    61 H. J. Sussmann. Lie Brackets and Local Controllability: A Sufficient Condition for Scalar-input Systems. SIAM J. Control. 1983, 21: 686~713
    62 H. J. Sussmann. A General Theorem on Local Controllability. SIAM J. Control. 1987, 25: 158~194
    63 M. Kawski, H.J. Sussmann. High-order Small Time Local Controllability. Nonlinear Controllability and Optimal Control, Marcel Dekker, New York. 1990: 431~467
    64 A. G. Ivanov. On the Uniform Local Controllability of a Nonlinear System to a Trajectory. Differential Equations, 2006, 42(4): 479~489
    65 L. R. Hunt. Global Controllability of Nonlinear Systems in Two Dimensions. Math. Systems Theory. 1980, 13: 361~376
    66 H. Hermes. On Local and Global Controllability. SIAM J. Control. 1974, 12(2): 252~261
    67 D. Aeyels. Local and Global Controllability for Nonlinear Systems. Systems &Control Letters, 1984, 5: 19~26
    68 D.L. Lukes. Global Controllability of Nonlinear Systems. SIAM J. Control. 1972, 10(1): 112~126
    69 L. R. Hunt. n-Dimensional Controllability with (n?1) Controls. IEEE Trans. on Automatic Control. 1982, 27(1):113~117
    70 C. Y. Kaya, J. L. Noakes. Closed Trajectories and Global Controllability in the Plane. IMA J. Math. Control & Information. 1997, 14: 353~369
    71 P. E. Caines, E. S. Lemch. On the Global Controllability of NonlinearSystems: Fountains, Recurrence, and Applications to Hamiltonian Systems. SIAM J. Control. 2003, 41(5): 1532~1553
    72 K. Y. Lian, L. S. Wang, L. C. Fu. Controllability of spacecraft systems in a central gravitational field. IEEE Trans. on Automa. Control. 1994, 39(12): 2426~2441
    73 P. Birtea, M. Puta, T. S. Ratiu. Controllability of Poisson Systems. SIAM J. Control Optim., 2004, 43(3): 937~954
    74 Y. Sun, L. Guo. On Global Controllability of Planar Affine Nonlinear Systems. Proceedings of the 24th Chinese Control Conference, South China University of Technology Press. 2005: 1765~1769
    75 Y. Sun, L. Guo, Q. Lu, S. Mei. Further Results on Global Controllability of Affine Nonlinear Systems. Proceedings of the 25th Chinese Control Conference. Harbin, 2006: 298~301
    76 Y. Sun. Necessary and Sufficient Condition for Global Controllabiltiy of Planar Affine nonlinear Systems. IEEE Trans. on Automatic Control. 2007, 52(8): 1454~1460
    77 Y. Sun, S. Mei, Q. Lu. On Global Controllabiltiy of Affine nonlinear Systems with a Triangular-like Structure. Science in China Series F-Information Sciences. 2007, 50(6): 831~845
    78 Y. Sun, S. Mei, Q. Lu. On Global Controllability of Planar Affine Nonlinear Systems with a Singularity. Systems and Control Letters. 2009, 58(2): 124~127
    79 H. J. Kang, B. S. Chen. Computer Algebra Analysis of Weak Controllability and Observability for Nonlinear Systems. Proceedings of 16th Chinese Control and Decision Conference, Huangshan, Peoples R China, 2004: 55~58
    80 J. P. Dauer, N. I. Mahmudov. Controllability of Some Nonlinear Systems in Hilbert Spaces. Journal of Optimization Theory and Applications. 2004, 123(2): 319~329
    81 A. V. Arutyunov. Controllability of Nonlinear Systems with Constrained Controls. Differential Equations. 2006, 42(11): 1515~1523
    82 D. Idczak, M. Majewski, S. Walczak. On Controllability of Nonlinear Systems Described by Ordinary Differential Equations. 2nd Mutidisciplinary International Symposium on Positive Systems, Grenoble, France, 2006, 341:287~294
    83贺昌政,杨柳.非线性控制系统的能控性及在刚体动力学中的应用.控制理论与应用. 2000, 17(2): 204~208
    84杨柳.不变流形方法与非线性控制系统的能控性.应用数学与力学. 2000, 21(11): 1191~1200
    85韩志涛,段晓东,张嗣瀛.非线性大系统的弱能控性的一个判别条件.东北大学学报(自然科学版). 2004, 25(7): 617~620
    86姬兴民,王红.简单Hamilton系统的能控性.工程数学学报. 2006, 23(2): 254~258
    87 M. D. Rayman, P. A. Chadbourne, J. S. Culwell and S. N. Williams. Mission Design for Deep Space 1: A Low-thrust Technology Validation Mission. Acta Astronautica, 1999, 45(4-9): 381~388
    88 A. Fujiwara, J. Kawaguchi and K. T. Uesugi. Role of Sample Return Mission MUSES-C in Asteroid Study. Advances in Space Research, 2004, 34(11): 2267~2269
    89 M. Macdonald, C. R. McInnes. Analytical Control Laws for Planet-Centered Solar Sailing. Journal of Guidance, Control, and Dynamics. 2005, 28(5): 1038~1048
    90 B. Bonnard, J. B. Caillau, E. Trélat. Geometric Optimal Control of Elliptic Keplerian Orbits. Discrete and Continuous Dynamical Systems-Series B. 2005, 5(4): 929~956
    91 L. Casalino and G. Colasurdo. Improved Edelbaum’s Approach to Optimize LEO-GEO Low-Thrust Transfers. Journal of Guidance, Control, and Dynamics. 2007, 30(5): 1504~1510
    92 T. N. Edelbaum, Propulsion Requirements for Controllable Satellites. ARS Journal. 1961, 31: 1079~1089
    93 J. A. Kechichian, The Reformulation of Edelbaum’s Low-Thrust Transfer Problem Using Optimal Control Theory. J of Guidance, Control and Dynamics. 1997, 20(5): 988~994
    94 L. Casalino and G. Colasurdo. Improved Edelbaum’s Approach to Optimize LEO-GEO Low-Thrust Transfers. Journal of Guidance, Control, and Dynamics. 2007, 30(5): 1504~1510
    95 C. A. Kluever, S. R. Oleson. Direct Approach for Computing Near-OptimalLow-Thrust Earth-Orbit Transfers. Journal of Spacecraft and Rockets. 1998, 35(4): 509~515
    96 B. N. Kiforenko, S. V. Vasilenko, and Z. V. Pasechnik. The Problem of Determination of Solutions of Motion Equations of Spacecraft with Low-Thrust on Trajectories Close to Optimal, Obtained by the Averaging Method. Journal of Automation and Information Sciences. 2003, 35(12): 14~24
    97 Y. Gao, C. A. Kluever. Low-Thrust Guidance Scheme for Earth-Capture Trajectories. Journal of Guidance, Control, and Dynamics. 2005, 28(2): 333~342
    98 Y. Gao, C. A. Kluever, Analytic Orbital Averaging Technique for Computing Tangential-Thrust Trajectoires. Journal of Guidance, Control, and Dyanmics. 2005, 28(6): 1320~1323
    99 J. J. Arrieta-Camacho, L. T. Biegler Real Time Optimal Guidance of Low-thrust Spacecraft: An Application of Nonlinear Model Predictive Control. New Trends in Astrodynamics and Applications, 2005, 1065: 174~188
    100 C. A. Kluever, D. J. O’Shaughnessy. Trajectory-tracking Guidance Law for Low-thrust Earth-orbit Transfers. Journal of Guidance, Control and Dynamics, 2000, 23(4): 754~756
    101 C. A. Kluever. Simple Guidance Scheme for Low-thrust Orbit Transfers. Journal of Guidance, Control and Dynamics,1998, 21(6): 1015~1017
    102 S. D. Desai, S. Bhaskaran, W. E. Bollman. The DS-1 Autonomous Navigation System: Autonomous Control of Low Thrust Propulsion Systems. AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 1997: 639~649
    103 D. E. Chang, D. F.Chichka, J. E. Marsden. Lyapunov Functions for Elliptic Orbit Transfer. Discrete and Continuous Dynamical Systems-Series B, 2002, 2(1): 57~67
    104 B. J. Naasz. Classical Element Feedback Control for Spacecraft Orbital Maneuvers. M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, May 2002
    105 M. R. Ilgen. Low Thrust OTV Guidance Using Lyapunov Optimal Feedback Control Techniques. AAS/AIAA Astrodynamics Specialist Conference, Victoria , B. C., Canada , 1993: 1527~1545
    106尚海滨,崔平远,栾恩杰.近地小推力转移轨道的加权组合控制策略.航空学报, 2007, 28(6): 1419~1427
    107尚海滨,崔平远,栾恩杰.基于最优状态反馈的小推力轨道转移制导策略.吉林大学学报(工学版), 2007, 37(4): 949~954
    108李亮,和兴锁,张娟,邓峰岩.考虑地球扁率影响的任意椭圆轨道小推力最优交会控制.西北工业大学学报, 2005, 23(3): 401~405
    109周姜彬,袁建平,罗建军.任意轨道要素冻结轨道的径向小推力控制策略研究.宇航学报, 2008, 29(5): 1536~1539
    110 A. E. Petropoulos. Simple Control Laws for Low-Thrust Orbit Transfers. AAS/AIAA Astrodynamics Specialists Conference, Big Sky Resort, Big Sky, Montana, Aug.3-7, 2003, AAS-06-630
    111 S. S. Sastry, C. A. Desoer. The Robustness of Controllability and Observability of Linear Time-varying Systems. IEEE Trans. Automatic Control. 1982, 27(4): 933~939
    112 M. R. Hestenes, T. Guinn. An Embedding Theorem for Differential Equations. J. Optimiz. Theory Appl. 1968, 2(2): 87~101
    113许以超.线性代数与矩阵论.北京:高等教育出版社, 1992: 106~107
    114刘勇,徐世杰.基于联邦UKF算法的月球探测器的自主组合导航.宇航学报, 2006, 27(3): 518~521
    115 S. S?rkk?. On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems. IEEE Transaction on Automatic Control, 2007, 52(9): 1631~1641
    116 E. B. Leach. A Note on the Inverse Function Theorem. Proc. Amer. Math. Soc., 1961, 12: 694~697
    117 J. P. Gauthier, G. Bornard. Observability for Any u(t) of a Class of Nonlinear Systems. IEEE Trans Autom Control. 1981, 26(4): 922~926
    118韩正之,潘丹杰,张钟俊.非线性系统的能观性和状态观测器.控制理论与应用, 1990, 7(4):1~9
    119施恩伟.流形上的微积分.科学出版社,北京, 2004: 100~101
    120 C. Lobry Controllability of Nonlinear Systems on Compact Manifolds. SIAM J Control. 1974, 12(1): 1~4
    121 V. Jurdjevic, I. Kupka. Control Systems Subordinated to a Group Action: Accessibility. Journal of Differential Equations. 1981, 39(2): 186~211
    122 V. I. Amold. Mathematical Methods of Classical Mechanics, Second Edition. New York:Springer- Verlag, 1989: 69~70
    123 D. Cheng. Global Controllability of Switched Nonlinear Systems. Procee-dings of the 45th IEEE Conference on Decision and Control. San Diego, 2006: 3742~3747
    124 R. Sepulchre, M. Jankovic and P. Kokotovic. Constructive Nonlinear Control, Springer Verlag, London, 1997
    125 R. Sepulchre, M. Jankovic and P. Kokotovic. CLF Based Design with Robustness to Dynamic Input Uncertainties. Systems and Control Letters, 1999, 37(1): 45~54
    126 V. Jurdjevic, J.P. Quinn. Controllabiltiy and Stability. Journal of Differential Equations, 1978, 28: 381~389
    127 C. Chu, D. Q. Zhu, G. Udomkesmalee, M. I. Pomerantz. Realization of Autonomous Image-based Spacecraft Pointing Sytems: Planetary Flyby Example. Proceedings of SPIE, 1994, 2221: 27~40
    128郗晓宁等.月球探测器轨道设计.国防工业出版社,北京, 2001: 263~302
    129平劲松,黄倩,鄢建国等.基于嫦娥一号卫星激光测高观测的月球地形模型CLTM-s01.中国科学G辑, 2008, 38(11): 1601~1612

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700