用户名: 密码: 验证码:
基于难降解有机污染物特性的光催化-生化废水处理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发适用于难生物降解有机废水的处理方法一直是污水处理领域研究的技术难点。论文在分析高浓度难生物降解有机废水现有处理技术的基础上,认为“光催化+生化处理组合工艺”是一种较有前景技术。论文从现有光催化剂量子效率低、尚难用于高浓度废水处理的现实问题出发,在综述难降解有机污染物特征的基础上,基于难降解有机污染物大多具有疏水基团的特性,创新性地认为改变纳米TiO_2光催化剂的表面性能、开发一种具有疏水特性的光催化剂,通过提高光催化剂对难生物降解有机物的吸附能力,实现光催化技术对难降解有机物的选择性吸附和降解,进而降低高浓度废水光催化处理时对光量子的需求量。论文围绕这一创新思路开发了具有表面疏水特性的SDS-CuO/TiO_2光催化剂;根据光催化反应特点,以提高光催化效率和催化剂回收率为目标,开发了螺旋升流塔式光催化反应器;对基于高浓度难降解有机废水的光催化-生化处理系统进行了研究,得到如下结论:
     1)用CuO对TiO_2光催化剂进行改性,获得了具有可见光响应特性的CuO/TiO_2光催化剂。经XRD表征发现CuO/TiO_2催化剂具有CuO和锐钛矿TiO_2两种晶体,Cu主要以CuO晶体的形式存在;UV-Vis表征发现CuO/TiO_2催化剂具有良好的可见光响应性能,其最大激发波长为821nm;三维荧光表征发现经过CuO改性后催化剂的电子-空穴对复合几率明显降低;BET表征发现CuO负载改性后催化剂比表面积从181.3m2/g增加至241.8m2/g。论文还以亚甲基蓝模拟废水为对象,研究了CuO/TiO_2光催化剂在可见光激发下的降解能力,结果表明:在控制反应液初始pH值为11、亚甲基蓝初始色度为500倍、催化剂用量为0.1g/L废水、H2O_2加入量为10mL/L废水时,光催化效率最高,2h脱色率可达90%。
     2)用十二烷基硫酸钠(SDS)对CuO/TiO_2进行了表面修饰改性,制备了具有一定疏水特性的SDS-CuO/TiO_2光催化剂。XRD表征,发现SDS-CuO/TiO_2催化剂仍然为CuO和锐钛矿TiO_2两种晶体;SDS修饰改性将引起催化剂颗粒和孔径增大、BET比表面积减小;FTIR表征发现,经表面修饰改性的SDS-CuO/TiO_2催化剂表面含有C—C和—CH—基团。研究表明,制备SDS-CuO/TiO_2催化剂时SDS的浓度是影响催化剂光催化活性的最重要因素。当SDS浓度为临界胶束浓度(CMC)时制得的催化剂最大激发波长为763nm,BET比表面积为52.1m2/g。此时催化剂表面疏水基团量最高,电子-空穴对复合几率最小,制得的催化剂的光催化活性最佳。
     3)以硝基苯模拟废水为对象,研究了SDS -CuO/TiO_2光催化剂在可见光激发下的降解能力,结果表明:在控制反应液初始pH值为9、硝基苯初始浓度为400mg/L~500mg/L、催化剂用量为0.2g/L废水、H2O_2加入量为6mL/L废水时光催化效率最高,2h对硝基苯的降解率为77%。以硝基苯和亚甲基蓝的复合废水为研究对象,发现SDS -CuO/TiO_2光催化剂对难降解有机物硝基苯具有更佳的选择性降解能力。
     4)采用旋流分离理论为基础,以增大反应器A/V值和催化剂回收率为目标设计了连续流型太阳光催化反应器,控制要点是反应器半径和反应高度满足,光照面积和反应器半径满足S = 2π(0.02 ? R 3)/3R。运行实验表明,通过螺旋流回收光催化剂是可行的,连续运行20d,催化剂的流失率为26.5%,且保留于反应器中的催化剂仍然具有较高的光催化活性。在太阳光照射下进行实际印染废水处理研究发现:光照强度增加对光催化过程的促进作用具有极限;可以采用曝气充氧来替代H2O_2作为光催化反应的电子捕获剂;水力停留时间为3h时废水COD去除效果较佳。采用辅助光源可以明显增强废水的处理效果,可以在自然光照不足的情况下采用辅助光源来强化废水处理。
     5)SDS-CuO/TiO_2光催化+SBR生化系统可以用于难降解有机废水的处理。用于处理印染废水时,光催化处理单元中废水中的难降解有机污染物转化过程约需40min。40min后废水BOD5和DHA值达到最大,废水可生化性最佳。系统最佳运行参数为光催化反应器中SDS-CuO/TiO_2催化剂投加量为4g、曝气量0.25m3/h、停留时间为40min;SBR生化处理单元污泥负荷0.179kgCOD/(kgMLSS·d)、曝气量0.4m3/h、曝气时间10h。此时光催化-生化系统处理出水能够达到《纺织染整工业水污染物排放标准》(GB4287-92)I级标准。
     6)在SDS-CuO/TiO_2光催化剂作用下,印染废水COD降解符合Langmuir- -Hinshelwood动力学方程。考虑废水初始COD浓度、催化剂用量、光照强度等影响因素的动力学模型为:
     光催化单元BOD5生成速率为C = 23.729t ? 49.33,其中t受废水中难降解污染物量控制,本系统中30≤t≤40min。通过计算光催化处理出水的COD、BOD5和B/C值,可以得到进入生化处理单元时废水的主要污染指标和可生化性情况,从而对后续生化处理单元运行控制提供依据。
Developing a suitable treatment for refractory organic wastewater is a difficulty in the field of sewage treatment. In this paper, the combination of photocatalytic and biological treatment is considered to avoid the high running cost and unstable treatment effect based on a full analysis of treatment technology of high concentration organic wastewater. Quantum efficiency of existing photocatalysts is low, so it is difficult to use in wastewater treatment. By a review characteristics of refractory organic pollutants, we find that most refractory organic pollutants have hydrophobic group. Thus, photocatalysts with hydrophobic properties by innovated the surface of nano-TiO_2 photocatalysts will increase the adsorption capacity of refractory organic pollutants. Through the selectively adsorption and degradation by photocatalysis, lower quantum requirement is demanded of high concentration refractory organic wastewater. According to this innovative idea, SDS-CuO/TiO_2 photocatalyst is prepared by modification of nano-TiO_2 using CuO and sodium dodecyl sulfate (SDS). A spiral up-flow type photocatalytic reactor is developed to improve the reaction efficiency and catalyst recovery rate. A photocatalytic-biological system is proposed to treat the refractory organic wastewater, and the key controlling factors and dynamics model are discussed.
     1) Nano-TiO_2 is modified by CuO to have visible responsibility. By characterization of XRD, it is found that there are two kinds of crystals on CuO/TiO_2, which are CuO and anatase TiO_2. Copper exists mainly in the form of CuO. UV-Vis characterization found CuO/TiO_2 catalyst has good response performance of visible light, and the maximum excitation wavelength reaches 821nm; Three-dimensional fluorescence characterization found the compound probability of electron and hole is decreased in photocatalyst modified by CuO. BET characterization found that modification of CuO does not influence the surface area and pore structure. CuO/TiO_2-visible light system exhibits excellent photocatalytic activity in degradation of methylene blue. Decolorization rate of methylene blue up to 90% within 2h when the initial pH = 11, the initial concentration of methylene blue is 500 times, the catalyst dosage is 0.1g/L wastewater, H2O_2 dosage is 10mL/L wastewater. CuO/TiO_2 has the highest catalytic efficiency with such conditions.
     2) Hydrophobic SDS-CuO/TiO_2 photocatalyst is prepared by using SDS as the modifier on CuO/TiO_2 surface. This modification does not effect the catalyst crystal type and the properties DRS of CuO/TiO_2. But it really reduces the compound probability of electron and hole. SDS modified catalyst leads to increased crystals size and pore size, and decreased BET surface area. Organic hydrophobic groups obtain on the modified surface of the catalyst, which are mainly C-C and-CH-group. The concentration of SDS is the most important factor on photocatalytic activity when SDS-CuO/TiO_2 is prepared. The photocatalyst has the best activity when SDS concentration is the critical micelle concentration (CMC), because there are maximum amount of hydrophobic groups on photocatalyst surface and the lowest compound probability of electron and hole. BET surface area of photocatalyst prepared with this concentration is 52.1m2/g, and the maximum excitation wavelength is 763nm.
     3) SDS-CuO/TiO_2-visible light system is used to degrade nitrobenzene. 2h degradation of nitrobenzene was 77% catalyzed by SDS-CuO/TiO_2 when the initial pH = 9, the initial concentration of nitrobenzene was 400mg/L~500mg/L, the catalyst dosage is 0.2g/L wastewater, H2O_2 dosage is 6mL/L wastewater.. Results show that SDS-CuO/TiO_2 photocatalyst has visible light response and hydrophobic adsorption capacity by by two steps modification of CuO and SDS. It can be used to preferential adsorb and degrade hydrophobic refractory organic pollutants under visible light irradiation.
     4) By cyclone separation theory, in order to increase the reactor A/V value and photocatalyst recovery rate, a solar photocatalytic reactor is designed. Its radius and high meet R 3 + 3 R2h2=Q, and light area and radius meet S = 2π(0.02 ? R 3) / 3R. A/V value reaches 13, and loss rate of photocatalysts is 15.5% after 5d reaction When R=0.075m. Loss rate is 26.5% after 20d. SDS-CuO/TiO_2 catalyst has high photocatalytic activity even after continuous use of 20d. Printing and dyeing wastewater is treated under the sunlight. Results show that there is a maximum of promoting of light intensity in photocatalytic process. Aeration can be used to replace H2O_2 as electron capture agent in photocatalytic reaction. 3h is a better hydraulic retention time. Using auxiliary light source can significantly enhance the wastewater treatment. It can be used when the natural light is absence.
     5) SDS-CuO/TiO_2 photocatalytic-SBR biochemical system can be used for the treatment of refractory organic wastewater. For the treatment of printing and dyeing wastewater, Degradation process of refractory organic pollutants will take about 40min in photocatalysis unit. The wastewater has the best biodegradability, because BOD5 and DHA of wastewater reach the maximum value after 40min. The best operating parameters for photocatalytic reactor is 4g SDS-CuO/TiO_2 photocatalyst, 0.25m3/h aeration, 40min residence time; for SBR biological treatment unit is 0.179kgCOD/ (kgMLSS ? d) sludge load, 0.4m3/h aeration, 10h aeration time. Under these conditions, effluent quality of this photoatalytic-biological systems can achieve I-level standard of "discharge Standard of water pollutants for dyeing and finishing of textile industry " (GB4287-92).
     6) COD degradation of printing and dyeing wastewater consistent with Langmuir- Hinshelwood kinetic equation photocatalyzed by SDS-CuO/TiO_2. Considering the factors of initial COD concentration of wastewater, the amount of catalyst and light intensity, the dynamic model is:
     Formation rate of BOD5 in photocatalysis unit is C = 23.729t ? 49.33. The t in this equation relates to the amount of refractory organic pollutants in wastewater, and it between 30 and 40 in this system. By calculating the COD, BOD5 and B/C values in photocatalysis unit, main pollution indicators and biodegradability of influent of biological treatment unit can be obtain. So this dynamic model can be used as basis of operational controls of biological treatment unit.
引文
[1]环境保护部(国家环保总局). 2001-2008年中国环境统计年报[M].北京:中国环境科学出版社, 2001-2008.
    [2]徐晓白,戴树桂,黄玉瑶.典型化学污染物在环境中的变化及生态效应[M].北京:科学出版社. 1998, 1-3.
    [3]钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理下卷·难降解有机物[M].北京:中国环境科学出版社. 2000, 2-65.
    [4]丁真真.难降解有机物废水的处理方法研究现状[J].甘肃科学, 2006, 22(2):113-115.
    [5]何苗.有毒难降解有机物的污染及防治对策[J].世界环境, 1997, 1(14): 34-36.
    [6]魏文圆,张志刚.活性炭在印染废水脱色中的应用[J].工业水处理, 1996, 16(2): 3-5.
    [7] Hauger D G. Industrial wastewater treatment by granular activated carbon[J]. Am Dyestuff Reporter, 1998, 62(11):69-75.
    [8]杨书名,黄长盾.纺织印染工业废水治理技术[M].北京:化学工业出版社. 2002.
    [9]汪学英,曾小君,郑珺.新型脱色絮凝剂(KD-800)处理印染废水的研究[J].工业用水与废水, 2004, 35(3): 78-81.
    [10]王心乐,李明玉,宋琳等.络合萃取法对煤制气高浓度含酚废水的资源化处理[J].工业水处理, 2008, 28(12): 29-32.
    [11]蒋晓芸,陈松,李国兵.萃取法处理高含量含苯胺废水[J].化学工业与工程, 2008, 25(3): 248-250.
    [12]税永红.超滤在印染废水处理中应用[J].福建化工, 2004, (1):1-3.
    [13]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社, 1999.
    [14]鲍廷镛,方孟伟.反渗透法处理锦纶染色废水[J].水处理技术, 1987, 7(4): 19-21.
    [15] Porter J J, Brandon C. Zero discharge as exemplified by textile dyeing and finishing[J]. Chem tech, 1976, (6): 402-407.
    [16]王学松.反渗透膜技术及其在化工和环保中的应用[M].北京:化学工业出版社. 1988, 65-102.
    [17]王振余.碳膜处理染料水溶液的研究[J].膜科学与技术. 1997, 17(5):7-10.
    [18]方旭,付振强.复合式好氧生物法处理印染废水[J].环境保护科学. 2004, 30(3): 20-33.
    [19]刘伟京,许明,吴海锁等.厌氧-好氧-混凝工艺处理印染废水中试研究[J].环境科学研究, 2009, 22(4): 478-483.
    [20]苏月来,张建中,谢雨生等.有毒难降解有机物废水处理的生物强化技术[J].环境污染与防治, 1998, 21(1): 36-39.
    [21]刘芳,顾国维.废水生物处理技术新进展[J].煤矿环境保护, 2002, 16(3): 17-20.
    [22] Zhang Fu-ming, Knapp Jeremy S, Tapley Kelvin N. Development of bioreactor systems for decolorization of orange II using white rot fungus[J]. Enzyme and Microbial Technology, 1999, 24(1-2): 48-53.
    [23] Palma C, Moreira M T, Mielqo L, et al. Use of a fungal bioreactor as a pretreatment or post–treatment step for continuous decolorisation of dyes[J]. Water Science and Technology, 1999, 40(8): 131-136.
    [24]范伟平,曹惠君,张俊.微电解-白腐菌生物降解-絮凝沉降系统用于染料废水的处理[J].南京化工大学学报, 2001, 23(4): 18-22.
    [25]范丽,杨卫身,杨凤林等.复极填充床电解槽用于偶氮染料废水脱色[J].中国给水排水, 2002, 18(4): 34-36.
    [26] Fujishima A , Honda K. Electrochemical photolysis of water at a semiconductor electrode[J ] . Nature , 1972 , 238 :37~38.
    [27] Carey J. H. , Lawrence J. , Tosine H. M. . PhotodechlorinaTiOn of PCBs in the presence of titanium dioxide in aqueous solutions[J]. Bull. Environ. Contam Toxicol, 1976, 16: 697.
    [28] Frank S. N. , Bard A. J. . Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions attihanium dioxide powder[J]. Journal of the American Chemical Society, 1977, 99: 303-305.
    [29]席北斗,刘纯新,周岳溪等.钛酸四丁酯水解制备TiO2光催化氧化五氯苯酚钠[J].中国环境科学, 2000, 20(5): 449.
    [30] Bessekhouad Y. , Robert D. , Weber J. V. . Bi2S3/ TiO2 and CdS/TiO2 heterojuncTiOns as an available configuraTiOn for photocatalytic degradaTiOn of organic polluTiOn. Journal of Photochemistry and Photobiology A :Chemistry 2004, 163:569-580.
    [31] Fu X, Clerk L A, Yang Q, et al. Enhanced Photocatalytic Performance of Titania-based Binary Metal Oxides:TiO2/SnO2 and TiO2/ZrO2[J]. Envir. Sci. &Tech. , 2003, 30:647-653.
    [32]豆俊峰,郑泽根.纳米TiO2的光催化特性及其在环境科学中的应用[J].材料导报, 2000, 11: 35-37.
    [33] Sayama K, Tsukagoshi S, Hara K, et al. Photoelectrochemical properties of aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film[J]. Phys. Chem. B, 2002, 106: 1363-1371.
    [34] Dhananjay S B. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light[J]. Chemical Engineering Journal, 2004, 102: 283-290.
    [35] Iwasaki M, Hara M, Kawada H, et al. State of arts for bleach plant effluent closure [J]. Journal of Colloid and Interface Science, 2000, 224(1):202-204.
    [36] Rahman M. A., Qamar M. Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide[J]. Journal of Advanced Oxidation Technologies, 2006, 9(1):103-109.
    [37] Peng Feng, Chen Shui hui, Zhang Lei, et al. Preparation of visible-light response nano=sized ZnO film and its photocatalytic degradation to methyl orange[J]. Wuli Huaxue Xuebao, 2005, 21(9): 944-948.
    [38]李春荣,杨胜科,段磊等.二氧化钛光催化降解硝基苯废水[J].应用化工, 2007, 36(8): 946-948.
    [39] Kohtani S, Inaoka Y, Hayakawa K, et al. Degradation of benzo[a]pyrene using TiO2 and Ag-loaded BiVO4 photocatalysts: Evaluation by the Ames mutagenicity assay[J]. Journal of Advanced Oxidation Technologies, 2007, 10(2): 381-386.
    [40] Bhatkhande D S, Sawant S B, Schouten J C, et al. Photocatalytic degradation of chlorobenzene using and artificial UV radiation[J]. Journal of Chemical Technology and Biotechnology, 2004, 79(4): 354-360.
    [41]谭欣,何振雄,霍爱群.非整比纳米TiO2-x膜光催化降解水中微量卤代烃[J].天津大学学报(自然科学与工程技术版), 2000, 33(3): 360-362.
    [42] Liu Wei, Chen Shifu, Zhao Wei, et al. Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase[J]. Journal of Hazardous Materials, 2009, 164: 154-160.
    [43] Leyva E, Montalvo C, Moctezuma E, et al. Photocatalytic degradation of pyridine in water solution using ZnO as an alternative catalyst to TiO2[J]. Journal of Ceramic Processing Research, 2008, 9(5): 455-462.
    [44]赵文宽,覃榆森,方佑龄等.水面石油污染物的光催化降解[J].催化学报, 1999, 20(3): 368-372.
    [45] Adan C, Martinez-Arias A, Malato S, et al. New insights on solar photocatalytic degradation of phenol over Fe-TiO2 catalysts: Photo-complex mechanism of iron lixiviates[J]. Applied Catalysis B: Environmental, 2009, 93(1-2):96-105.
    [46] Zhang T Y, Fan Q F, Zeng M, et al. Photocatalytic degradation of light fast scarlet BBN and surfactant bicomponents[J]. Acta Physico-Chimica Sinica, 2007, 23(11): 1803-1807.
    [47]姚秉华,赵青,庞秀芬等.漂浮负载型光催化剂制备及降解草甘膦研究[J].环境工程学报, 2008, 2(2): 195-199.
    [48]张彭义,余刚.半导体光催化剂及其改性技术进展[J].环境科学进展, 1997, 5(3):1-10.
    [49] Zhu X. L. , Yuan C. W. . Photocatalytic Degradation of Pesticide Pyridaben on TiO2 Particles[J]. Journal of Molecular Catalysis, 2005, 229(1-2):95-105.
    [50] Wu S. X. , Ma Z, Qin Y. N. , et al. XPS study of copper doping TiO2 photocatalyst[J]. WuliHuaxue Xuebao, 2003, 19(10):967-969.
    [51]唐玉朝,胡春,王怡中.无机阴离子对TiO2/SiO2光催化降解酸性红B活性的影响[J].环境科学, 2002, 21(4): 376-379.
    [52]徐晓凡,王银叶,史艳娇.光催化反应器的影响因素及开发方向[J].环境保护, 2003, 9:53-56.
    [53]沈杭燕,张晋霞,唐新硕. TiO2膜光催化剂的改进及表征[J].化学物理学报, 2001, 14(4): 497-500.
    [54] Diguna L. J. , Murakami M. , Sato A. , et al. Photoacoustic and photoelectronchemical characterization of inverse opal TiO2 sensitized with CdSe quantum dots . Japanese Journal of Applied Physics, Part 1[M]: Regular Papers and Short Notes and Review Papers , 2006, 45(6B): 5563-5568.
    [55]张桂兰.染料废水在旋转式光催化反应器中的降解研究[J].环境科学, 1999, 20(5): 79-81.
    [56] Youngmin Cho, Hyunsook Kyung, Wonyong Choi. Visible Light Activity of TiO2 for the Photoreduction of CCl4 and Cr(Ⅵ) in the Presence of Nonionic Surfactant (Brij). Applied Catalysis B: Environmental, 2004, 52: 23-32.
    [57] Ljubas D. Solar photocatalysis2a possible step in drinking water treatment[J]. Energy, 2005, 30 (10) : 1699-1710.
    [58] Santana V. S. , Fernandes M. N. . Photocatalytic degradation of the vinasse under solar radiation[J]. Catalysis Today-Selected Contributions of the XX Ibero-American Symposium of Catalysis, 2008 , 133-135 : 606~610.
    [59]刘秀华,傅依备.废水处理光催化反应器的发展[J].工业水处理. , 2004, 24(12):1-5.
    [60]李发堂,赵地顺,张丽英等.亲油性纳米TiO2的合成及其光催化氧化催化裂化汽油脱硫的研究[J].现代化工. 2006, 26: 157-159.
    [61]张霞,赵岩,张彩碚等.表面疏水性纳米TiO2颗粒的制备及光催化性能[J].材料研究学报. 2005, 19(2): 131-138.
    [62] Hoffman M R, Martin S T, Choi W, et al. Environmental application of semiconauctor photocatasis. Chem Rev, 1995, 95(1): 69-96.
    [63] Wang X J, Liu Y F, Hu Z H, et al. Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities[J]. Journal of Hazardous Materials, 2009, 169(1-3): 1061-1067.
    [64] Watson S. , Beydoun D. , Scott J. , et a1. Preparation of nanosized crystalline TiO2 particles at low temperature for photoeatalys[J]. Journal of Nanoparticle Research, 2004, 6: 193-207.
    [65] Maldonado M. I. , Passarinho P. C . , Oller I. , et al. Photocatalytic degradation of EU prioritysubstances : A comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant[J]. Journal of Photochemist ry and Photobiology A: Chemistry, 2007, 185 (223): 354-363.
    [66] Rincon A. G. , Pulgarin C. . Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale: Implications in solar disinfection at low temperature of large quantities of water[J]. Catalysis Today-Materials, Applications and Processes in Photocatalysis, 2007, 122 (122): 128-136.
    [67] Kim Yoon-Suk, Chung Yong-Chae, Lee Kyung Sub , et al . The electronic structure of Ni doped rutile TiO2 [J]. Journal of Electroceramics, 2006, 17 (2):951-953.
    [68] Hou Tinghong, Mao Jian, Pan Haibing, et al. Investigation of electronic structure of Nd-doped TiO2 nanoparticles using synchrotron radiation photoelectron spectroscopy[J]. Journal of Nanoparticle Research, 2006, 8(2): 293-297.
    [69] Diguna Lina J., Murakami Motonobu, Sato Akira, et al. Photoacoustic and photoelectronchemical characterization of inverse opal TiO2 sensitized with CdSe quantum dots [J]. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2006,45(6B):5563-5568.
    [70] Loddo Vittorio, Marci Giuseppe , Martin Cristina et al . Sclafani, Antonino Preparation and characterisation of TiO2 (anatase) supported on TiO2 (rutile) catalysts employed for 4-nitrophenol photodegradation in aqueous medium and comparison with TiO2 (anatase) supported on Al2O3 [J] . Applied Catalysis B:Environmental , 1999, 20(1):29-45 .
    [71] Harada Kenji , Hisanaga Teruaki, Tanaka Keiichi, et al. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions[J]. Water Research , 1990, 24(11):1415-1417.
    [72] Li Xiaojing, Cubbage Jerry W., Jenks William S. Photocatalytic degradation of 4-chlorophenol 2 : The 4-chlorocatechol pathway [J]. Journal of Organic Chemistry, 1999, 64(23): 8525-8536.
    [73] Litter M I , Navio J A1J Photochem1Photobio A[J]. Chem, 1996, 98 (3) : 171-181.
    [74]王玉萍,袁俊秀,李杰等. Mo-TiO2/AC光催化剂的制备及可见光降解L-酸的研究[J].环境科学, 2007, 28(8): 1746-1751.
    [75]籍宏伟,马万红,黄应平等.可见光诱导TiO2光催化的研究进展[J].科学通报, 2003, 48(21): 2199-2204.
    [76] Feng X H, Zu Y Q, Tan W F et al. Arsenite oxidation by three types ofmanganese oxides. Journd Environmental Sciences, 2006, 18(2):292-298.
    [77]刘守新,陈孝云,李晓辉. N掺杂对TiO2形态结构及光催化活性的影响[J].无机化学学报,2008, 24(2): 253-259.
    [78] Asahi R, Ohwaki T, Aoki K, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
    [79] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1):69-96.
    [80]冯光建,刘素文,修志亮等.氮离子和稀土离子共掺杂纳米TiO2光催化性能的研究[J].中国稀土学报, 2008, 26(2): 148-152.
    [81]张琦,李新军,李芳柏等. WOx、TiO2光催化剂的可见光催化活性机理探讨[J].物理化学学报, 2004, 20(5): 507-511.
    [82] Kohle O, Gratzel M, Meyer A, et al. Crystal Structures of Ru Complex Sensitizers of TiO2 Anatase Nanopowders[J] . Advanced Materials, 1997, 9: 904-906.
    [83] Sayama K, Tsukagoshi S, Hara K, et al. Photoelectrochemical properties of aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film[J]. Phys. Chem. B, 2002, 106: 1363-1371.
    [84]蔡河山,刘国光,吕文英等.纳米TiO2光催化剂可见光响应的改性研究[J].水资源保护, 2008, 24(2):86-88.
    [85] Cho Y, Choi W, Lee C, et al. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2[J]. Environ Sci Technol, 2001, 35:966-970.
    [86] Hoertz P G, Thompson D W, Friedman A, et al. Ligand-localized electron trapping at sensitized semiconductor interfaces[J]. J Am Chem Soc, 2002, 124:9690-9691.
    [87] Wu T, Liu G, Zhao J, et al. Mechanistic study of the TiO2-assited photodegradation of squarylium cyanine dye in methanolic suspensions exposed to visible light. New J Chem, 2000, 24:93-98.
    [88] Hoertz P G, Thompson D W, Friedman L A, et al. Ligand-localized electron trapping at sensitized semiconductor interfaces[J]. J Am Chem Soc, 2002, 124(33):9690-9691.
    [89] A. L. Linsebigler, G. Lu, J. T. Yates. Photocatalysis on TiO2 surface: principles, mechanisms, and selected results. Chem. Rev, 1995, 95(3):735-758
    [90]丘永樑,陈洪龄,徐南平.水热制备掺锑纳米TiO2及其光活性抑制研究[J].无机材料学报, 2005, 20(3): 580-586.
    [91]李芳柏,古国榜,黎永津. WO3/TiO2复合半导体的光催化性能研究[J].环境科学, 1999, 20(4): 75-78.
    [92]吉芳英,邱雁,徐璇等. CuO /TiO2-H2O2可见光催化亚甲基蓝脱色效果及影响因素研究[J].环境工程学报, 2008, 2(6): 743-747.
    [93]付川,郭劲松,潘杰等.三维电场协同TiO2光催化降解水中双酚A的研究[J].中国给水排水, 2009, 25(7): 79-82.
    [94]卢晗锋,周瑛,徐柏庆等. Au掺杂方式对锐钛矿TiO2光催化性能的影响[J].物理化学学报, 2008, 24(3): 459-464.
    [95]孙奉玉,吴鸣,李文钊等.二氧化钛的尺寸与光催化活性的关系[J].催化学报, 19(3): 229-233.
    [96]徐晓凡,王银叶,史艳娇.光催化反应器的影响因素及开发方向[J].环境保护, 2003, 9:53-56.
    [97] Heffmann J M, Disdier J, Pichat P, Malato S, Blanco J. TiO2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2, 4-dichlorophenoxyaceticacid (2, 4-D) and of benzofuran [J] Appl Catal B, 1998, 17(1-2): 15-23.
    [98] Haarstrick A, Kut O M, Heinzle E. Ozonation of wastewater containing N-methylmorpholine- N-oxide [J] Environ Sci Technol, 1996, 30(3):817.
    [99]谢翼飞,李国欣,李旭东. TiO2光催化反应器处理废水的研究现状与进展[J].给水排水, 2002, 28(8):63-67.
    [100] Hiromi Yamashita , Masaru Harada , Junko Misaka , et al . Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2 [J] . Catalysis Today , 2003(84) : 191-196.
    [101] Wu Zhenghuang. Photocatalytic degradation of methylene blue over TiO2 thin film [J]. Journal of Natural Gas Chemistry. 2001, 10(4):331-350.
    [102] Kimura Toshiaki, Yoshikawa Nobuhiko, Mataumura Nobuhiko, et al . Photocatalytic degradation of nonionic surfactants with immobilized TiO2 in an airlift reactor[J]. Journal of Environmental Science and Helth , Part A : Toxic/Hazardous Substances and Environmental Engineering , 39(11-12): 2867-2881.
    [103] Maria Jlenia Cantavenera , Irene Catanzaro, Vittorio Loddo, et al. Photacatalytic degradation of paraquat and genotoxicity of its intermediate products [J] . Journal of Photochemistry and Photobiology A : Chemistry, 2007, (185) : 277-282.
    [104] Bo Sun, Ettireddy P. Reddy, Panagiotis G, et al . TiO2-loaded Cr-modified molecular sieves for 4-chlorophenol photodegradation under visible light[J]. Journal of Catalysis, 2006(237) : 314-321.
    [105]王侃,陈英旭,叶坟霞. SiO2负载的TiO2光催化剂可见光催化降解染料污染物[J].催化学报, 2004, 25(12): 931-936.
    [106]朱莹佳,肖羽堂,张爱勇等.湖泊源水中微囊藻毒素的光催化降解研究进展[J].现代化工, 2008, 28(2): 24-30.
    [107]张元广,陈友存.纳米TiO2微球的制备及光催化性能研究[J].材料科学与工程学报, 2003, 21(1): 61-65.
    [108]于向阳,程继健,杨阳等.稀土元素掺杂对TiO2光催化性能的影响[J].华东理工大学学报, 2000, 26(3): 287-289.
    [109]李耀中,孔欣,周岳溪.流化床光催化氧化处理印染废水中试研究[J].中国环境科学, 2003, 23(3): 230-234.
    [110]郑先君,姜巧娟,魏丽芳等.纳米TiO2光催化降解印染废水的研究[J].环境科学与技术, 2009, 32(4): 159-162.
    [111]姚清照,刘正宝.光电催化降解染料废水[J].工业水处理, 1999, 19(6): 15-18.
    [112]周建,章婷曦,洪利光等.染料废水的催化氧化处理[J].环境污染与防治, 2000, 22(4): 25-26.
    [113]王桂华,尹平河,赵玲等.超声波辅助TiO2光催化降解印染废水的研究[J].工业水处理, 2004, 24(4): 42-45.
    [114]徐高田,校华,曾旭等.纳米TiO2光催化-SBR工艺处理印染废水的研究[J]. 2007, 27(9): 1444-1450.
    [115]陈雪梅,邢核,王怡中.生化-光催化氧化工艺处理印染废水中污泥活性研究[J].上海环境科学, 2001, 20(12): 589-592.
    [116]赵梦月,陈士夫,陶跃武.光催化与生物降解法处理有机磷农药废水[J] .化工环保, 1995, 15(2):115-116 .
    [117]王怡中,陈梅雪,胡春等.光催化氧化与生物氧化组合技术对染料化合物降解研究[J] .环境科学学报, 2000. 20(6): 772-775
    [118] Zhang Fu-Shen, Itoh Hideaki . Iron oxide-loaded slag for arsenic removal from aqueous system[J]. Chemosphere, 2005, 60(3) : 319-325 .
    [119]唐建军,范小江,邹原等. TiO2的晶形对其可见光催化性能的影响[J].北京科技大学学报, 2009, 31(4): 418-422.
    [120] K Kato. Crystal Structures of TiO2 Thin Coatings Prepares from the Alkoxide Solution via the Dip-Coating Technique Affecting the Photocatalytic Decomposition of Aqueous Acetic Acid[J]. Journal of Material Science, 1994, 29: 5911-5915.
    [121]李芳柏,古国榜.亚甲基蓝溶液的光催化脱色及降解[J].环境污染与防治, 1999, 21(6):1-4.
    [122]谭小萍,王国生,汤克敏.光催化法深度处理垃圾渗滤液的影响因素[J].中国给水排水, 1999, 15(5): 52-54.
    [123]蒋伟川,王琪全,余传明.半导体光催化降解分散染料溶液的研究[J].上海环境科学, 1995, 14(5): 8-10.
    [124]孙上梅,康振晋. TiO2膜太阳光催化氧化法处理毛染废水[J].化工环保, 2000, 20(1): 11-14.
    [125]王滨松,陶虎春,黄君礼.草酸铁法处理亚麻染色废水的研究[J].哈尔滨工业大学学报, 2007, 39(10): 1573-1576.
    [126]王怡中,符雁.多相光催化反应中太阳光与电光源效率比较[J].太阳能学报, 1998, 19(1): 37-41.
    [127]张立德,牟季美.纳米材料和纳米结构[M].北京:自然科学出版社, 2001, 147-148.
    [128]陈云霞,周学东,何鑫. UV- Vis光谱研究Al3+ , Zn2+ , Cu2+掺杂对TiO2薄膜光学禁带宽度的影响[J].中国陶瓷工业, 2007, 14(5): 6-10.
    [129]王智宇,唐培松,蒋玉龙等.量子尺寸纳米TiO2的荧光及漫反射光谱[J].稀有金属材料与工程, 2004, 33(3): 162-165.
    [130]张西旺,王怡中.无机氧化剂在光催化氧化技术中的应用[J].化学通报, 2005, (11): 807-814.
    [131] Li X Z, Chen C C, Zhao J C. Mechanism of photodecomposition of H2O2 on TiO2 surface under visible light irradiation. Langmuir, 2001, 17(13): 4118-4122.
    [132]张雯,王绪绪,林华香,等.磁场对光催化反应羟基自由基生成速率的影响[J].化学学报, 2005, 63(18):1765~1768.
    [133] Nedoloujko A, Kiwi J. TiO2 speciation precluding mineralization of 4-tert-burylpyridine accelerated mineralization via Fenton photo-assisted reaction [J]. Water Research, 2000, 34(13): 3247~3284.
    [134] Wu T X, Liu G M, Zhao J C, et al. Evidence for H2O2 generation during the TiO2-assisted photodegradation of dyes in aqueous dispersion under visible light illumination [J]. Phys Chem B, 1999, 103(23):4862~4867.
    [135]张胜利,陈小明,罗和安等. Cu2+/TiO2对甲基橙的光催化脱色机理[J].广州化学, 2004, 29(1): 15~19.
    [136] Ferry J L, Glaze W H. Photocatalytic reduction of nitroorganics over illuminated titanium dioxide: Electron transfer between excited-state TiO2 and nitroaromatics[J]. Phys Chem B, 1998, 102(12):2239~2244.
    [137] Cho Y, Choi W, Lee C H, et al. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2[J]. Environ Sci Technol, 2001, 35(5):966~970.
    [138]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M]北京:中国环境科学出版社, 2002, 467-470.
    [139]孙秀云,王连军,王见等.磁性光催化剂TiO2/Fe3O4的制备和表征[J].光谱学与光谱分析, 2007, 27(4):777-780.
    [140]罗妮,沈俊,田从学等.介孔SO42-/TiO2的一步法制备及其光催化性能[J].材料研究学报, 2007, 21(3):245-249.
    [141]陈方博,方云,吴丽娜.十二烷基硫酸钠浓溶液的胶束行为与其溶液体相行为间的相关性[J].应用化学, 2008, 25(4):401-404.
    [142]张建华,冯利智,欧尚仁.可见吸收光谱线型参数分析法测定十二烷基硫酸钠临界胶束浓度[J].理化检验:化学分册, 2006, 42(11): 885-888.
    [143] Makarova Olga V, et al. Surface modificaTiOn of TiO2nanoparticles for photochemical reducTiOn of nitrobenzene[J]. Environmental Science and Technology, 2000, 34(22): 4797- 4803.
    [144]白波,董岁明. TiO2光催化反应中的吸附机制研究[J].西北大学学报(自然科学版), 2006, 36(1): 77-81.
    [145]王志魁主编.化工原理.第二版[M],北京:化学工业出版社, 1998.
    [146]张东翔,张凌云,黎汉生.浆态光催化反应器有机模拟废水光催化氧化特性与动力学[J].化工学报, 2006, 57(5): 1159-1165.
    [147]张良,杨云龙.用TTC-脱氢酶活性测定法筛选焦化废水优势菌[J].山西建筑, 2008, 34(8): 202-203.
    [148]尹军,谭学军,张立国等.测定脱氢酶活性的萃取剂选择[J].中国给水排水, 2004, 20(7):96-98.
    [149] Wang X J, Liu Y F, Hu Z H, et al. Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities[J]. Journal of Hazardous Materials, 2009, 169(1-3): 1061-1067.
    [150]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002.
    [151]王保成,许文林,何龙.重铬酸钾间接电化学氧化蒽制蒽醌[J].煤炭转化, 1996, 19(2): 93-96.
    [152]李稳,宋伟,郑瑞印.污泥微膨胀技术在印染废水处理中的应用[J].环境科技, 2008, 21(6):43-46.
    [153]金一中,魏岩岩,陈小平.水解酸化-SBR工艺处理印染废水的研究[J].中国环境科学, 2004, 24(4): 489-491.
    [154]喻学敏,许明,吴伟.厌氧折流板反应器处理印染废水[J].印染, 2009, (7): 35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700