用户名: 密码: 验证码:
几类含碳分子体系的对称性和模糊对称性理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于体系对称性的研究,研究人员已经建立了一套系统的理论和科学的方法。但是,当人们处理一些不具备完整对称性的体系时,意见就产生了分歧。对于某一体系,其对称性可能会由于某种原因(比如发生取代反应)致使原有的对称性下降,就产生了不完整对称性。例如,苯分子发生卤代反应以后,其原有的D6h的对称性会失去,而产生不完整对称性。过往,物理、化学领域对这类不完整对称性的描述,往往采取两种极端的方式:一种观点是否认不完整对称性的存在,也就是认为不完整对称性即不具有对称性,而不予以考虑;另外一种观点是忽略不完整性,即认为体系仍近似看作具有原来的对称性。这两种观点都有一定的道理,但又具有片面性。怎样描述这类不完整对称性才更为科学呢?随着上世纪60年代Zadeh建立模糊数学后,化学工作者将模糊数学方法引入到化学领域,成功建立了模糊对称性理论,诸如上述问题便迎刃而解了。
     模糊对称性是理论化学中一个非常重要的议题,按照模糊对称性方法对一些分子进行研究,得到了不少重要的结果,一些研究分子以及分子轨道(MO)模糊对称性特征的方法也被提出。此外,静态和动态分子体系模糊对称性特征的研究也能得以开展。例如,分子整体骨架的模糊对称性;由重复结构单元组成的分子的模糊对称性;分子反应时的模糊对称性;平面及非平面分子的模糊对称性;线型分子的模糊对称性以及分子轨道的模糊对称性和不可约表示成分等。
     在改进计算方法和提高数据处理效率的基础上,使得研究更为深入,相关的模糊空间对称性的研究也能进行了。一般说来,对于n维空间里仅在某一个特定方向具有周期对称性的体系,其对称性研究可借助于G1n群。因此,我们对具有一维模糊周期性的线状分子,比如聚炔、累积多烯以及全碳环分子,按照模糊G11对称性进行探讨;具有二维模糊周期性的平面分子,比如石墨烯分子,可以按照模糊G12对称性进行探讨;对于在三维空间中,仅在某一个方向具有周期性的体系,比如碳纳米管,其对称性可借助于柱面群G13和柱面正交坐标系进行探讨。对更为复杂的体系,例如M buis环带分子,此类分子的对称性属于分子环面群,对其称性的研究需借助于环面正交曲线坐标系进行探讨。
     基于上述方法和理论,本论文主要研究了几类含碳分子体系的对称性和模糊对称性,具体包括:线状的聚炔、累积多烯分子和全碳环分子,平面的石墨烯分子,具有立体结构的M buis环带分子以及碳纳米管。分别从分子骨架的对称性及模糊对称性,π-MO的能量,分子轨道的隶属函数以及不可约表示成分等方面进行了系统研究。具体的研究对象是:
     (1)含有不同碳原子数的线状聚炔分子(包括C_(10)H_2, C_(20)H_2, C_(30)H_2和C_(40)H_2分子),属于D_(2h)点群的累积多烯C_(2n)H_4和属于D2d点群的累积多烯C_(2n-1)H_4分子,全碳环C_6和C_(18)分子。探讨了它们分子骨架的对称性和模糊对称性,π-MO的模糊对称性,π-MO关于平移对称变化的隶属函数以及相应的不可约表示成分。
     (2)具有D_(2h)点群对称性的一组锯齿型石墨烯分子(包括C_(100)H_(32)、C_(84)H_(28)、C_(68)H_(24)和C_(52)H_(20))和一组扶手椅型石墨烯分子(包括C_(108)H_(32)、C_(72)H_(24)和C_(36)H_(16)),两个分别具有D_(2h)点群的子群对称性的石墨烯分子C_(94)H_(30)(C_(2h))和C_(94)H_(30)(C_(2v)),和一个以D_(2h)点群作为子群,属于D_(6h)点群的石墨烯C_(96)H_(24)(D_(6h))分子。分别讨论了它们分子骨架的对称性和模糊对称性,π-MO的能量分布特点,分子硬度,π-MO关于平移对称变化的隶属函数以及相应的不可约表示成分。
     (3)分别计算了Hückel型环并苯分子和M buis型环并苯分子。前者属于柱面群,需用柱面正交曲线坐标系讨论;后者属于一种不同于以往点群或空间群的新的分子环面群,具有环面螺旋旋转变换(TSR)的对称性,需利用环面正交曲线坐标系对其进行对称性研究。此外,还对多次扭转的M buis带环的对称性进行了分析和讨论。
     (4)初步探讨了一系列的扶手椅型碳纳米管和锯齿型碳纳米管,对它们的对称性,分子轨道的能量。这类体系中存在着螺旋对称性,而这种螺旋状分布结构对于某些生物大分子(如DNA与RNA等)是重要的,当然它们比碳纳米管还要复杂得多。由于这些体系较大,分子轨道的成分复杂,数据信息量很大,对我们的工作提出了更高的要求,目前的研究工作还处于尝试和探索阶段,是今后工作的重要内容。我们希望通过努力,使对体系模糊对称性的研究从简单的一维线状分子发展到二维的平面分子以及三维的立体结构,得到更多重要信息,使模糊对称性理论得到更为广泛的应用。
On the symmetry investigation of system, reseachers have established systemictheories and scientific methods. However, when we deal with some systems withoutcomplete symmetry, our views are quiet different. For a system, its original symmetryprobably declined due to some reasons (such as substitution reaction) and producedthe incomplete symmetry. For example, after the halogenated reaction, benzene lostits original D6hsymmetry, and produced the incomplete symmetry. In the past, thedescription of such incomplete symmetry in the physical and chemical fields, peoplehave often taken two extreme methods: one view is to deny the existence ofincomplete symmetry and considered that incomplete symmetry is non-symmetry;another view is neglect the incomplete symmetry and considered that the system stillapproximately possessed its original symmetry. These two views are all have somecorrectness, but both are one-sided. How to describe such incomplete symmetrywould be more scientific? In1960s, mathematician Zadeh established the FuzzyMathematics. Then, chemical workers introduced it into the field of chemistry andsuccessfully established the fuzzy symmetry theory. So, the above problems are allsolved.
     Fuzzy symmetry is a very interesting topic in theoretical chemistry and a fewimportant results have been obtained. In our previous papers, some research methodshave been established to study the fuzzy symmetry characteristics of the moleculestructures and molecular orbitals (MOs) for the static and dynamic molecular systems.For example, the fuzzy symmetry of the whole molecule skeleton, the fuzzysymmetry of molecule with repetitive unit, the molecule reactions, the nonplanarmolecules and the planar molecules, linear molecules, as well as the fuzzyrepresentation and fuzzy parity of MO.
     After the improvement of our calculation level and efficiency of data processing,we can study the fuzzy space symmetry. Generally speaking, for moleculespossessing periodicity in one-dimensional direction, they are usually analyzed by using the cylinder group G1n. Therefore, we investigate the linear moleculespossessing periodicity in one-dimensional direction (such as polyyne, cumulativepolyene and full carbon ring molecules) by the G11symmetry; planar molecules withtwo-dimensional fuzzy periodicity (e.g. graphene molecules) by the G12symmetry;and for spacial molecules possessing periodicity in one-dimensional direction, theirsymmetry can be investigated by the G13group and the orthogonal cylindricalcoordinate system is introduced to study these molecules.Basing on the above theory and method, we mainly studied severalcarbon-involved molecular systems,including: polyyne, cumulative polyene and fullcarbon ring molecules, graphene molecules, M buis cyclacenes and carbon nanotubein this dissertation. We investigated their symmetry and fuzzy symmetry of themolecular skeleton, fuzzy symmetry of their π-MOs, the membership functions ofπ-MOs about the translating symmetry transformation and the irreduciblerepresentation components. The research systems are as follows:
     (1) Linear polyyne molecules with different carbon atoms (including C_(10)H_2, C_(20)H_2,C_(30)H_2and C_(40)H_2); cumulative polyene C_(2n)H_4with the D_(2h)group symmetry andcumulative polyene C_(2n-1)H_4with the D2dgroup symmetry; full carbon ringmolecules (including C_6and C_(18)). We investigated their symmetry of themolecular skeleton, fuzzy symmetry of their π-MOs, the membership functions ofπ-MOs about the translating symmetry transformation and the irreduciblerepresentation components.
     (2) A set of zigzag graphenes with the D_(2h)group symmetry (including C_(100)H_(32),C_(84)H_(28),C_(68)H_(24)and C_(52)H_(20)) and a set of armchair graphenes (C_(108)H_(32), C_(72)H_(24)andC_(36)H_(16)); two graphenes C_(94)H_(30)(C_(2h)) and C_(94)H_(30)(C_(2v)) which possesses thesubgroup symmetry of D_(2h)group; graphenes C_(96)H_(24)(D_(6h)) which takes the D_(2h)group as its subgroup. We investigated their symmetry of the molecular skeleton,energies of the π-MOs, molecular hardness, the membership functions of π-MOsabout the translating symmetry transformation and the irreducible representationcomponents.
     (3) Calculated the Hückel cyclacenes and M buis cyclacenes. The former belongs tocylindrical group and need to use the orthogonal cylindrical coordinate system to study them. The latter belongs to a new kind of molecular torus group which isdifferent with the general point group and space group. They possess the torusscrew rotation (TSR) symmetry and need to use the torus orthogonal curvilinearcoordinate system to study them. In addition, we also investigated themulti-twisted M buis cyclacenes.
     (4) Primarily probed some armchair canbon nanotubes and zigzag canbon nanotubes,analyzed their molecular skeleton symmetry and energies of the π-MOs. Thosesystems exists screw symmetry and this spiral structure in some biologicalmacromolecules (such as DNA and RNA, etc.) is very important. Of course, thebiological macromolecules are much more complex than carbon nantubes. For theabove systems, their compositions of the molecular orbital are complex and dataprocess tedium. So, the current research is still to try and exploratory stage and itis the focus of the future.
     We hope that the symmetry and fuzzy symmetry study can be from the simpleone-dimensional linear molecular system exploring to two-dimensional planar andthree-dimensional structure systems. Through our efforts, the fuzzy symmetry theorycan be more widely applied in chemical field.
引文
[1] Zadeh L. A. Fuzzy sets[J]. Inform. And Control,1965,8,338-353.
    [2] Wang X Z, Chen B H, Yang S H, McGreavy C.Neural nets, fuzzy sets and digraphs in safetyand operability studies of refinery reaction processes[J]. Chem. Engin. Sci.,1996,51,2169-2178.
    [3] de Bruin H A E, Roffel B. A new identification method for fuzzy linear models of nonlineardynamic systems[J]. J. Process Control,1996,6,277-293.
    [4] Schulz K, Huwe B, Peiffer S. Considering parameter uncertainty in chemical equilibriumcalculations using fuzzy set theory[J]. J Hydrology,1999,217,119-134.
    [5] Sordo J A. Using fuzzy set theory to assess basis set quality[J]. Chem Phys Lett,1999,302,273-280.
    [6] Mezey P G. The proof of the metric proterties of a fuzzy chirality measure of molecularelectron density clouds[J]. J Mol Struct (Theochem),1998,455(2-3),183-190
    [7] Mezey P G. Similarity analysis in two and three dimensions using lattice animals andpolycubes[J]. J Math Chem,1992,11(1),27-45.
    [8] Mezey P G. Rules on chiral and achiral molecular transformations[J]. J Math Chem,1995,17,185-202.
    [9] Mezey P G. Rules on chiral and achiral molecular transformations. II[J]. J Math Chem,1995,18(2),133-139.
    [10]科顿F A著,刘万春,游效曾,赖伍江译.《群论在化学中的应用》,第三版,福建科学技术出版社,1999年.
    [11] Lee T D, Yang C N. Question of Parity Conservation in Weak Interactions[J]. Phys Rev,1956,104,254-258.
    [12] Christenson J H, Cronin J W, Fitch V L, et al. Evidence for the2π Decay of the KLMeson[J]. Phys Rev Lett,1964,13,138-140.
    [13] Nambu Y. Axial vector current conservation In weak Interactions[J]. Phys Rev Lett,1960,4,380-382.
    [14] Nambu Y, Jona-lasinio G. Dynamical Model of Elementary Particles Based on an Analogywith Superconductivity I[J]. Phys Rev,1961,122,345-358.
    [15] Nambu Y, Jona-Lasinio G. Dynamical Model of Elementary Particles Based on an Analogywith Superconductivity II[J]. Phys Rev,1961,124,246-254.
    [16] Kobayashi M, Maskawa T. CP violation in the renormalizable theory of weak interaction[J].Prog. Theor. Phys.,1973,49,652-657.
    [17] Woodward R B, Hofmann R. The Conservation of Orbital Symmetry[J]. Angew Chem1969,81,797-870.
    [18] Woodward R B, Hoffmann R. The Conservation of Orbital Symmetry. Verlag Chemie andAcademic Press, Weinheim and New York,1970.
    [19] Mezey P G. Potential Energy Hypersurfaces, Elsevier, Amsterdam,1987.
    [20] Mezey P G. New developments in molecular chirality[J]. Adv Mol Simi,1996,89-120.
    [21] Mezey P G. Functional groups in quantum chemistry[J]. Adv. Quant. Chem.,1996,27,163-222.
    [22] Mezey P G. Fuzzy Measures of Molecular Shape and Size, in: D.H. Rouvray (Ed.), FuzzyLogic in Chemistry, Academic Press, New York,1997
    [23]赵学庄,许秀芳.分子的模糊对称性[J].物理化学学报.2004,20,1175-1178.
    [24] Zhao X Z, Xu X F, Wang G C, et al. Fuzzy symmetry characteristics of propadinemolecule[J]. Mol Phys,2005,103,3233-3241.
    [25] Xu X F, Wang G C, Zhao X Z, et al. Fuzzy symmetries for linear molecules and theirmolecular orbitals[J]. J Math Chem,2007,41,143-160.
    [26] Zhao X Z, Xu X F, Wang G C, et al. The fuzzy D2h-symmetries of ethylene tetra-halidemolecules and their molecular orbitals[J]. J Math Chem,2007,42,265-288.
    [27] Zhao X Z, Wang G C, Xu X F, et al. The fuzzy D6h-symmetries of azines molecules and theirmolecular orbitals[J]. J Math Chem,2008,43,485-507.
    [28] Zhao X Z, Shang Z F, Wang G C, et al. Fuzzy space periodic symmetries for polyynes andtheir cyano-compounds[J]. J Math Chem,2008,43,1141-1162.
    [29] Zhao X Z, Shang Z F, Sun H W, et al. The fuzzy symmetries for linear tri-atomic B A Cdynamic systems[J]. J Math Chem,2008,44,46-74.
    [30]赵学庄,许秀芳,尚贞峰,王贵昌,李瑞芳.丙二烯分子的模糊对称性[J].物理化学学报,2008,24,772.
    [31] Li Y, Zhao X Z, Xu X F, et al. Fuzzy ta/2symmetries of straight chain conjugate polyenemolecules[J]. Sci China Ser B: Chem2009,52,1892-1910.
    [32] Zhao X Z, Shang, Z F, Li Z C, et al. Approximate symmetry characteristics usingfuzzy-subset theory study for chiral transtions of allene-1,3,-dihalides[J]. J Math Chem,2010,48,187-223.
    [33] Li Y, Xing S K, Zhao X Z, Wang G C, et al. Fuzzy symmetries of two classes of linearpolyacene molecules[J]. J Math Chem.2011,49(6):1199-1216.
    [34]邢生凯,李云,赵学庄*,尚贞锋,许秀芳,蔡遵生,王贵昌*,李瑞芳.聚炔、累积多烯与全碳环分子的模糊对称性[J].物理化学学报.2010,26,1947-1958.
    [35]邢生凯,李云,赵学庄*,尚贞锋,许秀芳,蔡遵生,王贵昌*,李瑞芳. Mobiu环并苯的分子对称性[J].物理化学学报.2011,27:(5)1000-1004.
    [36]李运伦著,《群论及其在分子结构中的应用》,湖南科学技术出版社,1996年
    [37]密勒W著,栾德怀等译,《对称性群及其应用》,科学出版社,1981年
    [38]徐光宪,黎乐民,王德民著,《量子化学》,科学出版社,2009年
    [40]潘道凯,赵成大,郑载兴著,《物质结构》,高等教育出版社,1989年
    [41] Dewar M J S, Mckee M L, Rzepa H S. J. Am. Chem. Soc.,1978,100,3607-3607.
    [42] Dewar M J S, Zoebisch E G, Healy E F. AM1: A New General Purpose QuantumMechanical Model[J]. J. Am. Chem. Soc.,1985,107,3902-3909.
    [43] Davis L P, Cuidry R.M., Williams J.R. MNDO Calculations for Molecules ContainingAluminum and Boron[J]. J. Comp. Chem.,1981,2,433-445.
    [44] Dewar M J S, Reynolds C H. The energy of the capped small system using the high leveltechnique[J]. J. Comp. Chem.,1986,2,140-143.
    [45] Stewart J J P, Optimization of parameters for semiempirical methods I. Method[J]. J. Comp.Chem.,1989,10,209-220.
    [46] Stewart J J P, Optimization of parameters for semiempirical methods II. Method[J]. J. Comp.Chem.,1989,10,221-264.
    [47] Dewar M J S, Thiel W, Ground States of Molecules,38. The MNDO Method.Approximations and Parameters[J]. J. Am. Chem. Soc.,1977,99,4899-4907.
    [48] Dewar M J S, Healy E F, MNDO calculations for compounds containing bromine[J]. J.Comp. Chem.,1983,4,542-551.
    [49] Pople J A, Beveridge D, Dobosh P, Approximate Self-consistent Molecular Orbital Theory V.Intermediate Neglect of Differential Overlap[J]. J. Chem. Phys.,1967,47,2026-2033.
    [50] Roothan C C J, New Developments in Molecular Orbital Theory[J]. Rev. Mod. Phys.,1951,23,69-89.
    [51] Pople J A, Nesbet R K, I. Self-consistent Orbitals for Radicals[J]. J. Chem. Phys.,1954,22,571-572.
    [52] Mcweeny R, Dierksen G, J. Chem. Phys.,1968,49,4852-4862.
    [53] Frisch M J, Gordon M H, Pople J A, MP2Energy Evaluation of Direct Methods[J]. J. Chem.Phys. Lett.,1988,153,503-506.
    [54] Frisch M J, Gordon M H, Pople J A, Chem. Phys. Lett.,1990,166,281-289.
    [55] Gordon M H, Gordon T H, Analytic MP2frequencies without fifth-order storage. Theory andapplication to bifurcated hydrogen bonds in the water hexamer[J]. Chem. Phys. Lett.,1994,220,122-128.
    [56] Saebo S, Almlof J, Avoiding the integral storage bottleneck in LCAO calculations of electroncorrelation[J]. Chem. Phys. Lett.,1989,154,83-89.
    [57] Pople J A, Binkley J S, Seeger R, Theoretical Models Incorporating Electron Correlation[J].Int. J. Quant. Chem. Symp.,1976,10,1-19.
    [58] Pople J A, Seeger R, Krishnan R, Variational Configuration Interaction Methods andComparison with Perturbation Theory[J]. Int. J. Quant. Chem. Symp.,1977,11,149-163.
    [59] Pople J A, Krishnan R, An Approximate Fourth Order Perturbation Theory of the ElectronCorrelation Energy[J]. Int. J. Quant. Chem. Symp.,1978,14,91-100.
    [60] Raghavachari K, Pople J A, Replogle E S, Gordon M H,. J. Phys. Chem.,1990,94,5579-5586.
    [61] Kohn W, Sham L J, Self-Consistent Equations Including Exchange and CorrelationEffects[J]. Phys. Rev.,1965,140,1133-1138.
    [62] Pople J A, Gill P M W, Johnson B G, Kohn-Sham density-functional theory within a finitebasis set[J]. Chem., Phys. Lett.,1992,199,557-560.
    [63] Johnson B G, Frisch M J, Computing Molecular Electrostatic Potentials with the PRISMAlgorithm[J]. J. Chem. Phys.,1994,100,7429.
    [64] Johnson B G, Frisch M J, Kohn-Sham density-functional theory within a finite basis set[J].Chem., Phys. Lett.,1993,216,133
    [65] Stratmann R E, Burant J C, Scuseria G E, Frisch M J, J. Chem., Phys.,1997,106,10175
    [66] Binkley J S, Pople J A, Hehre W J, Self-Consistent Molecular Orbital Methods for SmallSplit-Valence Basis Sets for First-row ElementsJ. Am. Chem. Soc.1980,102,939-947.
    [67] Pietro W J, Francl M M, Defrees D J, Pople J A, Binkley J S, Supplemented smallsplit-valence basis-sets for2nd-row elements[J]. J. Am. Chem. Soc.,1982,104,5039-5048.
    [68] Gordon M S, Binkley J S, Pople J A, Pietro W J, Hehre W. J. Small split-valence basis setsfor second-row elements[J]. J. Am. Chem. Soc.,1982,104,2797-2803.
    [69] Dobbs K D, Hehre W J, Molecular orbital theory of the properties of inorganic andorganometallic compounds.4. Extended basis sets for third-and fourth-row, main-groupelements[J]. J. Comp. Chem.,1986,7,359-378.
    [70] Dobbs K D, Hehre W J, Extended basis-sets for1st-row transition-metals[J]. J. Comp. Chem.,1987,8,861-879.
    [71] Dobbs K D, Hehre W J, Molecular-orbital theory of the properties of inorganic andorganometallic compounds[J]. J. Comp. Chem.,1987,8,880-893.
    [72] Hehre W. J., Stewart R. F., Pople J. A., Self-Consistent Molecular Orbital Methods I. Use ofGaussian Expansions of Slater Type Atomic Orbitals[J]. J. Chem. Phys.,1969,51,2797.
    [72] Collins J. B.,Schleyer P V R, Binkley J S, Pople J A, Self-Consistent Molecular OrbitalMethods. XVII. Geometries and Binding Energies of Second-Row Molecules. A Comparisonof Three Basis Sees[J]. J. Chem. Phys.,1976,64,5142-5151.
    [74] Gaussian03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg,M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark,J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox,Gaussian, Inc.,2004.
    [1] Mezey P. G., Maruani J., A continuous extension of the symmetry concept for quasi-symmetricstructures using fuzzy-set theory[J]. Mol. Phys.,1990,69(1):97-113
    [2] Mezey P. G., Maruani J., The fundamental syntopy of quasi-symmetric systems: Geometriccriteria and the underlying syntopy of a nuclear configuration space[J]. Int. J. QuantumChem.,1993,45(2):177-187
    [3] Mezey P. G., Generalized chirality and symmetry deficiency[J]. J. Math. Chem.,1998,23(1):65-84
    [4] Maruani J., Mezey P.G., Le concept de《syntopie》: Une extension continue du concept desymtrie pour des structures quasi-symétriques à l’aide de la méthode des ensembles flous.Compt. Rend. Acad. Sci. Paris (Série II),1987,305,1051-1054.
    [5] Maruani J., Toro-Labbé A., Le modèle de la syntopie et l’état de transition de réactionschimiques: Fonctions d’appartenance et coefficients de Br nsted pour l’isom é risationcis-trans. Compt.Rend.Acad Sci. Paris(Série IIb),1996,323,609-615.
    [6] Mezey P.G., Quantum chemistry of macromolecular shape[J]. Int. Rev. Phys. Chem.1997,16,361–388.
    [7] Zabrodsky H., Peleg S., Avnir D., Continuous symmetry mearure[J]. J. Am. Chem. Soc.,1993,115,8278-8289.
    [8] Avnir D., Zabrodsky H., Mezey P.G., Symmetry and chirality: Continuous measures.ncyclopaedia of Computational Chemistry,1998,4,2890-2901. Ed. Paul vonRagué Schleyer, Wiley: Chichester.
    [9] Chauvin R., Chemical algebra. I: Fuzzy subgroups[J]. J. Math. Chem.,1994,16(1):245-256
    [10] Chauvin R., Chemical algebra. II: Discriminating pairing products[J]. J. Math. Chem.,1994,16(1):257-258
    [11] Zhou X.Z., Fan Z.X., Zhan J.J., Application of Fuzzy Mathematics in Chemistry,2002,325-349, National University of Defence Technology Press, Changsha Hunan.
    [12]赵学庄,许秀芳.分子的模糊对称性[J].物理化学学报.2004,20,1175-1178.
    [13] Zhao X Z, Xu X F, Wang G C, et al. Fuzzy symmetry characteristics of propadinemolecule[J]. Mol Phys,2005,103,3233-3241.
    [14] Xu X. F., Wang G. C., Zhao X. Z., Pan Y. M., Liang Y. Y., Shang Z. F., Fuzzy symmetries forlinear molecules and their molecular orbitals[J]. J. Math. Chem.,2007,41(2):143-160
    [15] Zhao X Z, Xu X F, Wang G C, Pan Y M, Shang Z F, Li R F., The fuzzy D2h-symmetries ofethylene tetra-halide molecules and their molecular orbitals[J]. J. Math. Chem.,2007,42(2):265-288
    [16] Zhao X. Z., Wang G. C., Xu X. F., Pan Y. M., Shang Z. F., Li R. F., Li Z. C., The fuzzyD6h-symmetries of azines molecules and their molecular orbitals[J]. J. Math. Chem.,2008,43(2):485-507
    [17] Zhao X Z, Shang Z F, Wang G C, et al. Fuzzy space periodic symmetries for polyynes andtheir cyano-compounds[J]. J Math Chem,2008,43,1141-1162.
    [18] Zhao X Z, Shang Z F, Sun H W, et al. The fuzzy symmetries for linear tri-atomic B A Cdynamic systems[J]. J Math Chem,2008,44,46-74.
    [19]赵学庄,许秀芳,尚贞峰,王贵昌,李瑞芳.丙二烯分子的模糊对称性[J].物理化学学报,2008,24,772-780.
    [20] Li Y, Zhao X Z, Xu X F, et al. Fuzzy ta/2symmetries of straight chain conjugate polyenemolecules[J]. Science in China Series B: Chemisery.2009,52(11),1892-1910.
    [21] Mlder U., Burk P., Koppel I.A., Journal of Molecular Structure: THEOCHEM712(2004)81–89.
    [20] Zhao C. D., Quantum chemistry of Solids. Higher Education Press,2nd, Beijing.2003,51-54,197-204.
    [21] Wang R. H., Gao K. X., Symmetry Group of Crystallography, Science Press, Beijing..1990,348-349.
    [24] Dietmar A., Plattner, Houk K. N., J. Am. Chem. Soc.1995,117,4405-4406
    [25] Parasuk V., Almlof J., Feyereisen M.W., J. Am. Chem. Soc.,1991,113(3), pp1049–1050.
    [26] Jeffrey G.A., Rollett J.S.. Proc. R. Soc. London, Ser. A,1952,213,86.
    [27] Molder U., Burk P., Koppel I. A.,2002, International Journal of Quantum Chemistry,82,73.
    [28] Weimer M., Hieringer W., Sala F. D., Chemical Physics309(2005)77–87
    [29] Wakabayashi T., Nagayama H., Daigoku K., Chemical Physics Letters446(2007)65–70.
    [30]张聪杰,曹泽星,武海顺,徐昕,张乾二.聚炔烃电子吸收光谱的理论研究[J].物理化学学报,2002,18(7):585-589.
    [31] Bohme D. K., PAH and fullerene lons and Ion/molecule reaction in interstellar andcircumstellar chemistry[J]. Chem. Rev.,1992,92,1487-1508.
    [32] Wang X.M., Becker H., Hopkinson A.C., et al. Collision-induced dissociation of2-and3-dimensional polycyclic aromatic hydrocarbon cations in a modified ion-trap detector[J].International Journal of Mass Spectrometry and Ion Processes,1997,161,69-76.
    [33] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R,Zakrzewski V G, Montgomery J r, Stramann R E, Burant J C, Dapprich J M, Daniels A D,Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennuggi B,Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K,Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul AG, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin L R, FoxD J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill PM W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, ReplogleE S, Pople J A.(1998) Gaussian98, Revision A.3, Gaussian, Inc., Pittsburgh PA.
    [34] Dietmar A., Plattner, Houk K. N., J. Am. Chem. Soc.1995,117,4405-4406.
    [35] Pitzer K.S., Strain energies of cyclic hydrocarbons[J]. Science,1945,101,672.
    [1] Mezey P. G., Maruani J., A continuous extension of the symmetry concept for quasi-symmetricstructures using fuzzy-set theory. Mol. Phys.,1990,69(1):97-113
    [2] Mezey P. G., Maruani J., The fundamental syntopy of quasi-symmetric systems: Geometriccriteria and the underlying syntopy of a nuclear configuration space. Int. J. Quantum Chem.,1993,45(2):177-187
    [3] Mezey P. G., Generalized chirality and symmetry deficiency. J. Math. Chem.,1998,23(1):65-84
    [4] Maruani J., Mezey P.G., Le concept de《syntopie》: une extension continue du concept desymétrie pour des structures quasi symétriques à l’aide de la méthode des ensembles flous.,Compt. Rend. Acad. Sci. Paris (Série II),1987,305,1051-1054.
    [5] Maruani J., Toro-Labbé A., Le modèle de la syntopie et l’état de transition de réactionschimiques: fonctions d’appartenance et coefficients de Br nsted pour l’isomérisationcis trans. Compt.Rend.Acad Sci. Paris(Série IIb),1996,323,609-615.
    [6] Mezey P.G., Quantum chemistry of macromolecular shape. Int. Rev. Phys. Chem.1997,16,361-388.
    [7] Zabrodsky H., Peleg S., Avnir D., Continuous symmetry measures.2. symmetry groups andthe tetrahedron. J. Am. Chem. Soc.,1993,115,8278-8289.
    [8] Avnir D., Zabrodsky H., Hel-Or H., Mezey P.G., Symmetry and chirality:continuous measures. ncyclopaedia of Computational Chemistry, vol4,1998,2890-2901.Ed. Paul von Ragué Schleyer, Wiley: Chichester.
    [9] Chauvin R., Chemical algebra. I: Fuzzy subgroups. J. Math. Chem.,1994,16(1):245-256
    [10] Chauvin R., Chemical algebra. II: Discriminating pairing products. J. Math. Chem.,1994,16(1):257-258
    [11]周旭章,范真祥,湛建阶:《模糊数学在化学中的应用》长沙,国防科技大学出版社,2002,325-341.
    [12]赵学庄,许秀芳:分子的模糊对称性。物理化学学报.2004,20(10),1175-1178.
    [13] Zhao X. Z., Xu X. F., Wang G. C., Pan Y. M., Cai Z. S., Fuzzy symmetries of molecule andmolecular orbital: characterization and simple application. Mol. Phys.,2005,103(24):3233-3241
    [14] Xu X. F., Wang G. C., Zhao X. Z., Pan Y. M., Liang Y. Y., Shang Z. F., Fuzzy symmetries forlinear molecules and their molecular orbitals. J. Math. Chem.,2007,41(2):143-160
    [15] Zhao X. Z., Xu X. F., Wang G. C., Pan Y. M., Shang Z. F., Li R. F., The fuzzyD2h-symmetries of ethylene tetra-halide molecules and their molecular orbitals. J. Math.Chem.,2007,42(2):265-288
    [16] Zhao X. Z., Wang G. C., Xu X. F., Pan Y. M., Shang Z. F., Li R. F., Li Z. C., The fuzzyD6h-symmetries of azines molecules and their molecular orbitals. J. Math. Chem.,2008,43(2):485-507
    [17] Zhao X. Z., Shang Z. F., Wang G. C., Xu X. F., Li R. F., Pan Y. M., Li Z. C., Fuzzy spaceperiodic symmetries for polyynes and their cyano-compounds. J. Math. Chem.,2008,43(3):1141-1162
    [18] Zhao X. Z., Shang Z. F., Sun H. W., Chen L., Wang G. C., Xu X. F., Li R. F., Pan Y. M., Li Z.C., The fuzzy symmetries for linear tri-atomic B···A···C dynamic systems. J. Math. Chem.,2008,44(1):46-74
    [19] Zhao X.Z, Xu X.F, Shang Z.F, Wang G.C, Li R.F.“Fuzzy Symmetry Characteristics ofPropadine Molecule.” Acta Phys. Chim. Sci.,2008,24(5):772-780
    [20] Zhao X.Z., Shang Z.F., Li Z. C., Xu X.F., Wang G.C., Li R.F., Li Y.“Approximate symmetrycharacteristics using fuzzy-subset theory study for chiral transitions of allene-1,3-dihalides” J.Math. Chemistry,2010,48(2):187–223
    [21] Li Y., Zhao X.Z., Xu X.F., Shang Z.F., Cai Z.S., Wang G.C., Li R.F.“The fuzzy ta/2symmetry of straight chain conjugate polyene molecules” Science in China Ser. B-Chem2009,52(11)1892-1910.
    [22] Zhao X.Z. and co-workers,“Molecular Symmetry and Fuzzy Symmetry” Nova Sci.Publishers, Inc., NY.,2010. in press.
    [23] Xing S.K.,Li Y., Zhao X.Z., Shang Z.F., Xu X.F., Cai Z.S., Wang G.C., Li R.F., Acta Phys.–Chim. Sin.,2010,26(7),1947-1958.
    [24] Wang, R.H. Gao K.X., Symmetry Group of Crystallography (in Chinese), Beijing, SciencePress,1990.
    [25] Vainshtein B.K. Modern Crystallography I, Symmetry of Crystals, Methods of Structural ofCrystallography, Springer-Verlag, Berlin, Heidelberg, New York,1981.
    [26] Rogers, J. A. Electronic materials: Making graphene for macroelectronics[J]. Nat.Nanotechnol.2008,3,254-255.
    [27] Brumfiel, G. Graphene gets ready for the big time[J]. Nature2009,458,390-391.
    [28] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;Grigoreva, I. V.; Firsov, A. A. Science2004,306,666.
    [29] Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties andIntrinsic Strength of Monolayer Graphene[J]. Science2008,321,385-388.
    [30] Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum halleffect and ben'y's phase in graphene[J]. Nature2005,438,201-204.
    [31] Ponomarenko, L. A.; Schdin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.;Geim, A. K. Science2008,320,324.
    [32] Kan, E. J.; Li, Z. Y.; Yang, J. L. Magnetism in graphene systems[J]. Nano2009,3,433-442.
    [33] Matthew, J. A.; Vincent C. T.; Richard B. G., Honeycomb Carbon: A Review of Graphene[J].Chem. Rev.2010,110,132-145.
    [34] Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Ahn J. H., Kim P., Choi J. Y., Hong B. H.,Large–scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature2009,457,706.
    [35] Bunch J. S., van der Zande A. M., Verbridge S. S., Frank I.W., Tanenbaum D. M., Parpia J.M., Craighead H. G., McEuen P. L., Electromechanical resonators from graphene sheets[J].Science2007,315,490.
    [36] Levy N., Burke S. A., Meaker K. L., Panlasigui M., Zettl A., Guinea F., Neto A. H. C.,Crommie M. F., Strain-induced pseudo-magnetic fields greater than300Tesla in graphenenanobubbles[J]. Science2010,329,544-547.
    [37] Ni Z. H., Yu T., Lu Y. H., Wang Y. Y., Feng Y. P., Shen Z. X., Uniaxial strain on graphene:Raman spectroscopy study and band-gap opening[J]. ACS Nano2008,2,2301-2305.
    [38] Novoselov K. S., Jiang Z., Zhang Y., Morozov S. V., Stormer H. L., Zeitler U., Maan J. C.,Boebinger G. S., Kim P., Geim A. K., Room-Temperature Quantum Hall Effect in Graphene[J]. Science2007,315,1379-1387.
    [39] Novoselov K. S., McCann E., Morozov S. V., Fal’ko V. I., Katsnelson M. I., Zeitler U., JiangD., Schedin F., Geim A. K., Nat. Phys.2006,2,177-180.
    [40] Berger C., Song Z. M., Li T. B., Li X. B., Ogbazghi A. Y., Feng R., Dai Z. T., Marchenkov A.N., Conrad E. H., First P. N., de Heer W. A., Ultrathin epitaxial graphite:2D electron gasproperties and a route toward graphene-based nanoelectronics[J]. J. Phys. Chem. B2004,108,19912-19916.
    [41] Rao C. N. R.; Sood A. K.; Subrahmanuyam K. S.; Govindaraj A.; Angew. Chem. Int. Ed.2009,48,7752-7777.
    [42] Rainer H., Topology in Chemistry: Designing Mo1bius Molecules[J]. Chem. Rev.2006,106,4820-4842.
    [43] Armstrong M.A. Basic Topology.1983, Springer Science+Business Media, Inc., NY10013,USA.
    [44] Barone, V., Hod, O., and Scuseria, G. E., Electronic Structure and Stability ofSemiconducting Graphene Nanoribbons. Nano Lett..2006,6(12):2748.
    [45] Han., M.Y., zyilmaz, B., Zhang, Y., and Kim, P.. Energy Band-Gap Engineering ofGraphene Nanoribbons. Phys. Rev. Lett.,2007,98:206805.
    [46] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R.,Zakrzewski V.G., Montgomery J.r. J.A., Stramann R.E., Burant J.C., Dapprich J.M., DanielsA.D., Kudin K.N., Strain M.C., Farkas O. Tomasi J., Barone V., Cossi M., Cammi R.,Mennuggi B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A., Ayala P.Y.,Cui Q., Morokuma K., Malick D.K.,Rabuck A.D., Raghavachari K., Foresman J.B.,Cioslowski J., Ortiz J,V., Baboul A.G., Stefanov B.B., Liu G., Liashenko A., Piskorz P.,Komaromi I., Gomperts R., Martin L.R., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y.,Nanayakkara A.,Gonzalez. C., Challacombe M., Gill P.M.W., Johnson B., Chen W., WongM.W., Andres J.L., Gonzalez C., Head-Gordon M., Replogle E.S., Pople J.A.(1998) Gaussian03, Revision B.01, Gaussian, Inc., Pittsburgh PA.
    [47] Parr R.G., Zhou Z.X., Acc.Chem. Res.,1993,26(5),256-258.
    [48] Pearson R.G., Recent advances in the concept of hard and soft acids and bases[J]. J. Chem.Educ.1987,64(7),561-567.
    [49] Parr R.G., Chattaraj P.K., Principle of maximum hardness[J]. J. Am. Chem. Soc.,1991,113(5),1854-1855.
    [50] Jerzy C., Stacey T.M., J. Am. Chem. Soc.,1993,115(3),1084-1088.
    [51] Pearson R.G., Palke W.E., Support for a principle of maximum hardness[J]. J. Phys. Chem.,1992,96,3283-3285.
    [52] Zhou Z.X., Parr R.G. Absolute hardness as a measure of aromaticity[J]. Tetrahedron Letters,1988,29(38),4843-4846.
    [53]闵锁田,杜建科,兰正学,任柏林,原子、分子的硬度及最大硬度原理[J].汉中师范学院学报,1995年,第2期,33-38.
    [54]张贻亮,杨忠志,异构现象与最大硬度原理[J].高等学校化学学报,2006,27(10),1941-1944.
    [55]杨忠志,牛春莹,王妍,于智慧,刘阳,最大硬度原理在含磷有机分子中的应用[J].辽宁师范大学学报,2002,25(1),50-54.
    [56] Zhao X.Z., Cai Z.S., Wang G.C., Pan Y.M., Wu B.X., The conservation of generalized parity:molecular symmetry and conservation rules in chemistry[J]. J. Mol. Structure(THEOCHEM),2002,586,209-223.
    [1] Craig, D. P.; Paddock, N. L.; Nature1958,181,1052-1053.
    [2] Craig, D. P., Delocalization in pπ–dπ bonds [J]. J. Chem. Soc.1959,997-1001.
    [3] Heilbronner, E. Hueckel molecular orbitals of Moebius-type conformations of annulenes[J].Tetrahedron Lett.1964,1923-1928.
    [4] Zimmerman, H. E. The M bius–Hückel Concept in Organic Chemistry. Application toOrganic Molecules and Reactions[J]. Acc. Chem. Res.1971,4,272-280.
    [5] Hückel E., Quantum-theoretical contributions to the benzene problem and relatedcompounds[J]. Z. Phys.1931,70,204-286.
    [6] Hückel E., Quantentheoretische Beitr ge zum Problem der aromatischen und unges ttigtenVerbindungen. III[J]. Z. Phys.1932,76,628-648.
    [7] Heilbronner E. Hückel molecular orbitals of M bius-type conformations of annulenes [J].Tetrahedron Lett.1964,1923-1928.
    [8] Woodward R B, Hoffmann R. Angew. Chem.1969,81,797; Angew. Chem., Int. Ed. Engl.1969,8,781-853.
    [9] Zimmerman H E. On Molecular Orbital Correlation Diagrams, M bius Systems, and FactorsControlling[J]. J. Am. Chem. Soc.1966,88,1564-1565.
    [10] Zimmerman H E. The M bius-Hückel Concept in Organic Chemistry. Application toOrganic Molecules and Reactions[J]. Acc. Chem. Res.1971,4,272-280.
    [11] Frost A A, Musulin B. Mnemonic device for molecular-orbital energies[J]. J. Chem. Phys.1953,21,572-573.
    [12] Mauksch M, Gogonea V, Jiao H, Schleyer P V R. Angew. Chem., Int. Ed.1998,37,2395.
    [13] Mizoguchi N. Chem. Phys. Lett.1989,5,383-388.
    [14] Türker L J. Mol. Struct.(THEOCHEM)1998,454,83.
    [15] Martin-Santamaria S, Rzepa H S. J. Chem. Soc., Perkin Trans.22000,2378-2381.
    [16] Andre J-M, Champagne B, Perpete E A, Guillaume M. Int.J.Quantum Chem.2001,84,608-616.
    [17] Heilbronner E. HelV., Chim. Acta1954,37,921.
    [18] Aihara J., J. Chem. Soc., Perkin Trans.21994,971-974.
    [19] Gutman I, Biedermann P U, Ivanov-Petrovic V, Agranat I. Polycyclic Aromat. Compd.1996,8,189.
    [20] Choi H S, Kim K S., Structures, Magnetic Properties, and Aromaticity of Cyclacenes[J].Angew. Chem., Int. Ed.1999,38,2256-2258.
    [21] Houk K N, Lee P S, Nendel M J. Org. Chem.2001,66,5517. Herges R. In ConjugateBeltenes, in Modern Cyclophane Chemistry;(Eds: Hopf H, Gleiter R), VCH-Wiley:Weinheim,2004;337.
    [22] Walba, D. M.; Richards, M.; Haltiwanger, R. C. J. Am. Chem. Soc.1982,104,3219-3221.
    [23] Walba, D. M.; Homan, T.C.; Richards, R. M.; Haltiwanger, R. C. New J. Chem.1993,17,661.
    [24]邱文元、张伏龙,化学通报,1988,11,59.
    [25] Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature2003,426,819.
    [26] Ajami, D.; Hess, K.; K hler, F.; N ther, C.; Oeckler, O.; Simon, A.;Yamamoto, C.; Okamoto,Y.; Herges, R. Chem.-Eur. J.2006,12,5434.
    [27] Herges, R.; Chem. Rev.2006,106,4820-4842
    [28] Rzepa, H. S.; M bius aromaticity and delocalization[J]. Chem. Rev.2005,105,3697-3715.
    [29] Geuenich, D.; Hess, K.; Koehler, F.; Herges, R.; Chem. Rev.2005,105,3758-3772.
    [30] Andre,J.-M.;Champagne,B.;Perpete,E.A.;Guillaume,M.;Int.J.QuantumChem.2001,84,608.
    [31] Martin-Santamaria, S.; Rzepa, H. S.; J. Chem. Soc., Perkin Trans.2,2000,2378-2381.
    [32] Armstrong M.A. Basic Topology.1983, Springer Science+Business Media, Inc., NY10013,USA.(中译本:孙以丰译《,基础拓扑学》,北京大学出版社,按1979年McGraw-Hill BookCompany Ltd, Miadenhead, Berkshire, England.版本译)
    [33] Wang R H. and Gao K X., Symmetry Group of Crystallography, Science Press, Beijing.(inChinese).1990,王仁卉、郭可信:《晶体学中的对称群》,科学出版社,1990.
    [34] Xing S. K., Li Y., Zhao X. Z., Cai Z. S., Shang. Z. F., Wang G..C., Acta Phys. Chim. Sin.2011,27(5),1000.
    [35] Yang Zhan-ru, Fractal Physics, Shanghai Scientific and Technological Education PublishingHouse,(in Chinese). Shanghai,1996.杨展如:《分形物理学》,上海科技教育出版社,1996.
    [36] F. A. Cotton, Chemical application of group Theory, John Wiley, New York, Chapter4.1999.(中译本:刘万春游效曾赖伍江译.《群论在化学中的应用》.第三版.福州:福建科学技术出版社,1999).
    [37] XING Sheng-Kai, LI Yun, ZHAO Xue-Zhuang, SHANG Zhen-Feng, XU Xiu-Fang, CAIZun-Sheng, WANG Gui-Chang, LI Rui-Fang; Acta Phys. Chim. Sin.,2010,26(7):1947-1958.
    [1] Iijima S., Helical microtubules of graphitic carbon[J]. Nature,1991,354,56-58.
    [2] Iijima S., Ichihashi T., Single shell carbon nanotubes of one nanometer diameter[J]. Nature,1993,363,603-605.
    [3] Hone Y., Batlogg B., Benes Z., Quantized phonon spectrum of single-wall carbon nanotubes[J].Science,2000,289,1730-1733.
    [4] Gerasimos E. Ioannatos, Xenophon E. Verykios, Int. J. Hydro. Energy,2010,35(2),622.
    [5] Han S.H., Lee H.M., Adsorption properties of hydrogen on (10,0) single-walled carbonnanotube through density functional theory[J]. Carbon,2004,42(11),2169-2177.
    [6] Shin D.W., Meng X.H., Lee J.H, et al, J. Phys. Chem. C,2011,115(37),18327-18332.
    [7] Eom J.Y., Kwon H.S., ACS Appl. Mater. Preparation of single-walled carbonnanotubes/silicon composites[J]. Appl., Mate. Interfaces,2011,3(4),1015-1021.
    [8]Cheng H.M., Li F., Su G., Pan H.Y., et al., Large-scale and low-cost synthesis of single-walledcarbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Appl. Phys. Lett.,1998,72(25),3282-3284.
    [9] Anni J. Siitonen, Sergei M. Bachilo, Dmitri A. Tsyboulski, R. Bruce Weisman, Nano Lett.2012,12(1),33.
    [10] Zhao B., Hu H., Niyogi S., et al., Chromatographic purification and properies of solublesingle-walled carbon nanotubes[J]. J. Am. Chem. Soc.,2001,123(47),11673-11677.
    [11] Surya V.J., Lyakutti K., Rajarajeswari M., Kawazoe Y., Physica E: Low-dimensional Systemsand Nanostructures,2009,41(7),1340.
    [12] Jin Z., Chu H.B., Wang J.Y., Hong J.X., Tan W.C., Li Y., Ultralow feeding gas flow guidinggrowth of large-scale horizontally aligned single-walled carbon nanotube arrays[J]. Nano.Lett.,2007,7(7),2073-2079.
    [13] Dmitry V. K., Yoshifumi N., Henryk A.W., Stephan I., Eric B., J. Am. Chem. Soc.,2011,133(21),8191.
    [14] Dillon A.C., Gennett T., Jones K.M., Alleman J.L., Parilla P.A., Heben M.J., A simple andcomplete purification of single-walled carbon nanotube materials[J]. Adv. Mater.,1999,11(16),1354-1358.
    [15] Fan Y.Y., Kaufmann A., Mukasyan A., Varma A., Single-and multi-wall carbon nanotubesproduced using the floating catalyst method: synthesis, purification and hydrogen up-take[J].Carbon,44(11),2160-2170.
    [16] Jeffrey R.A., Devon O., Jordan C.P., Solvents with Single-Walled Carbon Nanotubes UsingIsothermal Titration Calorimetry[J]. Langmuir,2012,28(1),264-271.
    [17] Hou P.X., Bai S., Yang Q.H., Liu C., Cheng H.M., Multi-step purification of carbonnanotubes[J]. Carbon,2002,40(1),81-85.
    [18] Meng X.W., Wang Y., Zhao Y.J., Huang J.P., J. Phys. Chem. B,2011,115(6),4768.
    [19] Kang S.J., Kocabas C., Kim H.S., Cao O., Meitl M.A., Khang D.Y., Printed multilayersuperstructures of aligned single-walled carbon nanotubes for electronic, applications[J].Nano. Lett.,2007,7(11),3343-3348.
    [20] Chen B.L., Selegue J.P., Separation and characterization of singe-walled and multiwalledcarbon nanotubes by using flow field-flow fractionation[J]. Anal. Chem.,2002,74(18),4774-4780.
    [21] Gennady M.M., Albert G.N., Ruslan G.Z., Antti K., Esko I.K., Nano Lett.2012,12(1),77.
    [22] Carlos A.S.B., Krik J.Z., Swelling the hydrophobic core of surfactant-suspendedsingle-walled carbon nanotubes: a SANS study[J]. Langmuir,2011,27(18),11372-11380.
    [23] Francis D’ Souza, Sushanta K. Das, Melvin E. Zandler, Atula S.D. Sandanayaka, Osamu Ito,J. Am. Chem. Soc.,2011,133(49),19922.
    [24] Daisuke N., Hideki T., Atsushi K., Hiroshi K., Hiroshi N., Tomonori O., Hirofumi K.,Katsumi K., J. Am. Chem. Soc.,2008,130(20),6367.
    [25] Salah B., Bruce A.D., Janine F. J. Am. Chem. Soc.,2008,130(12),3780.
    [26] Dresselhaus M.S., Dresselhaus G., Saito R., Carbon fibers based on C60and their symmetry[J]. Phys. Rev. B1992,45,6234-6242.
    [27] Damnjanovic M., Milosevic I., Vukovic T., Sredanovic R., Full symmetry, optical activity,and potentials of single-wall and multiwall nanotubes[J]. Phys. Rev. B1999,60,2728-2739.
    [28] Alon E., Number of Raman-and infrared-active vibrations in single-walled carbonnanotubes[J]. Phys. Rev. B2001,63,201403.
    [29] Souza M., Jorio A., Fantini C., Neves B.R.A., et al. Single and double resonance RamanG-band processes in carbon nanotubes[J]. Phys. Rev. B2004,69,241403.
    [30]郭连权,宋开颜,武鹤楠,马贺,李大业,非手性型单壁碳纳米管的对称性分析[J].人工晶体学报,2008,37(4),950.
    [31]杨铮,施毅,刘法,张荣,郑有,碳纳米管中的群论及一系列新点群[J].物理学报,2004,53(12),4299.
    [1] Zadeh L. A. Fuzzy sets[J]. Inform. And Control,1965,8:338-353.
    [2] Wang X Z, Chen B H, Yang S H, McGreavy C.Neural nets, fuzzy sets and digraphs in safetyand operability studies of refinery reaction processes[J]. Chem. Engin. Sci.,1996,51:2169-2178.
    [3] de Bruin H A E, Roffel B. A new identification method for fuzzy linear models of nonlineardynamic systems[J]. J. Process Control,1996,6:277-293.
    [4] Schulz K, Huwe B, Peiffer S. Considering parameter uncertainty in chemical equilibriumcalculations using fuzzy set theory[J]. J Hydrology,1999,217:119-134.
    [5] Sordo J A. Using fuzzy set theory to assess basis set quality[J]. Chem Phys Lett,1999,302:273-280.
    [6] Mezey P G. The proof of the metric proterties of a fuzzy chirality measure of molecularelectron density clouds[J]. J Mol Struct (Theochem),1998,455(2-3):183-190.
    [7] Mezey P G. Similarity analysis in two and three dimensions using lattice animals andpolycubes[J]. J Math Chem,1992,11(1):27-45.
    [8] Mezey P G. Rules on chiral and achiral molecular transformations[J]. J Math Chem,1995,17:185-202.
    [9] Mezey P G. Rules on chiral and achiral molecular transformations. II[J]. J Math Chem,1995,18(2):133-139.
    [10]科顿F A著,刘万春,游效曾,赖伍江译.《群论在化学中的应用》,第三版,福建科学技术出版社,1999:15-179.
    [11] Lee T D, Yang C N. Question of Parity Conservation in Weak Interactions[J]. Phys Rev,1956,104:254-258.
    [12] Christenson J H, Cronin J W, Fitch V L, et al. Evidence for the2π Decay of the KLMeson[J]. Phys Rev Lett,1964,13:138-140.
    [13] Nambu Y. Axial vector current conservation In weak Interactions[J]. Phys Rev Lett,1960,4:380-382.
    [14] Nambu Y, Jona-lasinio G. Dynamical Model of Elementary Particles Based on an Analogywith Superconductivity I[J]. Phys Rev,1961,122:345-358.
    [15] Nambu Y, Jona-Lasinio G. Dynamical Model of Elementary Particles Based on an Analogywith Superconductivity II[J]. Phys Rev,1961,124:246-254.
    [16] Kobayashi M, Maskawa T. CP violation in the renormalizable theory of weak interaction[J].Prog. Theor. Phys.,1973,49,652-657.
    [17] Woodward R B, Hofmann R. The Conservation of Orbital Symmetry[J]. Angew Chem1969,81:797-870.
    [18] Woodward R B, Hoffmann R. The Conservation of Orbital Symmetry. Verlag Chemie andAcademic Press, Weinheim and New York,1970.
    [19] Mezey P G. Potential Energy Hypersurfaces, Elsevier, Amsterdam,1987.
    [20] Mezey P G. New developments in molecular chirality[J]. Adv Mol Simi,1996,89-120.
    [21] Mezey P G. Functional groups in quantum chemistry[J]. Adv. Quant. Chem.,1996,27:163-222.
    [22] Mezey P G. Fuzzy Measures of Molecular Shape and Size, in: D.H. Rouvray (Ed.), FuzzyLogic in Chemistry, Academic Press, New York,1997.
    [23]赵学庄,许秀芳.分子的模糊对称性[J].物理化学学报.2004,20:1175-1178.
    [24] Zhao X Z, Xu X F, Wang G C, et al. Fuzzy symmetry characteristics of propadinemolecule[J]. Mol Phys,2005,103:3233-3241.
    [25] Xu X F, Wang G C, Zhao X Z, et al. Fuzzy symmetries for linear molecules and theirmolecular orbitals[J]. J Math Chem,2007,41:143-160.
    [26] Zhao X Z, Xu X F, Wang G C, et al. The fuzzy D2h-symmetries of ethylene tetra-halidemolecules and their molecular orbitals[J]. J Math Chem,2007,42,265-288.
    [27] Zhao X Z, Wang G C, Xu X F, et al. The fuzzy D6h-symmetries of azines molecules and theirmolecular orbitals[J]. J Math Chem,2008,43:485-507.
    [28] Zhao X Z, Shang Z F, Wang G C, et al. Fuzzy space periodic symmetries for polyynes andtheir cyano-compounds[J]. J Math Chem,2008,43:1141-1162.
    [29] Zhao X Z, Shang Z F, Sun H W, et al. The fuzzy symmetries for linear tri-atomic B A Cdynamic systems[J]. J Math Chem,2008,44:46-74.
    [30]赵学庄,许秀芳,尚贞峰,王贵昌,李瑞芳.丙二烯分子的模糊对称性[J].物理化学学报,2008,24:772-776.
    [31] Li Y, Zhao X Z, Xu X F, et al. Fuzzy ta/2symmetries of straight chain conjugate polyenemolecules[J]. Sci China Ser B: Chem2009,52:1892-1910.
    [32] Zhao X Z, Shang, Z F, Li Z C, et al. Approximate symmetry characteristics usingfuzzy-subset theory study for chiral transtions of allene-1,3,-dihalides[J]. J Math Chem,2010,48:187-223.
    [33] Li Y, Xing S K, Zhao X Z, Wang G C, et al. Fuzzy symmetries of two classes of linearpolyacene molecules[J]. J Math Chem.2011,49(6):1199-1216.
    [34]邢生凯,李云,赵学庄*,尚贞锋,许秀芳,蔡遵生,王贵昌*,李瑞芳.聚炔、累积多烯与全碳环分子的模糊对称性[J].物理化学学报.2010,26,1947-1958.
    [35]邢生凯,李云,赵学庄,尚贞锋,许秀芳,蔡遵生,王贵昌,李瑞芳. Mobiu环并苯的分子对称性[J].物理化学学报.2011,27(5):1000-1004.
    [36]李运伦著,《群论及其在分子结构中的应用》,湖南科学技术出版社,1996:25-84.
    [37]密勒W著,栾德怀等译,《对称性群及其应用》,科学出版社,1981:19-65.
    [38]徐光宪,黎乐民,王德民著,《量子化学》,科学出版社,2009:34-114.
    [40]潘道凯,赵成大,郑载兴著,《物质结构》,高等教育出版社,1989:35-127.
    [41] Dewar M J S, Mckee M L, Rzepa H S. J. Am. Chem. Soc.,1978,100:3607-3607.
    [42] Dewar M J S, Zoebisch E G, Healy E F. AM1: A New General Purpose QuantumMechanical Model[J]. J. Am. Chem. Soc.,1985,107:3902-3909.
    [43] Davis L P, Cuidry R.M., Williams J.R. MNDO Calculations for Molecules ContainingAluminum and Boron[J]. J. Comp. Chem.,1981,2:433-445.
    [44] Dewar M J S, Reynolds C H. The energy of the capped small system using the high leveltechnique[J]. J. Comp. Chem.,1986,2:140-143.
    [45] Stewart J J P, Optimization of parameters for semiempirical methods I. Method[J]. J. Comp.Chem.,1989,10:209-220.
    [46] Stewart J J P, Optimization of parameters for semiempirical methods II. Method[J]. J. Comp.Chem.,1989,10:221-264.
    [47] Dewar M J S, Thiel W, Ground States of Molecules: The MNDO Method. Approximationsand Parameters[J]. J. Am. Chem. Soc.,1977,99:4899-4907.
    [48] Dewar M J S, Healy E F, MNDO calculations for compounds containing bromine[J]. J.Comp. Chem.,1983,4:542-551.
    [49] Pople J A, Beveridge D, Dobosh P, Approximate Self-consistent Molecular Orbital Theory V.Intermediate Neglect of Differential Overlap[J]. J. Chem. Phys.,1967,47:2026-2033.
    [50] Roothan C C J, New Developments in Molecular Orbital Theory[J]. Rev. Mod. Phys.,1951,23:69-89.
    [51] Pople J A, Nesbet R K, I. Self-consistent Orbitals for Radicals[J]. J. Chem. Phys.,1954,22:571-572.
    [52] Mcweeny R, Dierksen G, J. Chem. Phys.,1968,49:4852-4862.
    [53] Frisch M J, Gordon M H, Pople J A, MP2Energy Evaluation of Direct Methods[J]. J. Chem.Phys. Lett.,1988,153:503-506.
    [54] Frisch M J, Gordon M H, Pople J A, Chem. Phys. Lett.,1990,166:281-289.
    [55] Gordon M H, Gordon T H, Analytic MP2frequencies without fifth-order storage. Theory andapplication to bifurcated hydrogen bonds in the water hexamer[J]. Chem. Phys. Lett.,1994,220:122-128.
    [56] Saebo S, Almlof J, Avoiding the integral storage bottleneck in LCAO calculations of electroncorrelation[J]. Chem. Phys. Lett.,1989,154:83-89.
    [57] Pople J A, Binkley J S, Seeger R, Theoretical Models Incorporating Electron Correlation[J].Int. J. Quant. Chem. Symp.,1976,10:1-19.
    [58] Pople J A, Seeger R, Krishnan R, Variational Configuration Interaction Methods andComparison with Perturbation Theory[J]. Int. J. Quant. Chem. Symp.,1977,11:149-163.
    [59] Pople J A, Krishnan R, An Approximate Fourth Order Perturbation Theory of the ElectronCorrelation Energy[J]. Int. J. Quant. Chem. Symp.,1978,14:91-100.
    [60] Raghavachari K, Pople J A, Replogle E S, Gordon M H,. J. Phys. Chem.,1990,94:5579-5586.
    [61] Kohn W, Sham L J, Self-Consistent Equations Including Exchange and CorrelationEffects[J]. Phys. Rev.,1965,140:1133-1138.
    [62] Pople J A, Gill P M W, Johnson B G, Kohn-Sham density-functional theory within a finitebasis set[J]. Chem., Phys. Lett.,1992,199:557-560.
    [63] Johnson B G, Frisch M J, Computing Molecular Electrostatic Potentials with the PRISMAlgorithm[J]. J. Chem. Phys.,1994,100:7429-7432.
    [64] Johnson B G, Frisch M J, Kohn-Sham density-functional theory within a finite basis set[J].Chem., Phys. Lett.,1993,216:133-136.
    [65] Stratmann R E, Burant J C, Scuseria G E, Frisch M J, J. Chem., Phys.,1997,106:10175-10179.
    [66] Binkley J S, Pople J A, Hehre W J, Self-Consistent Molecular Orbital Methods for SmallSplit-Valence Basis Sets for First-row ElementsJ. Am. Chem. Soc.1980,102:939-947.
    [67] Pietro W J, Francl M M, Defrees D J, Pople J A, Binkley J S, Supplemented smallsplit-valence basis-sets for2nd-row elements[J]. J. Am. Chem. Soc.,1982,104:5039-5048.
    [68] Gordon M S, Binkley J S, Pople J A, Pietro W J, Hehre W. J. Small split-valence basis setsfor second-row elements[J]. J. Am. Chem. Soc.,1982,104:2797-2803.
    [69] Dobbs K D, Hehre W J, Molecular orbital theory of the properties of inorganic andorganometallic compounds.4. Extended basis sets for third-and fourth-row, main-groupelements[J]. J. Comp. Chem.,1986,7:359-378.
    [70] Dobbs K D, Hehre W J, Extended basis-sets for1st-row transition-metals[J]. J. Comp. Chem.,1987,8:861-879.
    [71] Dobbs K D, Hehre W J, Molecular-orbital theory of the properties of inorganic andorganometallic compounds[J]. J. Comp. Chem.,1987,8,880-893.
    [72] Hehre W. J., Stewart R. F., Pople J. A., Self-Consistent Molecular Orbital Methods I. Use ofGaussian Expansions of Slater Type Atomic Orbitals[J]. J. Chem. Phys.,1969,51:2797.
    [72] Collins J. B., Schleyer P V R, Binkley J S, Pople J A, Self-Consistent Molecular OrbitalMethods. XVII. Geometries and Binding Energies of Second-Row Molecules. A Comparisonof Three Basis Sees[J]. J. Chem. Phys.,1976,64:5142-5151.
    [74] Gaussian03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.Robb, et al. Gaussian, Inc.,2004.
    [75] Mezey P. G., Maruani J., A continuous extension of the symmetry concept forquasi-symmetric structures using fuzzy-set theory[J]. Mol. Phys.,1990,69(1):97-113
    [76] Mezey P. G., Maruani J., The fundamental syntopy of quasi-symmetric systems: Geometriccriteria and the underlying syntopy of a nuclear configuration space[J]. Int. J. QuantumChem.,1993,45(2):177-187
    [77] Mezey P. G., Generalized chirality and symmetry deficiency[J]. J. Math. Chem.,1998,23(1):65-84.
    [78] Maruani J., Mezey P.G., Le concept de《syntopie》: Une extension continue du concept desymtrie pour des structures quasi-symétriques à l’aide de la méthode des ensembles flous.Compt. Rend. Acad. Sci. Paris (Série II),1987,305:1051-1054.
    [79] Maruani J., Toro-Labbé A., Le modèle de la syntopie et l’état de transition de réactionschimiques: Fonctions d’appartenance et coefficients de Br nsted pour l’isom é risationcis-trans. Compt.Rend.Acad Sci. Paris(Série IIb),1996,323:609-615.
    [80] Mezey P.G., Quantum chemistry of macromolecular shape[J]. Int. Rev. Phys. Chem.1997,16:361–388.
    [81] Zabrodsky H., Peleg S., Avnir D., Continuous symmetry mearure[J]. J. Am. Chem. Soc.,1993,115:8278-8289.
    [82] Avnir D., Zabrodsky H., Mezey P.G., Symmetry and chirality: Continuous measures.ncyclopaedia of Computational Chemistry, Ed. Paul von Ragué Schleyer, Wiley: Chichester.1998,4:2890-2901.
    [83] Chauvin R., Chemical algebra. I: Fuzzy subgroups[J]. J. Math. Chem.,1994,16(1):245-256.
    [84] Chauvin R., Chemical algebra. II: Discriminating pairing products[J]. J. Math. Chem.,1994,16(1):257-258.
    [85] Zhou X.Z., Fan Z.X., Zhan J.J., Application of Fuzzy Mathematics in Chemistry,, NationalUniversity of Defence Technology Press, Changsha Hunan.2002,325-349.
    [86] Zhao X Z, Xu X F, Wang G C, et al. Fuzzy symmetry characteristics of propadinemolecule[J]. Mol Phys,2005,103:3233-3241.
    [87] Xu X. F., Wang G. C., Zhao X. Z., Pan Y. M., Liang Y. Y., Shang Z. F., Fuzzy symmetries forlinear molecules and their molecular orbitals[J]. J. Math. Chem.,2007,41(2):143-160.
    [88] Zhao X Z, Xu X F, Wang G C, Pan Y M, Shang Z F, Li R F., The fuzzy D2h-symmetries ofethylene tetra-halide molecules and their molecular orbitals[J]. J. Math. Chem.,2007,42(2):265-288.
    [89] Zhao X. Z., Wang G. C., Xu X. F., Pan Y. M., Shang Z. F., Li R. F., Li Z. C., The fuzzyD6h-symmetries of azines molecules and their molecular orbitals[J]. J. Math. Chem.,2008,43(2):485-507.
    [90] Zhao X Z, Shang Z F, Wang G C, et al. Fuzzy space periodic symmetries for polyynes andtheir cyano-compounds[J]. J Math Chem,2008,43:1141-1162.
    [91] Zhao X Z, Shang Z F, Sun H W, et al. The fuzzy symmetries for linear tri-atomic B A Cdynamic systems[J]. J Math Chem,2008,44:46-74.
    [92] Li Y, Zhao X Z, Xu X F, et al. Fuzzy ta/2symmetries of straight chain conjugate polyenemolecules[J]. Science in China Series B: Chemisery.2009,52(11):1892-1910.
    [93] Mlder U., Burk P., Koppel I.A., Quantum chemical calculations of linear cumulenechains[J]..Journal of Molecular Structure: THEOCHEM.2004,712:81-89.
    [94] Zhao C. D., Quantum chemistry of Solids. Higher Education Press,2nd, Beijing.2003,51-54:197-204.
    [95] Wang R. H., Gao K. X., Symmetry Group of Crystallography, Science Press, Beijing.1990:348-349.
    [96] Dietmar A., Plattner, Houk K. N., C18is a Polyyne[J]. J. Am. Chem. Soc.1995,117:4405-4406.
    [97] Parasuk V., Almlof J., Feyereisen M.W., The [18] all-carbon molecule: cumulene orpolyacetylene?[J]. J. Am. Chem. Soc.,1991,113(3):1049-1050.
    [98] Jeffrey G.A., Rollett J.S.. Proc. R. Soc. London, Ser. A,1952,213:86-91.
    [99] Molder U., Burk P., Koppel I. A., Quantum chemical calculations of geometries andgas-phase deprotonation energies of linear polyyne chains[J]. International Journal ofQuantum Chemistry,2001,82:73-85.
    [100] Weimer M., Hieringer W., Sala F. D., Electronic and optical properties of functionalizedcarbon chains with the localized Hartree–Fock and conventional Kohn–Sham methods[J].Chemical Physics,2005,309:77-87.
    [101] Wakabayashi T., Nagayama H., Daigoku K., Chemical Physics Letters,2007,446:65-70.
    [102]张聪杰,曹泽星,武海顺,徐昕,张乾二.聚炔烃电子吸收光谱的理论研究[J].物理化学学报,2002,18(7):585-589.
    [103] Bohme D. K., PAH and fullerene lons and Ion/molecule reaction in interstellar andcircumstellar chemistry[J]. Chem. Rev.,1992,92:1487-1508.
    [104] Wang X.M., Becker H., Hopkinson A.C., et al. Collision-induced dissociation of2-and3-dimensional polycyclic aromatic hydrocarbon cations in a modified ion-trap detector[J].International Journal of Mass Spectrometry and Ion Processes,1997,161:69-76.
    [105] Pitzer K.S., Strain energies of cyclic hydrocarbons[J]. Science,1945,101:672-677.
    [106] Mezey P. G., Maruani J., A continuous extension of the symmetry concept forquasi-symmetric structures using fuzzy-set theory[J]. Mol. Phys.,1990,69(1):97-113.
    [107] Mezey P. G., Maruani J., The fundamental syntopy of quasi-symmetric systems: Geometriccriteria and the underlying syntopy of a nuclear configuration space[J]. Int. J. QuantumChem.,1993,45(2):177-187.
    [108] Mezey P. G., Generalized chirality and symmetry deficiency[J]. J. Math. Chem.,1998,23(1):65-84.
    [109] Maruani J., Mezey P.G., Le concept de《syntopie》: une extension continue du concept desymétrie pour des structures quasi symétriques à l’aide de la méthode des ensembles flous.,Compt. Rend. Acad. Sci. Paris (Série II),1987,305:1051-1054.
    [110] Maruani J., Toro-Labbé A., Le modèle de la syntopie et l’état de transition de réactionschimiques: fonctions d’appartenance et coefficients de Br nsted pour l’isomérisationcis trans. Compt.Rend.Acad Sci. Paris(Série IIb),1996,323:609-615.
    [111] Mezey P.G., Quantum chemistry of macromolecular shape[J]. Int. Rev. Phys. Chem.1997,16:361-388.
    [112] Zabrodsky H., Peleg S., Avnir D., Continuous symmetry measures: symmetry groups andthe tetrahedron[J]. J. Am. Chem. Soc.,1993,115:8278-8289.
    [113] Avnir D., Zabrodsky H., Hel-Or H., Mezey P.G., Symmetry and chirality:continuous measures. ncyclopaedia of Computational Chemistry,1998,4:2890-2901.
    [114] Chauvin R., Chemical algebra. I: Fuzzy subgroups[J]. J. Math. Chem.,1994,16(1):245-256.
    [115] Chauvin R., Chemical algebra. II: Discriminating pairing products[J]. J. Math. Chem.,1994,16(1):257-258.
    [116]周旭章,范真祥,湛建阶:《模糊数学在化学中的应用》长沙,国防科技大学出版社,2002,325-341.
    [117] Zhao X. Z., Xu X. F., Wang G. C., Pan Y. M., Cai Z. S., Fuzzy symmetries of molecule andmolecular orbital: characterization and simple application[J]. Mol. Phys.,2005,103(24):3233-3241.
    [118] Xu X. F., Wang G. C., Zhao X. Z., Pan Y. M., Liang Y. Y., Shang Z. F., Fuzzy symmetriesfor linear molecules and their molecular orbitals[J]. J. Math. Chem.,2007,41(2):143-160.
    [119] Zhao X. Z., Xu X. F., Wang G. C., Pan Y. M., Shang Z. F., Li R. F., The fuzzyD2h-symmetries of ethylene tetra-halide molecules and their molecular orbitals[J]. J. Math.Chem.,2007,42(2):265-288.
    [120] Zhao X. Z., Wang G. C., Xu X. F., Pan Y. M., Shang Z. F., Li R. F., Li Z. C., The fuzzyD6h-symmetries of azines molecules and their molecular orbitals[J]. J. Math. Chem.,2008,43(2):485-507.
    [121] Zhao X. Z., Shang Z. F., Wang G. C., Xu X. F., Li R. F., Pan Y. M., Li Z. C., Fuzzy spaceperiodic symmetries for polyynes and their cyano-compounds[J]. J. Math. Chem.,2008,43(3):1141-1162.
    [122] Zhao X. Z., Shang Z. F., Sun H. W., Chen L., Wang G. C., Xu X. F., Li R. F., Pan Y. M., LiZ. C., The fuzzy symmetries for linear tri-atomic B···A···C dynamic systems[J]. J. Math.Chem.,2008,44(1):46-74.
    [123] Zhao X.Z, Xu X.F, Shang Z.F, Wang G.C, Li R.F. Fuzzy Symmetry Characteristics ofPropadine Molecule[J]. Acta Phys. Chim. Sci.,2008,24(5):772-780.
    [124] Zhao X.Z., Shang Z.F., Li Z. C., Xu X.F., Wang G.C., Li R.F., Li Y., Approximate symmetrycharacteristics using fuzzy-subset theory study for chiral transitions ofallene-1,3-dihalides[J]. J. Math. Chemistry,2010,48(2):187-223.
    [125] Li Y., Zhao X.Z., Xu X.F., Shang Z.F., Cai Z.S., Wang G.C., Li R.F., The fuzzy ta/2symmetry of straight chain conjugate polyene molecules[J]. Science in China Ser. B-Chem2009,52(11)1892-1910.
    [126] Zhao X.Z. and co-workers, Molecular Symmetry and Fuzzy Symmetry. Nova Sci.Publishers, Inc., NY.,2010.(In Press)
    [127] Xing S.K.,Li Y., Zhao X.Z., Shang Z.F., et al. Fuzzy symmetry characteristics of polyyne,cumulative polyene and full carbon ring molecules[J]. Acta Phys.–Chim. Sin.,2010,26(7),1947-1958.
    [128] Wang, R.H. Gao K.X., Symmetry Group of Crystallography (in Chinese), Beijing, SciencePress,1990.
    [129] Vainshtein B.K. Modern Crystallography I, Symmetry of Crystals, Methods of Structural ofCrystallography, Springer-Verlag, Berlin, Heidelberg, New York,1981.
    [130] Rogers, J. A. Electronic materials: Making graphene for macroelectronics[J]. Nat.Nanotechnol.2008,3:254-255.
    [131] Brumfiel, G. Graphene gets ready for the big time[J]. Nature2009,458,390-391.
    [132] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;Grigoreva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films [J].Science2004,306:666-669.
    [133] Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties andIntrinsic Strength of Monolayer Graphene[J]. Science2008,321:385-388.
    [134] Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum halleffect and ben'y's phase in graphene[J]. Nature2005,438:201-204.
    [135] Ponomarenko, L. A.; Schdin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.;Geim, A. K. Science2008,320:324-326.
    [136] Kan, E. J.; Li, Z. Y.; Yang, J. L. Magnetism in graphene systems[J]. Nano2009,3:433-442.
    [137] Matthew, J. A.; Vincent C. T.; Richard B. G., Honeycomb Carbon: A Review of Graphene[J].Chem. Rev.2010,110:132-145.
    [138] Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Ahn J. H., Kim P., Choi J. Y., Hong B. H.,Large–scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature2009,457:706-709.
    [139] Bunch J. S., van der Zande A. M., Verbridge S. S., Frank I.W., Tanenbaum D. M., Parpia J.M., Craighead H. G., McEuen P. L., Electromechanical resonators from graphene sheets[J].Science2007,315:490-495.
    [140] Levy N., Burke S. A., Meaker K. L., Panlasigui M., Zettl A., Guinea F., Neto A. H. C.,Crommie M. F., Strain-induced pseudo-magnetic fields greater than300Tesla in graphenenanobubbles[J]. Science2010,329:544-547.
    [141] Ni Z. H., Yu T., Lu Y. H., Wang Y. Y., Feng Y. P., Shen Z. X., Uniaxial strain on graphene:Raman spectroscopy study and band-gap opening[J]. ACS Nano2008,2:2301-2305.
    [142] Novoselov K. S., Jiang Z., Zhang Y., Morozov S. V., Stormer H. L., Zeitler U., Maan J. C.,Boebinger G. S., Kim P., Geim A. K., Room-Temperature Quantum Hall Effect in Graphene[J]. Science2007,315:1379-1387.
    [143] Novoselov K. S., McCann E., Morozov S. V., Fal’ko V. I., Katsnelson M. I., Zeitler U.,Jiang D., Schedin F., Geim A. K., Nat. Phys.2006,2:177-180.
    [144] Berger C., Song Z. M., Li T. B., Li X. B., Ogbazghi A. Y., Feng R., Dai Z. T., MarchenkovA. N., Conrad E. H., First P. N., de Heer W. A., Ultrathin epitaxial graphite:2D electron gasproperties and a route toward graphene-based nanoelectronics[J]. J. Phys. Chem. B2004,108:19912-19916.
    [145] Rao C. N. R.; Sood A. K.; Subrahmanuyam K. S.; Govindaraj A., Graphene: The NewTwo-Dimensional Nanomaterial[J]. Angew. Chem. Int. Ed.2009,48:7752-7777.
    [146] Rainer H., Topology in Chemistry: Designing Mo1bius Molecules[J]. Chem. Rev.2006,106:4820-4842.
    [147] Armstrong M.A., Basic Topology. Springer Science+Business Media, Inc., NY10013, USA.1983.
    [148] Barone, V., Hod, O., and Scuseria, G. E., Electronic Structure and Stability ofSemiconducting Graphene Nanoribbons[J]. Nano Lett..2006,6(12):2748-2451.
    [149] Han., M.Y., zyilmaz, B., Zhang, Y., and Kim, P.. Energy Band-Gap Engineering ofGraphene Nanoribbons[J]. Phys. Rev. Lett.,2007,98:206805.
    [150] Parr R.G., Zhou Z.X., Acc.Chem. Res.,1993,26(5):256-258.
    [151] Pearson R.G., Recent advances in the concept of hard and soft acids and bases[J]. J. Chem.Educ.1987,64(7):561-567.
    [152] Parr R.G., Chattaraj P.K., Principle of maximum hardness[J]. J. Am. Chem. Soc.,1991,113(5):1854-1855.
    [153] Jerzy C., Stacey T.M.,1,n-Glycols as Dialdehyde Equivalents in Iridium CatalyzedEnantioselective Carbonyl Allylation from the Alcohol Oxidation Level and IterativeTwo-Directional Assembly of1,3-Polyols[J]. J. Am. Chem. Soc.,1993,115(3),1084-1088.
    [154] Pearson R.G., Palke W.E., Support for a principle of maximum hardness[J]. J. Phys. Chem.,1992,96:3283-3285.
    [155] Zhou Z.X., Parr R.G. Absolute hardness as a measure of aromaticity[J]. Tetrahedron Letters,1988,29(38):4843-4846.
    [156]闵锁田,杜建科,兰正学,任柏林,原子、分子的硬度及最大硬度原理[J].汉中师范学院学报,1995,2:33-38.
    [157]张贻亮,杨忠志,异构现象与最大硬度原理[J].高等学校化学学报,2006,27(10),1941-1944.
    [158]杨忠志,牛春莹,王妍,于智慧,刘阳,最大硬度原理在含磷有机分子中的应用[J].辽宁师范大学学报,2002,25(1):50-54.
    [159] Zhao X.Z., Cai Z.S., Wang G.C., Pan Y.M., Wu B.X., The conservation of generalized parity:molecular symmetry and conservation rules in chemistry[J]. J. Mol. Structure(THEOCHEM),2002,586:209-223.
    [160] Craig, D. P.; Paddock, N. L.; Nature1958,181:1052-1053.
    [161] Craig, D. P., Delocalization in pπ–dπ bonds [J]. J. Chem. Soc.1959:997-1001.
    [162] Heilbronner, E. Hueckel molecular orbitals of Moebius-type conformations of annulenes[J].Tetrahedron Lett.1964,1923-1928.
    [163] Zimmerman, H. E. The M bius–Hückel Concept in Organic Chemistry. Application toOrganic Molecules and Reactions[J]. Acc. Chem. Res.1971,4:272-280.
    [164] Hückel E., Quantum-theoretical contributions to the benzene problem and relatedcompounds[J]. Z. Phys.1931,70:204-286.
    [165] Hückel E., Quantentheoretische Beitr ge zum Problem der aromatischen und unges ttigtenVerbindungen. III[J]. Z. Phys.1932,76:628-648.
    [166] Woodward R B, Hoffmann R. Angew. Chem.1969,81,797; Angew. Chem., Int. Ed. Engl.1969,8:781-853.
    [167] Zimmerman H E. On Molecular Orbital Correlation Diagrams, M bius Systems, andFactors Controlling[J]. J. Am. Chem. Soc.1966,88:1564-1565.
    [168] Zimmerman H E. The M bius-Hückel Concept in Organic Chemistry. Application toOrganic Molecules and Reactions[J]. Acc. Chem. Res.1971,4:272-280.
    [169] Frost A A, Musulin B. Mnemonic device for molecular-orbital energies[J]. J. Chem. Phys.1953,21:572-573.
    [170] Mauksch M, Gogonea V, Jiao H, Schleyer P V R. Angew. Chem., Int. Ed.1998,37:2395-2397.
    [171] Mizoguchi N., An efficient implementation of the full-CI method using an (n-2)-electronprojection space Chem[J]. Phys. Lett.1989,5:383-388.
    [172] Türker L, MNDO treatment of the Hückel and M bius types of cyclacenes[J]. J. Mol. Struct.(THEOCHEM)1998,454:83-86.
    [173] Martin-Santamaria S, Rzepa H S., Twist lo-calisation in single, double, and triple twistedM bius cyclacenes[J]. J. Chem. Soc., Perkin Trans.2000,2:2378-2381.
    [174] Andre J-M, Champagne B, Perpete E A, Guillaume M. Int.J.Quantum Chem.2001,84:608-616.
    [175] Heilbronner E. HelV., Chim. Acta1954,37:921-935.
    [176] Aihara J., Aromaticity and superaromaticity in cyclopolyacenes[J]. J. Chem. Soc., PerkinTrans.1994,2:971-974.
    [177] Gutman I, Biedermann P U, Ivanov-Petrovic V, Agranat I. Polycyclic Aromat. Compd.1996,8:189-202.
    [178] Choi H S, Kim K S., Structures, Magnetic Properties, and Aromaticity of Cyclacenes[J].Angew. Chem., Int. Ed.1999,38:2256-2258.
    [179] Houk K N, Lee P S, Nendel M J. Org. Chem.2001,66,5517. Herges R. In ConjugateBeltenes, in Modern Cyclophane Chemistry;(Eds: Hopf H, Gleiter R), VCH-Wiley:Weinheim,2004:337.
    [180] Walba, D. M.; Richards, M.; Haltiwanger, R. C. J. Am. Chem. Soc.1982,104:3219-3221.
    [181] Walba, D. M.; Homan, T.C.; Richards, R. M.; Haltiwanger, R. C. New J. Chem.1993,17:661-681.
    [182]邱文元、张伏龙,化学通报,1988,11:59.
    [183] Ajami, D.; Oeckler, O.; Simon, A.; Herges, R., Synthesis of a M bius aromatichydrocarbon[J]. Nature,2003,426:819-821.
    [184] Ajami, D.; Hess, K.; K hler, F.; N ther, C.; Oeckler, O.; Simon, A.;Yamamoto, C.;Okamoto, Y.; Herges, R., Chem.-Eur. J.2006,12:5434-5445.
    [185] Herges, R., Topology in Chemistry: Designing M bius Molecules[J]. Chem. Rev.2006,106:4820-4842
    [186] Rzepa, H. S.; M bius aromaticity and delocalization[J]. Chem. Rev.2005,105:3697-3715.
    [187] Geuenich, D.; Hess, K.; Koehler, F.; Herges, R.; Chem. Rev.2005,105:3758-3772.
    [188] Andre, J.M., Champagne, B., Perpete, E.A., Guillaume, M., Int.J.QuantumChem.2001,84:607-616.
    [189] Martin-Santamaria, S.; Rzepa, H. S.; J. Chem. Soc., Perkin Trans.2000,2:2378-2381
    [190] Armstrong M.A. Basic Topology.1983, Springer Science+Business Media, Inc., NY10013,USA.(中译本:孙以丰译,《基础拓扑学》,北京大学出版社)
    [191] Wang R H., Gao K X., Symmetry Group of Crystallography, Science Press,Beijing.1990:46-94.
    [192] Xing S. K., Li Y., Zhao X. Z., Cai Z. S., Shang. Z. F., Wang G..C., Acta Phys. Chim. Sin.2011,27(5):1000-1004.
    [193] Yang Zhan-ru, Fractal Physics, Shanghai Scientific and Technological Education PublishingHouse,(in Chinese). Shanghai,1996.杨展如《,分形物理学》,上海科技教育出版社,1996.
    [194] Xing S.K., Li Y., Zhao X.Z., et al. Acta Phys. Chim. Sin.,2010,26(7):1947-1958.
    [195] Iijima S., Helical microtubules of graphitic carbon[J]. Nature,1991,354,56-58.
    [196] Iijima S., Ichihashi T., Single shell carbon nanotubes of one nanometer diameter[J]. Nature,1993,363:603-605.
    [197] Hone Y., Batlogg B., Benes Z., Quantized phonon spectrum of single-wall carbonnanotubes[J]. Science,2000,289:1730-1733.
    [198] Gerasimos E. Ioannatos, Xenophon E. Verykios, Int. J. Hydro. Energy,2010,35(2):622-625.
    [199] Han S.H., Lee H.M., Adsorption properties of hydrogen on (10,0) single-walled carbonnanotube through density functional theory[J]. Carbon,2004,42(11):2169-2177.
    [200] Shin D.W., Meng X.H., Lee J.H, et al, J. Phys. Chem. C,2011,115(37):18327-18332.
    [201] Eom J.Y., Kwon H.S., ACS Appl. Mater. Preparation of single-walled carbonnanotubes/silicon composites[J]. Appl., Mate. Interfaces,2011,3(4):1015-1021.
    [202] Cheng H.M., Li F., Su G., Pan H.Y., et al., Large-scale and low-cost synthesis ofsingle-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Appl. Phys.Lett.,1998,72(25):3282-3284.
    [203] Perebeinos V., Tersoff J., Avouris P., Radiative Lifetime of Excitons in Carbon Nanotubes[J].Nano Lett.2005,5(12):2495-2499.
    [204] Zhao B., Hu H., Niyogi S., et al., Chromatographic purification and properies of solublesingle-walled carbon nanotubes[J]. J. Am. Chem. Soc.,2001,123(47):11673-11677.
    [205] Surya V.J., Lyakutti K., Rajarajeswari M., Kawazoe Y., Physica E: Low-dimensionalSystems and Nanostructures,2009,41(7),1340-1346.
    [206] Jin Z., Chu H.B., Wang J.Y., Hong J.X., Tan W.C., Li Y., Ultralow feeding gas flow guidinggrowth of large-scale horizontally aligned single-walled carbon nanotube arrays[J]. Nano.Lett.,2007,7(7):2073-2079.
    [207] Dmitry V. K., Yoshifumi N., Henryk A.W., Stephan I., Eric B., J. Am. Chem. Soc.,2011,133(21):8191-8193.
    [208] Dillon A.C., Gennett T., Jones K.M., Alleman J.L., Parilla P.A., Heben M.J., A simple andcomplete purification of single-walled carbon nanotube materials[J]. Adv. Mater.,1999,11(16):1354-1358.
    [209] Fan Y.Y., Kaufmann A., Mukasyan A., Varma A., Single-and multi-wall carbon nanotubesproduced using the floating catalyst method: synthesis, purification and hydrogen up-take[J].Carbon,44(11):2160-2170.
    [210] Jeffrey R.A., Devon O., Jordan C.P., Solvents with Single-Walled Carbon Nanotubes UsingIsothermal Titration Calorimetry[J]. Langmuir,2012,28(1):264-271.
    [211] Hou P.X., Bai S., Yang Q.H., Liu C., Cheng H.M., Multi-step purification of carbonnanotubes[J]. Carbon,2002,40(1):81-85.
    [212] Meng X.W., Wang Y., Zhao Y.J., Huang J.P., J. Phys. Chem. B,2011,115(6):4768-4773.
    [213] Kang S.J., Kocabas C., Kim H.S., Cao O., Meitl M.A., Khang D.Y., Printed multilayersuperstructures of aligned single-walled carbon nanotubes for electronic, applications[J].Nano. Lett.,2007,7(11):3343-3348.
    [214] Chen B.L., Selegue J.P., Separation and characterization of singe-walled and multiwalledcarbon nanotubes by using flow field-flow fractionation[J]. Anal. Chem.,2002,74(18):4774-4780.
    [215] Gennady M.M., Albert G.N., Ruslan G.Z., Antti K., Esko I.K., Nano Lett.2012,12(1):77-79.
    [216] Carlos A.S.B., Krik J.Z., Swelling the hydrophobic core of surfactant-suspendedsingle-walled carbon nanotubes: a SANS study[J]. Langmuir,2011,27(18):11372-11380.
    [217] Francis D’ Souza, Sushanta K. Das, Melvin E. Zandler, Atula S.D. Sandanayaka, Osamu Ito,J. Am. Chem. Soc.,2011,133(49):19922-19930.
    [218] Daisuke N., Hideki T., Atsushi K., Hiroshi K., Hiroshi N., Tomonori O., Hirofumi K.,Katsumi K., J. Am. Chem. Soc.,2008,130(20):6367-6372.
    [219] Salah B., Bruce A.D., Janine F. J. Am. Chem. Soc.,2008,130(12):3780-3782.
    [220] Dresselhaus M.S., Dresselhaus G., Saito R., Carbon fibers based on C60and their symmetry[J]. Phys. Rev. B1992,45:6234-6242.
    [221] Damnjanovic M., Milosevic I., Vukovic T., Sredanovic R., Full symmetry, optical activity,and potentials of single-wall and multiwall nanotubes[J]. Phys. Rev. B1999,60:2728-2739.
    [222] Alon E., Number of Raman-and infrared-active vibrations in single-walled carbonnanotubes[J]. Phys. Rev. B2001,63:201403.
    [223] Souza M., Jorio A., Fantini C., Neves B.R.A., et al. Single and double resonance RamanG-band processes in carbon nanotubes[J]. Phys. Rev. B2004,69:241403.
    [224]郭连权,宋开颜,武鹤楠,马贺,李大业,非手性型单壁碳纳米管的对称性分析[J].人工晶体学报,2008,37(4):950-954.
    [225]杨铮,施毅,刘法,张荣,郑有,碳纳米管中的群论及一系列新点群[J].物理学报,2004,53(12):4299-4302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700