用户名: 密码: 验证码:
小麦滞绿突变体tasg1抗旱生理特性及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是作物生长过程中经常遇到的逆境胁迫之一。小麦(Triticum aestivum L.)是世界性的粮食作物,干旱胁迫严重影响其生长和产量。研究小麦的抗旱生理及其分子机制,培育抗旱型小麦品种,对于保障小麦高产和稳产具有重大意义。
     衰老是一个受基因调控的程序性过程,是植物发育过程中的一个重要阶段。在衰老的过程中,植物细胞在结构、功能、新陈代谢以及基因表达等方面都发生着一系列的变化,其中比较明显的变化就是叶绿素的降解和光合作用的降低。小麦在灌浆后期易遭受干旱、高温等逆境的影响导致早衰并且降低籽粒的品质和产量。在衰老后期小麦滞绿突变体叶绿素基本不降解或降解缓慢,延缓小麦在灌浆后期的衰老,对于提高小麦产量具有一定的潜能。
     我们通过甲基磺酸乙酯(EMS)诱变,获得了一个明显延缓衰老的小麦滞绿突变体,命名为tasg1。本文以小麦滞绿突变体tasg1及其野生型(WT)核生2号为材料,设计大田与室内实验两部分进行研究,旨在探讨滞绿突变体tasg1的抗旱生理基础及分子机制,为滞绿突变体在小麦育种中的应用提供理论依据。主要结论如下:
     (1)tasg1是一个功能型滞绿突变体
     1)正常生长条件下,生长发育前期tasg1和野生型的表型基本一致,没有明显的区别;进入灌浆后期,二者叶片颜色开始出现差异。当野生型小麦已经表现明显的衰老症状即叶片发黄时,突变体tasg1叶片仍保持绿色,衰老延缓,表现出明显的滞绿表型。
     2)叶绿素(Chl)a的含量在衰老的起始阶段,tasg1和WT之间没有明显差异。但是从开花后的第22天到第30天,tasg1的Chl a的含量高于野生型,特别是经过干旱胁迫处理以后。Chl b的含量也表现出相似的差异。旗叶净光合速率同叶绿素含量变化趋势基本一致。花后30天,与野生型相比tasg1旗叶维持较高光合速率,表明突变体tasg1具有较长的叶片光合功能期。突变体tasg1和WT旗叶气孔导度(Gs)、蒸腾速率(E)、细胞间隙CO2浓度(Ci)在开花灌浆期的变化趋势和Pn的变化趋势基本一致。
     3)在对照田(CK,正常灌溉)和旱田(DS,控制灌溉和遮雨)tasg1的产量比野生型高9.5%和7.0%。尽管每行穗数是tasg1中高于野生型,但是不显著,其中每穗粒数增加对产量的贡献相对较大。结果表明滞绿突变体tasg1在灌浆后期维持较高的叶绿素含量能够增加产量。说明tasg1的滞绿特性具有一定的生产利用价值。
     (2)大田条件下tasg1与WT开花灌浆期叶细胞类囊体结构
     1)正常情况下,小麦叶片叶绿体紧贴着细胞壁单行排列,呈椭圆状,类囊体片层紧密排列成典型的基粒和类囊体基质,tasg1的叶绿体和类囊体超微结构稍微比野生型好一些。干旱胁迫下,叶绿体变成球形,与野生型相比,tasg1叶绿体和类囊体片层的损伤较轻。表明干旱胁迫下,突变体与野生型相比能更好的维持叶绿体以及类囊体的结构,从而可以更有助于突变体维持比较高的光合作用。我们还观察到在干旱胁迫条件下tasg1基粒融合的超微结构。
     2)随着干旱处理天数的增加,tasg1希尔反应活性、Ca2+-ATPase和Mg2+-ATPase的活性都比WT高,说明在干旱胁迫下滞绿突变体比野生型PSII以及类囊体膜上其它功能蛋白更稳定。
     3)干旱胁迫导致分子量约为25-35kDa的类囊体膜蛋白浓度增加,尤其是28kDa的多肽浓度增加明显。而且这些多肽在滞绿突变体tasg1中的表达水平始终高于WT。与小麦幼苗多肽相比,只有1个28kDa的多肽被保留在成熟的植物中。这种差异表明,一些多肽在小麦叶片发育和衰老时退化。与野生型相比,tasg1可以维持比较好的类囊体蛋白稳定性。
     4)干旱胁迫下,编码捕光色素复合体I(LHCI)的三个基因TaLhca1,TaLhca2和TaLhca3的转录表达在tasg1和WT中都下调,在经过48h干旱处理以后下降到最低水平。编码LHCII的TaLhcb4和TaLhcb6的基因表达在tasg1中比WT相比仍然保持比较高的水平。免疫印迹的结果进一步分析表明LHCII蛋白复合体在tasg1中比WT中更稳定。
     (3)大田条件下tasg1与WT开花灌浆期叶片抗氧化能力
     1)随着灌浆进程,突变体tasg1和野生型旗叶中氧自由基(O2ˉ)生成速率和过氧化氢(H2O2)含量、丙二醛(MDA)含量、离子渗漏、羰基蛋白含量均逐渐升高,但与野生型相比,突变体tasg1始终处于较低的水平,表明其活性氧积累较少,膜脂过氧化程度较低。
     2)干旱胁迫处理以后,超氧化物歧化酶(SOD),过氧化物酶(POD),过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)的活性受到抑制,但是tasg1与野生型相比要高。与野生型相比,在抗坏血酸-谷胱甘肽循环中,tasg1的还原型抗坏血酸与氧化型抗坏血酸的比值、还原型谷胱甘肽与氧化型谷胱甘肽的比值以及该循环中的三个关键酶的活性都比野生型高。这些结果表明抗氧化能力可能在tasg1的抗旱性中起非常重要的作用。
     综上所述,小麦滞绿突变体tasg1在灌浆后期衰老延缓,能够保持较高的叶绿素含量和光合作用并且提高产量,属于功能型滞绿变异。与野生型相比,突变体tasg1可以维持比较好的叶绿体和类囊体结构和比较多的类囊体蛋白丰度,而且LHCII的稳定性好。突变体tasg1的抗氧化酶活性比野生型高。这些结果表明,突变体tasg1的类囊体膜蛋白稳定性的提高以及较高的氧化清除能力可能是其抗旱性高的重要原因。
Drought is one of the major environment stresses during plant growth and development,and the disaster due to drought becomes more and more severe and frequent. Wheat (Triticumaesitivum L.) is one of the important food crop world widely. Water deficit is one of thecommon stresses during wheat growth, and the lost of wheat yield by water deficit is verylarge. Therefore, it is very important and significant to study the mechanism of droughttolerance in wheat and to breed the new drought tolerant wheat cultivars.
     Plant senescence is an important period of plant development, which is a programmedprocess that is subjected to gene regulation. The structure, function, metabolism and geneexpression of the plant cell go through a series of coordinated changes during plantsenescence, two of the distinct changes are the degradation of chlorophyll and the decline ofphotosynthesis. The grain-filling of wheat is frequently deteriorated by drought and heat stresscombination at the late stage. Senescence results in deterioration of the quality of vegetables,poor grain quality and reduced crop yield. Delay leaf senescence is a useful way to increasephotosynthetic time, which is beneficial to increase wheat yield.
     The wheat stay-green mutant, tasg1, was previously generated by applying the ethylmethane sulphonate (EMS) mutagen to HS2, a common wheat cultivar as the WT. In thisstudy, all the experiments were conducted in2sets of experriments: one, in the field and theother, in the laboratory. We used WT and tasg1, as materials to study the changes of plantphysiology and its stay green mechanism under water stress condition. The results willprovide a theoretical basis to wheat breeding in drought resistance and senescence delay. Themain results are as follows:
     (1) tasg1represent a functional stay green mutant
     1) Under normal field conditions, no significant difference between tasg1and WT wasobserved in plant development and phenotype before the flag leaves appeared. The stay-greenphenotype of tasg1was expressed at the beginning of anthesis and was especially apparentwith late natural senescence. Drought stress accelerated the plant senescence in both wheatvarieties, but it was delayed in tasg1compared to the WT. Compared with WT, tasg1showsan obvious stay green phenotype at later stage of nature senescence.
     2) No obvious difference was found in chlorophyll (Chl) a content between tasg1and WT at the initial phase of senescence. However, from the22th to the30th day after anthesis(DAA), Chl a content in tasg1was always higher than in WT, especially under drought stress(DS). Similar differences were observed in Chl b content. Net photosynthetic rate (Pn) washigher in tasg1, compared to WT, at30DAA, which was consistent with the differences inChl content. Somewhat similar differences were observed in transpiratory rate (E) andstomatal conductance (Gs), but intercellular CO2concentration (Ci) was significantly lower intasg1than WT. This may be related to the higher photosynthetic activity in tasg1.
     3) The yield of tasg1was9.5and7.0%higher than WT under controls (CK) and droughtstress (DS) conditions, respectively, but these differences were not significant. The greaternumber of kernels per wheat spike was the major factor contributing to the higher yield oftasg1, although the number of wheat spikes in each plot in tasg1also contributed to theincreased yield. The size and mass of each kernel was lower in tasg1than WT. From theobservations above, tasg1represents a functional stay green mutant.
     (2) The characteristics of the chloroplasts and thylakoid in tasg1and WT
     1) In normal water conditions, chloroplasts were arranged regularly along the cell wall,but their shape was slightly different in the two genotypes. Chloroplasts were approximatelyroundish in WT, but prolonged in tasg1. After drought stress, some damage to the chloroplastenvelope was found in WT, accompanied with the shift of the organelles from the cell wall tothe center of the cell. Compared to WT chloroplasts, tasg1chloroplasts showed less damageinduced by drought stress. Under normal water conditions, the thylakoid lamellae wereclosely arranged and assembled to form the grana in the WT. Lamellae were more closelyarranged in tasg1. Drought stress resulted in swollen and loosely scattered thylakoid lamellaein WT, but these changes were not obvious in tasg1. We also observed fusion of several granastacks in tasg1under drought stress.
     2) As the date of drought stress continued, the activity of Hill reaction, Ca2+-ATPase andMg2+-ATPase were significantly higher in tasg1than WT. The activity of thylakoid membraneproteins, including PSII and ATPase, were better maintained in tasg1than in the WT underdrought stress.
     3) In flag leaves under field conditions, the level of the28kDa polypeptide in tasg1washigher than that in WT under both normal and drought stress conditions on both days in thedrought of10and25d. The polypeptides were similarly detected in WT and tasg1wheatseedlings at the second-leaf stage in the laboratory, and the three observed polypeptides ofabout28,38and50kDa in tasg1were consistently higher than those in WT. This differencesuggested that some polypeptides were degraded during leaf development and senescence. Compared with WT, tasg1could maintain the thylakoid membrane protein complexes withbetter stability against damage by drought stress.
     4) Expression levels of genes involved in light-harvesting complex I (LHCI), namelyTaLhca1, TaLhca2and TaLhca3, were down-regulated gradually during drought stress in bothWT and tasg1. The expression levels of TaLhcb4and TaLhcb6were higher in tasg1comparedto WT, especially at the last tested time point. From these results, tasg1could increasestability of chloroplast membranes and chlorophyll-protein complexes.
     (3) The antioxidant activity and ascorbate-glutathione cycle in tasg1and WT duringgain-filling stage
     1) Superoxide radical (O2ˉ) production rate, hydrogen peroxide (H2O2) accumulation,malondialdehyde (MDA) content, relative electrical conductivity and carbonylation proteincontent in flag leaves increased significantly after anthesis in both tasg1and WT.Nevertheless, tasg1maintained lower MDA content, O2ˉproduction rate and H2O2content inflag leaves than WT. From the results above, we suggest that high antioxidative systemcompetence may be involved in the stay green characteristic of tasg1.
     2) The activities of several antioxidant enzymes, including superoxide dismutase (SOD),peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were mostly suppressedby drought stress, but their activities were always higher in tasg1than that in WT. Comparedwith WT, tasg1had higher reduced ascorbate/oxidized ascorbate ratio, reducedglutathione/oxidized glutathione ratio and antioxidant enzyme activities during senescenceunder both normal water and drought stress conditions. These results suggest that thecompetent antioxidative capacity may play an important role in the enhanced droughttolerance in tasg1.
     From the results above, we suggest that tasg1maintain higher chlorophyll content andphotosynthetic rate than WT at the gain-filling stage, indicating an obviously delaysenescence in tasg1. Compare to WT, the stay-green wheat mutant tasg1could stablymaintain chloroplast and thylakoid ultrastructure better and maintain thylakoid membranepolypeptides at high levels, while its expression of some LHCII related genes remained steadyunder drought stress. The activities of several antioxidant enzymes, including SOD, POD,CAT and APX were mostly suppressed by drought stress, but their activities were alwayshigher in tasg1than in WT. Thus, enhanced stability of thylakoid membrane proteins andantioxidant competence contribute to drought resistance in the tasg1. These data were helpfulto better understand of the stay-green mechanism and to improve the drought resistance ofwheat cultivars.
引文
何萍,金继运。保绿型玉米的营养生理研究进展。玉米科学,2000,8:41-44
    罗广华,王爱国。现代植物生理学实验指南(汤章城主编)。北京:科学出版社,1999,308-309
    马新蕾,王玉军,谢胜利,李峰,王玮。根施甜菜碱对水分胁迫下烟草幼苗光合机构的保护。植物生理与分子生物学学报,2006,32:465-472
    严波,陈国平,胡宗利,罗敏,陈绪清。滞绿突变体的研究现状及应用前景。重庆大学学报(自然科学版),2007,30:113-120
    叶济宇,钱月琴。植物生理学实验手册。上海:上海科技出版社,1985:104-107
    张志良。植物生理实验指导(第二版)。北京:高等教育出版社,1990:154-155
    赵世杰,史国安,董新纯(主编)。植物生理学实验指导。北京:中国农业科学技术出版社,2002
    邹礼平。番茄抗坏血酸生物合成与代谢途径中相关酶基因的克隆与调控。华中农业大学博士学位论文,2005
    Alia K.Y., Sakamoto A., Nonaka H., Hayashi H., Pardha S.P., Chen T.H.H., Murata N..Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codAgene for a bacterial choline oxidase. Plant Molecular Biology Reporter,1999,40:279-288
    Allen J.F., Forsberg J.. Molecular recognition in thylakoid structure and function. Trends inPlant Science,2001,6:317-326
    Almeselmani M., Deshmukh P.S., Sairam R.K.. Protective role of antioxidant enzymes underhigh temperature stress. Plant Science,2006,171:382-388
    Alós E., Cercós M., Rodrigo M.J., Zacarías L., Talón M.. Regulation of color break in citrusfruits: changes in pigment profiling and gene expression induced by gibberellins andnitrate, two ripening retardants. Journal of Agricultural and Food Chemistry,2006,54:4888-4895
    Alós E., Roca M., Iglesias D.J., Minguez-Mosquera M.I., Damasceno C.M.B., ThannhauserT.W., Rose J.K.C., Talón M., Cercos M.. An evaluation of the basis and consequences of astay-green mutation in the navel negra citrus mutant using transcriptomic and proteomicprofiling and metabolite analysis. Plant Physiology,2008,147:1300-1315
    Alscher R.G.. Biosynthesis and antioxidant function of glutamylcysteine synthetase in tomatocells selected for glutathione in plants. Physiologia Plantarum,1989,77:457-464
    Amin E.E., Naoyoshi K., Ghazi H.B., Hironori K., Takeshi S., Toshiyuki S., Shinobu I.,Kiyoshi T.. Overexpression of monodehydroascorbate reductase in transgenic tobaccoconfers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta,2007,225:255-1264
    Anderson J.V., Chevone B., Hess J.L.. Seasonal variation in the antioxidant system of easternwhite pine needles. Plant Physiology,1992,98:501-508
    Apel K., Hirt H.. Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Annual Review of Plant Biology,2004,55:373-399
    Armond P.A., Bj rkman O., Staehlin L.A.. Dissociation of supramolecular complexes inchloroplast membranes A manifestation of heat damage to the photosynthetic apparatus.Biochimica et Biophysica Acta-Biomembranes,1980,601:4333-4442
    Arrigoni O., Dipierro S., Borraccino G.. Ascorbate free radical reductase: a key enzyme of theascorbic acid system. FEBS Letters,1981,125:242-244
    Arrigoni O.. Ascorbate system in plant development. Journal of Bioenergetics andBiomembranes,1994,26:407-419
    Asada K.. The water-water cycle in chloroplasts: scavenging of active oxygens anddissipation of excess photons. Annual Review of Plant Physiology and Plant MolecularBiology,1999,50:601-640
    Aubry S., Mani Jan., H rtensteiner S.. Stay-green protein defective in Mendel’s greencotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in thechlorophyll catabolic pathway. Plant Molecular Biology,2008,3:243-256
    Bae E.K., Lee H., Lee J.S.. Molecular cloning of a peroxidase gene from poplar and itsexpress ion in response to stress. Tree Physiology,2006,11:1405-1412
    Bellemare G., Bartlett S.G., Chua N.H.. Biosynthesis of chlorophyll a/b-binding polypeptidesin wild type and the chlorine f2mutant of barley. Journal of Biological Chemistry,1982,257:7762-7767
    Blum A., Ebercon A.. Cell membrane stability as measure of drought and heat tolerance inwheat. Crop Science,1981,21:43-47
    Borrell A.K.. Nitrogen dynamics and the physiological basis of stay-green in sorghum. CropScience,2000,40:1295-1307
    Bowler C., van Montagu M.. Superoxide dismutase stress tolerance. Annual Review of PlantPhysiology and Plant Molecular Biology,1992,43:83-116
    Brüggemann W., Beyel V., Brodka M., Poth H., Weil M.. Antioxidants and antioxidativeenzymes in wild-type and transgenic Lycopersicon genotypes of different chillingtolerance. Plant science,1999,140:145-154
    Buchanan-Wollaston V., Page T., Harrison E., Breeze E., Lim P.O., Nam H.G., Lin J.F., WuS.H., Swidzinski J., Ishizaki K., Leaver C.J.. Comparative transcriptome analysis revealssignificant differences in gene expression and signalling pathways between developmentaland dark/starvation-induced senescence in Arabidopsis. Plant Journal,2005,42:567-585
    Cha K.W., Lee Y.J., Koh H.J.. Isolation, characterization, and mapping of the stay greenmutant in rice. Theoretical and Applied Genetics,2002,4:526-532
    Chaidee A., Pfeiffer W.. Parameters for cellular viability and membrane function inChenopodium cells show a specific response of extracellular pH to heat shock withextreme Q10. Plant Biology,2006,8:42-51
    Cohen E., Bieschke J., Perciavalle R.M., Kelly J.W., Dillin A.. Opposing activities protectagainst age-onset proteotoxicity. Science,2006,313:1604-1610
    Cukadarolmedo B., Miller J.F., Hammond J.J.. Combining ability of the stay green trait andseed moisture content in sunflower. Crop Science,1997,2:378-382
    Dalle-donne I., Rossi R., Giustarini D., Gagliano N., Simplicio P.D., Colombo R., Milzani A..Methionine oxidation as a major cause of the functional impairment of oxidized actin.Free Radical Biology and Medicine,2002,32:927-937
    De Leonardis S., De Lorenzo G.. A specific ascorbate free radical reductase isozymeparticipates in the regeneration of ascorbate for scavenging toxic oxygen species in potatotuber mitochondria. Plant Physiology,1995,109:847-851
    Dhanda S.S., Munjal R.. Inheritance of cellular thermotolerance in bread wheat. PlantBreeding,2006,125:557-564
    Dhindsa R.S., Plumb-Dhindsa P., Throne T.A.. Leaf senescence: correlated with increasedlevels of membrane permeability and lipid peroxidation and decreased levels ofsuperoxide dismutase and catalase. Journal of Experimental Botany,1981,34:93-101
    Dixon D.P., Davis B.G., Edwards R.. Functional divergence in the glutathione transferasesuperfamily in plants. Indentigication of two classes with putative functions in redoxhomeostasis in Arabidopsis thaliana. The Journal of Biological Chemistry,2002,277:30859-30869
    Dubey R. S.. Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook photosynthesis,2nd edn. CRC Press, Taylor and Francis Group, New York,2005,pp717-773
    Eltayeb A.E., Kawano N., Badawi G.H.. Enhanced tolerance to ozone and drought stresses intransgenic tobacco overexpressing dehydroascorbate reductase in cytosol. PhysiologiaPlantarum,2006,127:57-65
    Enami I., Kitamura M., Tato T., Isokawa Y., Ohta H., Kato S.. Is the primary cause of thermalinactivation of oxygen evolution in spinach PS II membranes release of the33kDaprotein or of Mn? Biochimica et Biophysica Acta,1994,186:52-58
    Evans P.J., Gallesi D., Mathieu C., Hernandez M.J., de Felipe M.R., Halliwell B., Puppo A..Oxidative stress occurs during soybean nodule senescence. Planta,1999,208:73-79
    Fang Z., Bouwkamp J.C., Solomos T.. Chlorophyllase activities and chlorophyll degradationduring leaf senescence in the nonyellowing mutant and the wild-type of Phaseolusvulgaris L. Journal of Experimental Botany,1998,49:503-510
    Flexas J., Escalona J.M., Medrano H.. Water stress induces different levels of photosynthesisand electron transport rate regulation in grapevines. Plant, Cell&Environment,1999,22:39-48
    Foyer C.H., Noctor G.. Redox sensing and signaling associated with reactive oxygen inchloroplast, peroxisomes and mitochondria. Physiologia Plantarum,2003,119:355-264
    Foyer C.H., Noctor G.. Oxidant and antioxidant signaling in plants: a re-evaluation of theconcept of oxidative stress in a physiological context. Plant, Cell&Environment,2005,28:1056-1071
    Foyer C.H., Noctor G.. Redox homeostasis and antioxidant signaling: a metabolic interfacebetween stress perception and physiological responses. Plant Cell,2005,17:1866-1875
    Fujii H., Shimada T., Sugiyama A., Nishikawa F., Endo T., Nakano M., Ikoma Y., Shimizu T.,Omura M.. Profiling ethylene-responsive genes in mature mandarin fruit using a citrus22K oligoarray. Plant Science,2007,173:340-348
    Gamble P.E., Burke J.J.. Effect of water stress on the chloroplast antioxidant systemalterations in glutathione reductase activity. Plant Physiology,1984,76:615-621
    Gan S., Aaasino R.M.. Inhibition of leaf senescence by autoregulated production of cytokinin.Science,1995,270:1986-1988
    Gillet B., Beyly A., Peltier G., Rey P.. Molecular characterization of CDSP34, a chloroplasticprotein induced by water deficit in Solanum tuberosum L. plants, and regulation of CDSP34expression by ABA and light illumination. The Plant Journal,1998,16:257-262
    González A., Steffen K.L., Lynch J.P.. Light and excess manganese: implications foroxidative stress in common bean. Plant Physiology,1998,118:493-504
    Gregersen P.L., Holm P.B.. Transcriptome analysis of senescence in the flag leaf of wheat(Triticum aestivum L.). Plant Biotechnology Journal,20075:192-206
    Guerfel M., Baccouri O., Boujnah D., Chaibi W., Zarrouk M.. Impacts of water stress on gasexchange, water relations, chlorophyll content and leaf structure in the two main Tunisianolive (Olea europaea L.) cultivars. Scientia Horticulturae,2009,3:257-263
    Harpaz-Saad S., Azoulay T., Arazi T., Ben-Yaakov E., Mett A., Shiboleth Y.M.,H rtensteiner S., Gidoni D., Gal-On A., Goldschmidt E.E.. Chlorophyllase is arate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. ThePlant Cell,2007,19:1007-1022
    Haussmann B.I.G., Mahalakshmi V., Reddy B.V.S.. QTL mapping of stay-green in twosorghum recombinant inbred populations. Theoretical and Applied Genetics,2002,1:133-142
    Horn R., Paulsen H.. Early steps in the assembly of light harvesting chlorophyll a/b complex.Journal of Biological Chemistry,2004,279:44400-44406
    H rtensteiner S.. Chlorophyll degradation during senescence. Annual Review of Plant Biology,2006,57:55-77
    H rtensteiner S.. Stay-green regulates chlorophyll and chlorophyll-binding proteindegradation during senescence. Trends in Plant Science,2009,14:155-162
    Hossain M.A., Asada K.. Monodehydroascobrate reductase from cucumber is a flavin adeninedinucleotide enzyme. Journal of Biological Chemistry,1985,24:12920-12926
    Hossain M.A., Asada K.. Purification of dehydroascorbate reductase from spinach and itscharacterization as a thiol enzyme. Plant and Cell Physiology,1984,25:85-92
    Hu W.H., Xiao Y.A., Zeng J.J., Hu X.H.. Photosynthesis, respiration and antioxidant enzymesin pepper leaves under drought and heat stresses. Biologia Plantarum.2010,54:761-765
    Hui Z., Tian F.X., Wang G.K., Wang G.P., Wang W.. The antioxidative defense system isinvolved in the delayed senescence in a wheat mutant tasg1. Plant Cell Reports,2012,31:1073-1084
    Huseynova, I.M., Suleymanov, S.Y., Aliyev, J.A.. Structural functional state of thylakoidmembranes of wheat genotypes under water stress. Biochimica et Biophysica Acta,2007,1767:869-875
    Iglesias D.J., Tadeo F.R., Legaz F., Primo-Millo E., Talon M.. In vivo sucrose stimulation ofcolour change in citrus fruits epicarps: interactions between nutritional and hormonalsignals. Physiologia Plantarum,2001,112:244-250
    Ito H., Tanaka Y., Tsuji H., Tanaka A.. Conversion of chlorophyll b to chlorophyll a byisolated cucumber etioplasts. Archives Biochemistry and Biophysics,1993,306:148-151
    Jacob-Wilk D., Holland D., Goldschmidt E.E., Riov J., Eyal Y.. Chlorophyll breakdown bychlorophyllase: isolation and functional expression of the Chlase1gene fromethylene-treated Citrus fruit and its regulation during development. Plant Journal,1999,20:653-661
    Jiang H.W., Li M.R., Liang N.T, Yan H.B., Wei Y.B., Xu X.L., Liu J., Xu Z.F., Chen F., WuG.J.. Molecular cloning and function analysis of the stay green gene in rice. The PlantJournal,2007,52:197-209
    J rnvall H., Persson B., Krook M., Atrian S., Gonzàlez-Duarte R., Jeffery J., Ghosh D..Short-chain dehydrogenase/reductases (SDR). Biochemistry,1995,34:6003-6013
    Kampfenkel K., Vanmontagu M., Inze D.. Extraction and determination of ascorbate anddehydroascorbate from plant pissue. Analytical Biochemistry,1995,225:165-167
    Kebede H., Subudhi P.K., Rosenow D.T.. Quantitative trait loci influencing drought tolerancein grain sorghum (Sorghum bicolor L. Moench). Theoretical and Applied Genetics,2001,103:266-276
    Kim E.H., Chow W.S., Horton P., Anderson J.M.. Entropy-assisted stacking of thylakoidmembranes. Biochimica et Biophysica Acta,2005,1708:187-195
    Kr utler B., Jaun B., Matile P., Bortlik K., Schellenberg M.. On the enigma of chlorophylldegradation: the constitution of a secoporphinoid catabolite. Angewandte ChemieInternational Edition in English,1991,30:1315-1318
    Kusaba M., Ito H., Morita R., Iida S., Sato Y., Fujimoto M., Kawasaki S., Tanaka R.,Hirochika H., Nishimura M., Tanaka A.. Rice NON-YELLOW COLORING1is involvedin light-harvesting complex II and grana degradation during leaf senescence. Plant Cell,2007,19:1362-1375
    Li F., Wu Q.Y., Sun Y.L., Wang L.Y, Yang X.H, Meng Q.W.. Overexpression of chloroplasticmonodehydroascorbate reductase enhanced tolerance to temperature and methylviologen-mediated oxidative stresses. Physiologia Plantarum,2010,139:421-434
    Liao F. Y., Li H. M., He P.. Effect of high irradiance and high temperature on chloroplastcomposition and structure of Dioscorea zingiberensis. Photosynthetica,2004,42:487-492
    Losa D.A., Murata N.. Membrane fluidity and its roles in the perception of environmentalsignals. Biochimica et Biophysica Acta,2004,1666:142-157
    Lv S.L., Yang A.F., Zhang K.W., Wang L., Zhang J.R.. Increase of glycinebetaine synthesisimproves drought tolerance in cotton. Molecular Breeding,2007,20:233-248
    Ma B.L., Dwyer L.M.. Nitrogen uptake and use of two contrasting maize hybrids differing inleaf senescence. Plant and Soil,1998,199:283-291
    Ma X.L., Wang Y.J., Xie S.L., Wang C., Wang W.. Glycinebetaine application amelioratesnegative effects of drought stress in tobacco. Russian Journal of Plant Physiology,2007,54:472-479
    Mahajan S., Tuteja N.. Cold, salinity and drought stresses: An overview. Archives ofBiochemistry and Biophysics,2005,444:139-158
    Mahalakshmi V.. Evaluation of stay-green sorghum germplasm lines at ICRISAT. CropScience,2002,3:965-974
    Mansour M.M.F.. Protection of plasma membrane of onion epidermal cells by glycinebetaineand praline against NaCl stress. Plant Physiology and Biochemistry,1998,36:767-772
    Matile P., H rtensteiner S., Thomas H., Kr utler B.. Chlorophyll breakdown in senescentleaves. Plant Physiology,1996,112:1403-1409
    Matile P., H rtensteiner S., Thomas H.. Chlorophyll degradation. Annual Review PlantPhysiology and Plant Molecular Biology,1999,50:67-95
    Matile P.. Biochemistry of indian summer: physiology of autumnal leaf coloration.Experimental Gerontology,2000,2:145-158
    Maxwell K., Johnson G. N.. Chlorophyll fluorescence-a practical guide. Journal ofExperimental Botany,2000,51:659-668
    Mittler R.. Oxidative stress, antioxidants and stress tolerance. Trends Plant Scencei,2002,7:405-410
    Mohan R., Bajar A.M., Kolattukudy P.E.. Induction of a tomato an ionic peroxidase gene(tap1) by wounding in transgenic tobacco and activation of tap1/GUS and tap2/GUSchimeric gene fusions in transgenic tobacco by wounding and pathogen attack. PlantMolecular Biology,1993,2:341-354
    Morita R., Sato Y., Masuda Y., Nishimura M., Kusaba M.. Defect in non-yellow coloring3, anα/β hydrolase-fold family protein, cause a stay-green phenotype during leaf senescence inrice. The Plant Journal,2009,10:132-143
    Müller T., Moser S., Ongania K.H., Pruzinska A., H rtensteiner S., Kr utler B.. A divergentpath of chlorophyll breakdown in the model plant Arabidopsis thaliana. Chembiochem,2006,7:40-42
    Nakano Y., Asada K.. Hydrogen peroxide is scavenged by ascorbate specific peroxides inspinach chloroplasts. Plant Cell Physiology,1981,22:867-880
    Neill S., Desikan R., Hancock J.. Hydrogen peroxide signalling. Current Opinion in PlantBiology,2002,5:388-395
    Noctorg and Foyer C.H.. Ascorbate and glutathione: keeping active oxygen under control.Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:249-279
    Oh S.A., Park J.H., Lee G.I.. Identification of three genetic loci controlling leaf senescence inArabidopsis thaliana. The Plant Journal,1997,12:527-533
    Oksman-Caldentey K.M., Saito K.. Integrating genomics and metabolomics for engineeringplant metabolic pathways. Current opinion in biotechnology,2005,16:174-179
    Parida A.K., Das A.B., Mittra B.. Effects of NaCl stress on the structure, pigment complexcomposition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts.Photosynthetica,2003,41:191-200
    Parida A.K., Das A.B.. Salt tolerance and salinity effectson plants: a review. Ecotoxicologyand Environmental Safety,2005,60:324-349
    Park S.Y., Yu J.W., Park J.S., Li J., Yoo S.C., Lee N.Y., Lee S.K., Jeong S.W., Seo H.S., KohH.J., Jeon J.S., Park Y.I., Paek N.C.. The senescence-induced stay green protein regulateschlorophyll degradation. Plant Cell,2007,19:1649-1664
    Passardi F, Longet D, Pene C.. The class III peroxidase multigenic family in rice and itsevolution in land plants. Phytochemistry,2004,13:1879-1893
    Paulsen H., Finkenzeller B., Kühlein N.. Pigments induce folding of light-harvestingchlorophyll a/b-binding protein. European Journal of Biochemistry,1993,215:809-816
    Peltzer D., Dreyer E., Polle A.. Differential temperature dependencies of antioxidativeenzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiologyand Biochemistry,2002,40:141-150
    Poppek D., Grune T.. Proteasomal defense of oxidative protein modifications. Antioxidantsand Redox Signaling,2006,8:173-184
    Porra R.J., Thompson W.A., Kriedemann P.E.. Determination of accurate extinctioncoefficients and simultaneous equations for assaying chlorophylls a and b extracted withfour different solvents: verification of the concentration of chlorophyll standards byatomic absorption spectroscopy. Biochimica et Biophysica Acta,1989,975:384-394
    Prochazkova D., Sairam R.K., Srivastava G.C., Singh D.V.. Oxidative stress and antioxidantactivity as the basis of senescence in maize leaves. Plant Science,2001,161:765-771
    Puppo A., Groten K., Bastian F., Carzaniga R., Soussi M., Lucas M.M., De Felipe M.R.,Harrison J., Vanacker H., Foyer C.H.. Legume nodule senescence: roles for redox andhormone signalling in the orchestration of the natural aging process. New Phytologist,2005,165:683-701
    Qiu Q.S., Huber J.L., Booker F.L., Jain V., Leakey A.D.B., Fiscus E.L., Yau P.M., Ort D.R.,Huber S.C.. Increased protein carbonylation in leaves of Arabidopsis and soybean inresponse to elevated [CO2]. Photosynthesis Research,2008,97:155-166
    Rebmann G., Hertig C., Bull J.. Cloning and sequencing o f cDNAs encoding a pathogen-induced putative peroxidase of wheat (Triticum aestivum L.). Plant Molecular Biology,1991,2:329-331
    Rehman H., Malik S.A., Saleem M.. Heat tolerance of upland cotton during fruiting stageevaluated using cellular membrane thermostability. Field Crops Research,2004,85,149-158
    Reinders J., Sickmann A.. Modificomics: posttranslational modifications beyond proteinphosphorylation and glycosylation. Biomolecular Engineering,2007,24169-177
    Ren G., Zhou Q., Wu S., Zhang Y., Zhang L., Huang J., Sun Z., Kuai B.. Reverse Geneticidentifi cation of CRN1and its distinctive role in chlorophyll degradation in Arabidopsis.Journal of Integrative Plant Biology,2010,5:496-504
    Reyes-arrbas T., Barrett J. E., Huber D.J.. Leaf senescence in a non-yellowing cultivar ofchrysanthemum (Dendranthema grandiflora). Physiologia Plantarum,2001,1114:540-544
    Ribas-Carbo M., Taylor N.L., Giles L., Busquets S., Finnegan P.M., Day D.A., Lambers H.,Medrano H., Berry J.A., Flexas J.. Effects of water stress on respiration in soybean leaves.Plant Physiology,2005,139:466-473
    Rivero R.M., Kojima M., Gepstein, Amira, Sakakibara H., Mittler R., Gepstein S., Blumwald
    E.. Delayed leaf senescence induces extreme drought tolerance in a flowering plant.
    Proceedings of the National Academy of Sciences of the United States of America,2007,104:19631-19636
    Rodrigo M.J., Marcos J.F., Zacarías L.. Biochemical and molecular analysis of carotenoidbiosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development andmaturation. Journal of Agricultural and Food Chemistry,2004,52:6724-6731
    Rüdiger W.. Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynthesis Research,2002,74:187-193
    Sairam R.K., Srivastava G.C., Saxena D.C.. Increased antioxidant activity under elevatedtemperatures: a mechanism of heat stress tolerance in wheat genotypes. BiologiaPlantarum,2000,43:245-251
    Saneoka H., Moghaieb R. E.A., Premachandra G.S., Fujita K.. Nitrogen nutrition and waterstress effects on cell membrane stability and leaf water relations in Agrostis palustrisHuds. Environmental and Experimental Botany,2004,52:131-138
    Sato Y., Morita R., Katsuma S., Nishimura M., Tanaka A., Kusaba M.. Two short-chaindehydrogenase/reductases, NON-YELLOW COLORING1and NYC1-LIKE, are requiredfor chlorophyll b and light-harvesting complex II degradation during senescence in rice.The Plant Journal,2009,57:120-131
    Sato Y., Morita R., Nishimura M., Yamaguchi H., Kusaba M.. Mendel’s green cotyledongene encodes a positive regulator of the chlorophyll degrading pathway. Proceedings ofthe National Academy of Sciences of the United States of America,2007,104:14169-14174
    Scandalios J. G.. Oxidative stress: molecular perception and transduction of signals triggeringantioxidant gene defences. Brazilian Journal of Medical and Biological Research,2005,38:995-1014
    Schelbert S., Aubry S., Burla B., Agne B., Kessler F., Krupinska K., H rtensteine S..Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyllbreakdown during leaf senescence in Arabidopsis. The Plant Cell,2009,21:767-785
    Schenk N., Schelbert S., Kanwischer M., Goldschmidt E.E., Dormann P., Hortensteiner S..The chlorophyllases AtCLH1and AtCLH2are not essential for senescence relatedchlorophyll breakdown in Arabidopsis thaliana. FEBS Letters,2007,581:5517-5525
    Scheumann V., Schoch S., Rüdiger W.. Chlorophyll a formation in the chlorophyll reductasereaction requires reduced ferredoxin. Journal of Biological Chemistry,1998,273:35102-35108
    Shah, N.H., Paulsen, G.M.. Interaction of drought and high temperature on photosynthesisand grain-filling of wheat. Plant and Soil,2003,257:219-226
    Shannon L.M., Kay E., Lew J.Y.. Peroxidase isozymes from horseradish roots. Journal ofBiological Chemistry,1966,9:2166-2172
    Shemer T. A., Harpaz-Saad S., Belausov E., Lovat N., Krokhin O., Spicer V., Standing K.G.,Goldschmidt E.E., Eyal Y.. Citrus chlorophyllase dynamics at ethyleneinduced fruitcolor-break: a study of chlorophyllase expression, posttranslational processing kinetics,and in situ intracellular localization. Plant Physiology,2008,148:108-118
    Shimoni E., Rav-Hon O., Ohad I., Brumfeld V., Reich Z.. Three-dimensional organization ofhigher-plant chloroplast thylakoid membranes revealed by electron tomography. PlantCell,200517:2580-2586
    Spano G., Di Fonzo N., Perrotta C., Platani C., Ronga G., Lawlor D.W., Napier J.A., Shewry P.R.. Physiological characterization of ‘stay green’ mutants in durum wheat. Journal ofExperimental Botany,2003,54:1415-1420
    Srivalli B., Khanna-Chopra R.. The developing reproductive ‘sink’ induces oxidative stress tomediate nitrogen mobilization during monocarpic senescence in wheat. BiochemistryBiophysics and Research Communications,2004,325:198-202
    Standfuss J., van Scheltinga, A.C.T., Lamborghini M., Kühlbrandt W.. Mechanisms ofphotoprotection and nonphotochemical quenching in pea light-harvesting complex at2.5resolution. EMBO Journal,2005,24:919-928
    Suzuki T., Kunieda T., Murai F., Morioka S., Shioi Y.. Mg-dechelation activity in radishcotyledons with artificial and native substrates, Mg-chlorophyllin a and chlorophyllide a.Plant Physiology Biochemistry,2005,43:459-464
    Swiatek M., Kuras R., Sokolenko A., Higgs D., Olive J., Cinque G., Mqller B., EichackerL.A., Stern D.B., Bassi R., Herrmann R.G., Wollman F-A.. The chloroplast gene ycf9encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSIIsupramolecular architecture. The Plant Cell,2001,13:1347-1367
    Tanaka K., Masuda R., Sugimoto T., Omasa K., Sakaki T.. Water deficiency induced changesin the content of defensive substances against active oxygen in spinach leaves.Agricultural Biology Chemistry,1990,54:2629-2634
    Teranishi Y., Tanaka A., Osumi M.. Catalase activity of hydrocarbon utilizing candida yeast.Agricultural and Biological Chemistry,1974,38:1213-1216
    Terence J., Blake Jiyue L.. Hydraulic adjustment in jack pine and black spruce seedlingsunder controlled cycles of dehydration and rehydration. Physiologia Plantarum,2003,117:532-539
    Thomas H., Howarth C.J.. Five ways to stay green. Journal of Experimental Botony,2000,51:329-337
    Thomas H., Smart C.M.. Crops that stay green. Annals of Applied Biology,1993,123:193-22
    Tian F.X., Gong J.F., Wang G.P., Wang G.K., Fan Z.Y., Wang W.. Improved drought resistancein a wheat stay-green mutant tasg1under field conditions. Biologia Plantarum,2012,56:509-515
    Tsuchiya T., Ohta H., Okawa K., Iwamatsu A., Shimada H., Masuda T., Takamiya K.. Cloningof chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motifand the induction by methyl jasmonate. Proceedings of the National Academy of Sciencesof the United States of America,1999,96:15362-15367
    Ushimaru T, Nakagawa T, Fujioka Y. Transgenic Arabidopsis plants expressing the ricedehydroascorbate reductase gene are resistant to salt stress. Journal of Plan Physiology,2006,163:1179-1184
    Valrio L., DeMeyer M., Penel C.. Expression analysis o f the Arabidopsis peroxidasemultigenic family. Phytochemistry,2004,10:1331-1342
    Walulu R.S., Rosenow D.T., Wester D.B., Nguyen H.T.. Inheritance of the stay-green trait insorghum. Crop Science,1994,34:970-972
    Wang G.P., Zhang X.Y., Li F., Luo Y., Wang W.. Overaccumulation of glycine betaineenhances tolerance to drought and heat stress in wheat leaves in the protection ofphotosynthesis. Photosynthetica,2010,48:117-126
    Wells W.W., Xu D.P., Yang Y., Rocque P.A.. Mammalian thioltransferase (glutaredoxin) andprotein disulfide isomerase have dehydroascorbate reductase activity. Journal ofBiological Chemistry,1990,265:15361-15364
    Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Montagu M.V.,Inzé D., Camp W.V.. Catalase is a sink for H2O2and is indispensable for stress defence inC-3plants. EMBO Journal,1997,16:4806-4816
    Yang X.H., Liang Z., Lu C.. Genetic engineering of the biosynthesis of glycinebetaineenhances photosynthesis against high temperature stress in transgenic tobacco plants.Plant Physiology,2005,138:2299-2309
    Ye B., Gressel J.. Transient, oxidant-induced antioxigant transcript and enzyme levelscorrelate with greater oxidant-resistance in paraquant-resistant Conyza bonariensis.Planta,2000,211:50-61
    Yoo S.C., Cho S.H., Zhang H., Paik H.C., Lee C.H., Li J., Yoo J.H., Lee B.W., Koh H.J., SeoH.S.. Quantitative trait loci associated with functional stay-green SNU-SG1in rice.Molecular Cells,2007,24:83-94
    Yoon H.S., Lee H., Lee I.A.. Molecular cloning of the monodehydorascobrate reductase genefrom Brassica campestrsi and analysis of its mRNA level in response to oxidative sterss.Biochimica and Biophysica Acta,2004,1658:181-186
    Zavaleta-Mancera H.A., López-Delgado H., Loza-Tavera H., Mora-Herrera M.,Trevilla-García C., Vargas-Suárez M., Ougham H.. Cytokinin promotes catalase andascorbate peroxidase activities and preserves the chloroplast integrity duringdark-senescence. Journal of Plant Physiology,2007,164:1572-1582
    Zhao X.X., Ma Q.Q., Liang C., Fang Y., Wang Y.Q., Wang W. Effect of glycinebetaine onfunction of thylakoid membranes in wheat flag leaves under drought stress. BiologyPlantarum,2007,51:584-588
    Zheng H.J., Wu A.Z., Zheng C.C., Wang Y.F., Cai R., Shen X.F., Xu R.R., Liu P., Kong L.J.,Dong S.T.. QTL mapping of maize (Zea mays) stay-green traits and their relationship toyield. Plant Breeding,2009,128:54-62
    Zhuang L., Chenn Y.N.. Physiological responses of three contrasting plant species togroundwater level changes in an arid environment. Journal of Integrative Plant Biology,2006,48:520-526
    Zimmermann P., Zentgraf U.. The correlation between oxidative stress and leaf senescenceduring plant development. Cellular and Molecular Biology Letters,2005,10:515-534
    Zou L.P., Li H.X., Ou Y.B., Zhang J.H., Ye Z.B.. Cloning, expression, and mapping ofGDP-D-mannose pyrophosphorylase cDNA from tomato (Lycopersicon esculentum). ActaGenetica Sinica,2006,8:757-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700