用户名: 密码: 验证码:
基于CCSDS IDC星载图像压缩算法的FPGA实现技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的发展,不论是深空探索还是对地观测,卫星图像获取设备分辨率日益提高,获得的遥感图像数据越来越多,数据下传压力越来越大,因而星载图像压缩技术在深空、遥感领域中起着越来越重要的作用。
     目前,按照去相关技术,在星载图像压缩系统中主要采用了基于预测的差分脉冲编码调制(DPCM)算法、基于离散余弦变换(DCT)的算法以及基于离散小波变换(DWT)的算法,具体采用的静止图像压缩标准有CCSDS LDC、JPEG、JPEG2000、SPIHT等标准,但它们存在计算复杂度高甚至分块效应的缺点,不太适合星载应用。因而,空间数据系统咨询委员会(CCSDS)着手建立一种新的适合于空间应用的星载图像压缩算法,并于2005年11月正式推出了IDC(Image Data Compression)图像数据压缩推荐标准。IDC采用了9/7离散小波变换,支持无损压缩和有损压缩,支持码流渐进传输。该算法计算复杂度低,支持快速、低功耗硬件实现,获得了与JPEG2000相近的性能,是专门为空间应用而设计的压缩标准,满足星载应用的要求。
     为对卫星获取的海量图像数据进行实时压缩,解决数据存储和传输的压力,本文对CCSDS推出的IDC星载图像压缩算法及其硬件实现展开研究,利用先进的FPGA技术,研究并设计了IDC算法的IP软核,将该IP核集成于CoreConnect的PLB总线上,构建一个较完整的单芯片星载图像压缩系统。
     论文的主要内容如下:
     (1)研究了CCSDS IDC图像数据压缩标准,对算法进行了分析和仿真。经与JPEG2000压缩算法对比,IDC压缩算法的计算复杂度和硬件实现复杂度较低,非常适合星载环境图像数据压缩的应用。
     (2)研究了IDC所采用的9/7离散小波变换算法,并将其转换为有利于快速计算和VLSI实现的提升格式。
     提出了9/7整数离散小波变换提升格式的VLSI实现结构,简化了计算过程,便于数据的有序处理。改进设计了9/7浮点离散小波变换卷积算法的VLSI实现结构,设计了9/7浮点离散小波变换提升格式VLSI实现结构。在9/7浮点离散小波变换的卷积算法和提升格式实现结构中,采用基于CSD编码的移位加运算代替了常系数乘法,实现了无乘法计算,缩短了延时路径,提高了计算频率,节约了硬件资源。
     在研究设计的二维离散小波变换的VLSI结构中,采用行、列并行变换结构,加快了变换速度,提高了小波变换效率;且行变换模块和列变换模块均采用内嵌边界延拓处理方法,减少了所需的内存容量。
     (3)研究了IDC标准中位平面编码器算法,与离散小波变换的计算密集型不同,它的数据运算并不复杂,而是以大量的比较、移位和逻辑判断操作为主的处理过程,而且数据的有序流动是一个比较复杂的过程,要频繁访问存储单元。
     基于并行技术提出了位平面编码器VLSI实现架构,提高了位平面数据的处理能力。该架构主要包括直流系数初始编码模块、交流系数位深编码模块和位平面编码模块。
     为减少块内扫描时间,按系数集合分类的方法进行块内并行扫描,大幅减少每个块的扫描时间。为减少一个段的扫描时间,采取了块分组并行扫描的方法。为加快位平面最优编码选项计算速度,采取了块分组并行统计的方法。
     (4)基于Xilinx公司Virtex-ⅡPro FPGA芯片内嵌的PowerPC处理器硬核、IBM CoreConnect,总线结构和基于单芯片设计星载压缩系统的思想,提出一种基于PowerPC+CoreConnect PLB+IDC IP软核的星载图像压缩系统SoPC架构,提供了通过片上总线集成外围IP软核的方法,降低了小卫星图像压缩有效载荷的体积、复杂度和成本,缩短了研制周期。设计了基于CoreConnect PLB,总线的IDC图像压缩IP软核,开发了符合PLB总线的IP核IPIF接口,将设计的软核集成于PLB总线上,构建了在单一芯片FPGA内将各种不同的IP核连接到一起构成一个较完整应用的星载图像压缩系统。
     本文在研究设计了1DC算法IP软核的基础上,进行了功能验证和系统设计,整个系统在Xilinx公司的Virtex-ⅡPro FPGA开发系统上进行验证和实现。
With the development of the aerospace technology, more and more remote sense image data are produced and the data transmission to ground becomes more and more difficult both in deep space probes and in the near earth observations, owing to the increasing resolution of the satellite imaging instruments. Therefore, the onboard image data compression plays an important role in the fields of deep space exploration and remote sense.
     At present, according to different techniques used for decorrelation, the image compression algorithms can be separated into DPCM, DCT and DWT-based in the onboard image compression systems. The main standards of still image compression include CCSDS LDC based on DPCM, JPEG based on DCT, and JPEG2000 and SPIHT based on DWT. But some of them have the disadvantages of high computational complexity, even block effect, which are not suitable for onboard satellite use. So the CCSDS starts to establish a new image data compression algorithm suitable for spaceborne applications, and the new image data compression recommendation standard called CCSDS Image Data Compression (IDC) Blue Book is finally published in November 2005. The IDC algorithm,9/7 DWT-based, supports both lossy and lossless compression and allows progressive transmission. The algorithm reduces computational complexity and the hardware implementation is fast and low power. CCSDS IDC achieves performance similar to JPEG2000. It is designed specially for space application, meeting the requirements of satellites.
     In order to compress the extensive amount of satellite image data in real time and solve the problem of data storage and transmission, the CCSDS IDC algorithm and its hardware implementation is researched in this paper. With the advanced FPGA technology and the new IDC algorithm, an IP soft core of IDC algorithm is designed and integrated into the PLB bus of the CoreConnect, aiming at building a single-chip satellite image compression system.
     The paper is summarized as follows:
     (1) Study on CCSDS IDC image data compression recommanded standard. The algorithm is analyzed and simulated in detail. The computational complexity and hardware implementation for IDC compression algorithm is lower than that of JPEG2000's. It is very suitable for the image data compression in satellite environment.
     (2) The 9/7 discrete wavelet transform algorithm is studied and it is converted into a lifting scheme, easy to calculate quickly and be implemented by VLSI.
     VLSI implementation architecture of 9/7 integer DWT lifting-based is proposed, which can simplify the computational procedure. VLSI implementation architecture of 9/7 float DWT convolution algorithm is also improved, and VLSI architecture of 9/7 float DWT lifting scheme is also designed. In the wavelet transform modules of convolution algorithm and lifting scheme, replacing constant coefficient multiplication operations, the shift-adder multipliers CSD-based get no multiplier computation, shorten the delay path, increase the computing frequency and save hardware resources.
     In the VLSI structure of two dimensional discrete wavelet transform, the parallel transformation of row and column structure speeds up the transformation and raises the efficiency of the wavelet transform. Row and column transformation modules use the embedded symmetric extension to reduce the required memory capacity.
     (3) The IDC's bit plane encoder is researched. Different from the DWT's intensive computation, its data operation is not complicated. It is a procedure mainly including a lot of comparison, shift and logical judgement operations. As a complex process, the data flow needs frequent access to the memory.
     VLSI implementation architecture of bit plane encoder based on parallel technique is proposed. The modules of initial coding of DC coefficient, AC coefficient bit depth coding and bit plane coding are designed.
     The parallel scan method based on set-type is used to reduce the scan time in a block. The parallel scan method based on block-group is used to shorten the scan time of a segment. And the parallel statistical method based on block-group is taken to speed up the optimal code option calculation for a bit plane.
     (4) A SoPC architecture of satellite image compression system is proposed, which is based on PowerPC processor. CoreConnect PLB bus and IDC IP soft core. The implementation of the single-chip image compression system aims to decrease the size, complexity and cost of the small satellite and shorten the development cycle. An IDC IP soft core based on CoreConnect PLB bus is designed and the IPIF interface in accordance to PLB bus is developed. An onboard image compression system composed of various IP core in a Xilinx Virtex-ⅡPro FPGA is built.
     In this paper, on the basis of researching and designing the IDC's IP software core, the functional verification and system design are done. Finally, the system is verified and implemented in the Xilinx Virtex-ⅡPro FPGA development system.
引文
[1]徐欣锋.一种适应大数据量遥感图像的星上实时压缩方法[D].中国科学院长春光学精密机械与物理研究所博士学位论文,2006.
    [2]王明富,杨世洪,吴钦章.一种基于小波变换的遥感图像压缩算法[J].光电工程,2009,36(11):85-91.
    [3]张更新,谢智东,沈志强.深空通信的现状与发展[J].数字通信世界,2010,4:82-86.
    [4]马瑞敏,王景宇,王国权.空间太阳望远镜FPGA星载图像压缩模块的设计与实现[J].宇航学报,2008,29(4):1345-1349.
    [5]赵丽红,田亚男,沙永刚,等DPCM与小波变换结合的医学图像无损压缩[J].东北大学学报(自然科学版),2007,28(10):1454-1457.
    [6]CCSDS. Lossless Data Compression[S]. CCSDS 121.0, Blue Book, May 1997.
    [7]CCSDS. Lossless Data Compression[R]. CCSDS 120.0, GREEN BOOK, December 2006.
    [8]S Ghosh, S Venigalla, M Bayoumi. Design and implementation of a 2D-DCT architecture using coefficient distributed arithmetic[C]. IEEE Computer Society Annual Symposium on VLSI,2005:162-166.
    [9]El-Banna, H El-Fattah, A A Fakhr. An Efficient Implementation of the 1D DCT using FPGA Technology[C].11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems,2004:356-360.
    [10]GREGORY K W. The JPEG still picture compression standard[J]. IEEE Transactions on Consumer Electronics,1992,38(1):18-34.
    [11]W B Pennebaker, J L Mitchell. JPEG Still Image Data Compression Standard[S]. New York:Van Nostrand Reinhold,1993.
    [12]Shapiro J. Embedded image coding using zerotrees of wavelet coefficients[J]. IEEE Transaction On Signal Processing,1993,41(12):3445-3462.
    [13]许超.多位平面并行的EZW零树编码电路研究[J].计算机研究与发展,2004,41(3):451-455.
    [14]Suchitra S, Lim C S, Srikanthan T. Array based architecture for EZW image encoding on FPGA using handel-C[C]. Conference Record-Asilomar Conference on Signals, Systems and Computers,2004, v1:447-450.
    [15]姚敏,赵敏.改进的高效EZW遥感图像压缩方法研究[J].电子科技大学学报,2009,38(4):525-528.
    [16]Said A, Pearlman WA. A new, fast and efficient image codec based on set partitioning in hierarchal trees[J], IEEE Transaction on Circuits and Systems for Video technology,1996 Video technology,1996,6(3):243-250.
    [17]Wheeler Frederick W, Pearlman William A. SPIHT image compression without lists[C]. IEEE International Conference on Acoustics, Speech and Signal Processing,2000: 2047-2050.
    [18]Corsonello Pasquale, Perri Stefania, Zicari Paolo, et al. Microprocessor-based FPGA implementation of SPIHT image compression subsystems[J]. Microprocessors and Microsystems,2005,29(6):299-305.
    [19]ISO:ISO/IEC JTC1/SC29/WG1N1646R JPEG2000 part 1 final committee draft version 1.0[S]. March,2000.
    [20]赵清,林宝军,张善从JPEG2000遥感图像实时压缩系统[J].计算机仿真,2007,24(3): 180-183.
    [21]T Trenschel, T Bretschneider, G Leedham. Using JPEG2000 on-board mini-satellites for image-driven compression[C]. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium,2003, vol.3:2033-2035.
    [22]Image Data Compression. Recommendation for Space Data System Standards[S]. CCSDS 122.0-B-1. Blue Book. CCSDS, November 2005.
    [23]Image Data Compression. Report Concerning Space Data System Standards [S]. CCSDS 120.1-G-1. Green Book. CCSDS, June 2007.
    [24][DB/OL]. www.ccsds.org.
    [25]谢希仁.计算机网络[M].北京:电子工业出版社,1999.
    [26]周辉,郑海昕,许定根.空间通信技术[M].北京:国防工业出版社,2010.
    [27]Guoxia Yu, Tanya Vladimirova, Martin N Sweeting.2Image compression systems on board satellites[J]. Acta Astronautica,2009,64(9-10):988-1005.
    [28]马瑞敏,金声震.基于LEON2和FPGA的在轨图像小波变换模块设计[J].光电子·激 光,2008,19(12):1682-1685.
    [29]小号.嫦娥1号卫星的有效载荷[J].中国航天,2007,11:12-16.
    [30]黄江川,饶炜,孟林智,等.嫦娥二号卫星技术特点分析[J].航天器工程,2010,19(5):7-11.
    [31]王柯俨.干涉多光谱图像编码技术研究[D].西安:西安电子科技大学博士学位论文,2008.
    [32]Rice Robert F. Lossless coding standards for space data systems[C]. Conference Record of the Asilomar Conference on Signals, Systems and Computers,1997, v1:577-585.
    [33]Vitulli Raffaele. PRDC:An ASIC device for lossless data compression implementing the rice algorithm[C]. International Geoscience and Remote Sensing Symposium,2004, v1: 317-320.
    [34]Wai-Chi Fang. Lossless data compression core design for integrated space data and communication system-on-chip[C]. IEEE International Symposium on Circuits and Systems,2006:297-300.
    [35]侯雨石,陈永飞,何玉青,等.数码相机原理与系统设计研究[J].光学技术,2002,28(5):452-458.
    [36]韩丽,闫杰.超大像素航空相机图像压缩算法的研究与应用[J].弹箭与制导学报,2007,27(3):193-195.
    [37]焦李成,张向荣,侯彪,等.智能SAR图像处理与解译[M].北京:科学出版社,2008.
    [38]张旭东,卢国栋,冯键.图像编码基础和小波压缩技术原理、算法和标准[M].北京:清华大学出版社,2004.
    [39]Sweldens W. The Lifting Scheme:A Custom Design Construction of Biorthogonal Wavelets[J]. Journal of Application&Comput Harmonic Analysis,1996,3(2):186-200.
    [40]S Barua, J E Carletta, K A Kotteri, et al. An efficient architecture for lifting-based two-dimensional discrete wavelet transform[J]. Integration, the VLSI Journal,2005,38(3): 341-352.
    [41]W Vishwanath. The recursive pyramid algorithm for the discrete wavelet transform [J]. IEEE Trans. On Signal Processing,1994,42(3):673-677.
    [42]兰旭光,郑南宁,吴勇,等JPEG2000二维离散小波变换高效并行VLSI结构设计[J].西 安交通大学学报,2004,38(2):149-153.
    [43]朱珂,华林,鲁则瑜,等.应用于JPEG2000的高性能离散小波变换VLSI结构[J].计算机辅助设计与图形学学报,2004,16(7):1010-1015.
    [44]HUANG CH T, TSENG P CH, CHEN L G. Generic RAM-based architectures for two-dimensional discrete wavelet transform with line-based method[J]. IEEE Transactions on circuits and sustems for video technology,2005,15(7):910-920.
    [45]Andra K, Chakrabarti C, and Acharya T. A VLSI architecture for lifting-based forward and inverse wavelet transform[J]. IEEE Trans. On Signal Procesing,2002,50(4):966-977.
    [46]Seo Y H, Kim D W. VLSI architecture of line-based lifting wavelet transform for motion JPEG2000[J]. IEEE Journal of Solid-State Circuit,2007,42(2):431-440.
    [47]郝燕玲,刘营.应用于JPEG2000的离散小波变换并行超大规模集成结构[J].光学精密工程,2009,17(5):1181-1186.
    [48]陈磊,王峰,段淋,等.一种用于JPEG2000的小波变换VLSI结构设计方法[J].中国图象图形学报,2007,12(10):1730-1734.
    [49]王超.二维离散小波变换高效低存储VLSI架构设计[J].计算机应用研究,2010,27(9):3555-3557.
    [50]Lin Albert, Chang C F, Lin M C, et al. Implementation of CCSDS data compression for remote sensing image[C]. The International Society for Optical Engineering conference on Satellite Data Compression, Communications, and Processing VI,2010:1-4.
    [51]Pen-Shu Yeh, Philippe Armbruster, Aaron Kiely, et al. The New CCSDS Image Compression Recommendation[C]. Proceedings of the IEEE Aerospace Conference,2005: 4138-4145.
    [52]徐放CCSDS图像压缩算法的研究[J].科学技术与工程,2008,20(8):5597-5601.
    [53]侯猛CCSDS图像压缩算法研究及其向DSP的移植[D].西安电子科技大学硕士学位论文,2009.
    [54]高超.基于FPGA的CCSDS图像压缩算法研究与实现[D].大连理工大学硕士学位论文,2007.
    [55]陈康,刘建军,涂国防.一种基于CCSDS IDC标准的可伸缩性视频编码算法[J].中国科学院研究生院学报,2009,26(1):114-120.
    [56]王怀超,顾晓东,陈晓敏.适合空间应用的高速图像压缩核设计[J].宇航学报,2009,30(6):2297-2302.
    [57]Michael D Adams, Faouzi Kossentini. Reversible Integer-to-Integer Wavelet Transforms for Image Compression:Performance Evaluation and Analysis[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2000,9(6):1010-1024.
    [58]谢林,虞露,仇佩亮.基于上下文的自适应二进制算术编码研究[J].浙江大学学报(工学版),2005,39(6):910-914.
    [59]罗钧,张国彬JPEG2000中的二进制算术编码及其DSP实现[J].重庆大学学报(自然科学版),2003,26(4):34-37.
    [60]Tian Xin, Wang Chun-Ming, Tan Yi-Hua, et al. ROI image compression algorithm for reconnaissance satellite systems[C]. The International Society for Optical Engineering, 2009:1-4.
    [61]王凤文,舒冬梅,赵宏才.数字信号处理[M].北京:北京邮电大学出版社,2006.
    [62]李广军,孟宪元.可编程ASIC设计及应用[M].成都:电子科技大学出版社,2000.
    [63]Vladimirova Tanya, Wu Xiaofeng, Bridges Christopher P. Development of a satellite sensor network for future space missions[C]. IEEE Aerospace Conference Proceedings, 2008:1-10.
    [64]Vladimirova Tanya, Xiaofeng Wu. On-board partial run-time reconfiguration for pico-satellite constellations[C]. First NASA/ESA Conference on Adaptive Hardware and Systems,2006:262-269.
    [65]Vladimirova Tanya, Sweeting Martin N. System-on-a-chip development for small satellite onboard data handling[J]. Journal of Aerospace Computing, Information and Communication,2004,1(1):36-43.
    [66]郑岱殉,Tanya Vladimirova单片系统在星载计算机上的应用[J].中国空间科学技术,2004,24(1):37-44.
    [67]Tanya Vladimirova. RECONFIGURABLE COMPUTING FOR AEROSPACE APPLICATIONS[Z].2005, ShanDong University, Jinan, China.
    [68]N Ismailoglu, O Benderli, S Yesil, et al. GEZGIN & GEZGIN-2:adaptive real-time image processing subsystems for earth observing small satellites[C]. Proc. of the 1st NASA/ESA Conference on Adaptive Hardware and Systems,2006:351-358.
    [69]Video Processor User's Guide[Z]. Analog Devices, Inc. ADV202 JPEG2000.2005.
    [70]薛旭成,张淑艳,曲洪丰,等.基于JPEG2000的星载遥感图像实时压缩系统设计[J].仪器仪表学报,2007,28(4):509-512.
    [71]赵清,林宝军,张善从JPEG2000遥感图像实时压缩系统[J].计算机仿真,2007,24(3): 180-183.
    [72]杜列波JPEG2000星载图像压缩设备中的关键技术研究[D].长沙:国防科学技术大学博士论文,2008.
    [73]杨雅,卫新国,高洁,等.新一代FPGA在星载嵌入式计算机中的应用[J].上海航天,2005,22(2):47-50.
    [74]陈弘毅,白国强,吴行军VLSI数字信号处理系统设计与实现[M].机械工业出版社,2004.
    [75]邢克飞,杨俊,王跃科,等Xilinx SRAM型FPGA抗辐射设计技术研究[J].宇航学报,2007,28(1):123-129.
    [76]田文波,章斌.基于SRAM的XILINX FPGA单粒子翻转的测试和试验方法研究[C].第十届全国抗辐射电子学与电磁脉冲学术年会论文集,2009:374-379.
    [77]K Bondalapati, K Prasanna. Reconfigurable computing:Architectures, models and algorithms[J]. CURRENT SCIENCE,2000,78(7):828-837.
    [78]Zheng D X, Vladimirova T, et al. Reconfigurable single-chip on-board computer for a small satellite[C].52nd International Astronautical Federation Congress, Paris,2001.
    [79]赵丹,徐国栋,刘源.可重构技术的航天应用与星载计算机设计[J].哈尔滨工程大学学报,2009,30(5):486-490.
    [80]韦兆碧,马志瀛,谢胜民,等.小卫星星务计算机可重构硬件平台的研究[J].哈尔滨工业大学学报,2005,37(6):858-860.
    [81]Nobuyuki Ohba, Kohji Takano. An SoC Design Methodology Using FPGAs and Embedded Microprocessors[C]. Proceedings of the 41st Design Automation Conference, 2004:747-752.
    [82]Xilinx Corporation. Embedded System Tools Reference Manual[Z]. Version8.1,2006.
    [83]赵峰,马迪铭,孙炜等FPGA上的嵌入式系统设计实例[M].西安:西安电子科技 大学出版社,2008.
    [84]董代洁,郭怀理,曹春雨,等.基于FPGA的可编程SoC设计[M].北京:北京航空航天大学出版社,2006.
    [85]刘鹏飞,贺继林.基于SOPC的CAN总线技术在挖掘机控制中的应用[J].制造业自动化,2008,30(5):62-64.
    [86]王钿,卓兴旺.基于Verilog HDL的数字系统应用设计[M].北京:国防工业出版社,2006.
    [87]Ferrandi Fabrizio, Ferrara Giovanna, Palazzo Roberto, et al. VHDL to FPGA automatic IP-Core generation:A case study on Xilinx design flow[C].20th International Parallel and Distributed Processing Symposium,2006:1-4.
    [88]LABROSSE J J.嵌入式实时操作系统uC/OS-Ⅱ[M].北京:北京航空航天大学出版社,2003.
    [89][DB/OL]. http://www.xilinx.com.
    [90]杨强浩,等.基于EDK的FPGA嵌入式系统开发[M].北京:机械工业出版社,2008.
    [91]Michael Keating, Pierre Bricaud.沈戈等译.片上系统—可重用设计方法学[M].北京电子工业出版社,2004.
    [92]马光胜,冯刚.SoC设计与IP核重用技术[M].北京:国防工业出版社,2006.
    [93]张春生,常青,肖山竹.基于PowerPC 405的SOPC简单应用[J].微处理机,2007,6:117-120.
    [94]IBM Inc. Xilinx Inc.64-Bit Processor Local Bus Architecture Specifications[Z].
    [95]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999.
    [96]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2003.
    [97]王大凯,彭进业.小波分析及其在信号处理中的应用[M].北京:电子工业出版社,2005.
    [98]陈武凡.小波分析及其在图像处理中的应用[M].北京:科学出版社,2002.
    [99]罗建书,卓红艳,黎明君.基于整数小波变换的多光谱遥感图像压缩技术[J].国防科技大学学报,2005,27(6):35-42.
    [100]柯丽,黄廉卿.适于遥感图像实时压缩的小波基的选择[J].光学技术,2005,31(1)77-83.
    [101]王青海,莫玉龙.JPEG2000压缩标准中小波基的选择[J].计算机工程,2004,30(23):138-140.
    [102]甘琼,黄大庆.基于小波变换的无人机侦察图像压缩[C].尖兵之翼—2006中国无人机大会论文集:607-611.
    [103]S G Mallat. A Theory for Multiresolution Signal Decomposition:the Wavelet Representation[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence,1989,11: 674-693.
    [104]Sweldens W. The Lifting Scheme:A Custom Design Construction of Biorthogonal Wavelets[J]. Journal of Application&Comput Harmonic Analysis,1996,3(2):186-200.
    [105]R Calderbank, I Daubechies, W Sweldens, et al. Wavelet transforms that map integers to integers[J]. Applied and Computational Harmonic Analysis,1998,5(3):332-369.
    [106]I Daubechies, W Sweldens. Factoring wavelet transforms into lifting steps[J]. Journal of Fourier Analysis and Applications,1998,4(3):244-267.
    [107]Xilinx Corporation. Virtex-Ⅱ Pro and Virtex-Ⅱ Pro X Platform FPGAs[Z]. DS083, 2007.
    [108]黄志强,潘天保,吴鹏,等Xilinx可编程逻辑器件的应用与设计[M].北京:机械工业出版社,2007.
    [109]乔世杰.小波图像编码中的对称边界延拓算法[J].中国图像图形学报,2000,5(9)725-729.
    [110]孙蕾,罗建书.小波变换点对称边界延拓问题研究[J].计算机应用,2008,28(2)443-445.
    [111]Kei-Yong Khoo, Alan Kwentus, Alan N Willson. A programmable FIR Digital Using CSD Coefficients[J]. IEEE Journal of Solid-state Circuits,1996,31(6):869-874.
    [112]Michael A, Soderstrand. CSD multipliers for FPGA DSP applications[C]. Proceedings of the 2003 International Symposium on Circuits and Systems,2003,5:469-472.
    [113]朱霞,柴志雷,须文波.基于CSD编码的FIR数字滤波器优化设计[J].计算机工程与设计,2009,30(2):271-274.
    [114]刘凌.数字信号处理的FPGA实现[M].北京:清华大学出版社,2006.
    [115J 王青海,莫玉龙.小波变换硬件实现中有限字长效应的分析[J].计算机工程,2004, 30(12):119-121.
    [116]程佩青.数字信号处理教程[M].北京:清华大学出版社,2001.
    [117]刘文耀.小波图像编码与专用VLSI设计[M].北京:电子工业出版社,2006.
    [118]云创工作室.Verilog HDL程序设计与实践[M].北京:人民邮电出版社,2009.
    [119]李旭.基于FPGA的流水线技术应用研究[J].电子测量技术,2007,30(2):131-132.
    [120]K A Kotteri, S Barua, A E Bell et al. A Compression of Hardware Implementations of the Biorthogonal 9/7 DWT:Convolution Versus Lifting[J]. IEEE TRANSACTIONS ON CIRCUIT AND SYSTEMS,2005,52(5):256-260.
    [121]史宜文.JEPG2000小波变换的研究与FPGA实现[D].上海大学,2004.
    [122]Cheng-Yi Xiong, Cheng-Jun Wang, Jin-wen Tian et al. An improved mapping method of buffer for line-based architecture of2-D DWT[C]. Communications, Circuits and Systems, 2005 International Conference on Volume 2,2005:1-4.
    [123]Nikos D Zervas, Giorgos P Anagnostopoulos, Vassilis Spiliotopoulos, et al. Evaluation of Design Alternatives for the 2-D Discrete Wavelet Transform[J]. IEEE Transactions on Circuit and Systems for Video Technology,2001,11(12):1246-1262.
    [124]Bing-Fei Wu, Chung-Fu Lin. A high-performance and memory-efficient pipeline architecture for the 5/3 and 9/7 discrete wavelet transform of JPEG2000 codec[J]. IEEE Transactions on Circuit and Systems for Video Technology,2005,15(12):1615-1628.
    [125]C Chrysafis, A Ortega. Line-Based, Reduced Memory, Wavelet Image Compression [J]. IEEE Transactions on Image Processing,2000,9(3):378-389.
    [126]Wang Chao, Wu Zhilin, Cao Peng, Li Jie. An Efficient VLSI Architecture for Lifting-Based Discrete Wavelet Transform[C]. IEEE International Conference on Multimedia and Expo, 2007:1575-1578.
    [127]Xilinx Corporation. ChipScope Pro Software and Cores User Guide[Z]. Version8.1,2005.
    [128]Janick Bergeron. Writing Testbenches:Functional Verification of HDL Models[M]. Kluwer Academic Publishers,2003.
    [129]张更新.现代小卫星及其应用[M].北京:人民邮电出版社,2009.
    [130]Xilinx Corporation. PLB IPIF[Z]. DS448,2005.
    [131]吴巨红,陈曾平.基于IPIF的实时信号处理SoPC中断机制研究与实现[J].测控技术, 2009,28:120-124.
    [132]陈文娟,石江宏,陈凌宇.基于SoPC的高速通信接口设计[J].电子测量技术,2010,33(7):117-124.
    [133]邢建平,曾繁泰VHDL程序设计教程[M].北京:清华大学出版社社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700