用户名: 密码: 验证码:
泡沫塑料动态成核机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在塑料发泡成型过程中,气泡核的形成阶段对泡孔的密度和分布起着决定性的作用,是控制泡体质量的关键阶段。前人对泡沫塑料气泡成核过程的研究基本上都是以经典成核理论为基础进行的。经典成核理论假设气泡核的形成是在静态条件下发生的,它没有反映在口模流场中动态因素(拉伸、剪切等)对气泡成核的影响。近来的一些实验研究表明,剪切流动能对气泡成核产生显著的影响。但是目前还缺少深入合理的理论分析和专题研究,成核机理研究还未见有突破性进展。为了完善气泡成核理论,使它能更有效地指导实践,本文作了以下研究。
     将高分子链取向、分子链间空穴大小的分布情况和气泡成核行为联系在一起,首次提出了拉伸和剪切等动态因素影响塑料发泡成核行为的微观机理。根据这一机理可以比较合理地解释Han CD和Lee等人观察到的一些剪切流动影响气泡成核行为的实验现象,概括如下:(1)塑料挤出发泡时,高分子链在剪切流场作用下发生分子取向。分子取向程度越高,分子链间空穴的大小差距越小,气泡成核需要的气体过饱和度越大,开始形成气泡核的时间越晚。由于在口模厚度方向上分子取向度的分布情况是流道中心处分子取向度最小,越靠近口模壁面分子取向度越大,所以在流道中心最先形成气泡核,越靠近口模壁面则开始形成气泡核的时间越晚。这可以解释Han JH和Han CD观察到的实验现象;(2)剪切速率越大则分子取向程度越高,分子链间空穴的尺寸大小差距越小,一旦开始形成气泡核,可以作为成核点的空穴数量越多,气泡成核速率越大。这可以解释Lee观察到的挤出发泡时制品泡孔密度随剪切速率增大而增大的实验现象;(3)口模平直流道中心线附近分子取向度始终近似为零,不随挤出流量的变化而变化,所以此处气泡开始成核时的熔体临界压力与挤出流量无关。这就是Han CD和Villamizar通过可视化实验测出的气泡开始成核临界压力与剪切速率无关的原因。
     根据上述拉伸和剪切等动态因素影响塑料发泡成核行为的微观机理,首次提出分子取向有利于得到泡孔数量多而且分布均匀的优质泡体。进而提出了一个强化气泡成核效果的新方法:在塑料挤出发泡过程中,通过改进口模设计和优化挤
In the foam process of cellular plastics, bubble nucleation has decisive effect on cell density and cell distribution, so it is the crucial factor to control the foam quality. Almost all the former work on bubble nucleation of cellular plastics is based on classical nucleation theory. Because classical nucleation theory supposes that bubble formation is occurred under static state, it doesn't reflect the effects of dynamic factors on bubble nucleation, such as shear and elongation. Recently, some experimental results show that shear flow has significant influences on bubble nucleation. However, it is still lack of reasonable theoretical analysis on bubble nucleation, and bubble nucleation mechanism made no essential progress. In order to improve the bubble nucleation theory to instruct practical appliance; following researches are done in this paper.
    By combining macromolecule orientation, size distribution of voids among molecule chains and bubble nucleation, the microcosmic mechanism of the effect of dynamic factors such as shear and elongation on bubble nucleation are put forward for the first time in this paper. Some experimental phenomena reflecting the effect of shear flow on bubble nucleation behavior, observed by Han or Lee, can be explained by the mechanism logically, as follow. (1) During the foam extrusion, macromolecules are oriented in the shear flow field. As the orientation degree increases, size difference of voids becomes smaller, so the gas supersaturates degree needing for bubble nucleation increases. Therefore, bubble nucleation is put off In the transaction direction of extrusion die, macromolecule orientation degree increases from the centerline to the die surface. Therefore, bubble formation occurred foremost at the centerline of the die, then gradually extend to the die surface. This can explain the experimental results observed by Han JH and Han CD. (2) As shear rate increases, molecule orientation degree increases while size difference of voids becomes smaller. Once the bubble nucleation begins, the number of voids acting as nucleating sites become larger. Therefore, bubble nucleation rate becomes larger. (3) At the centerline of straight die, molecule orientation is approximately omitted, so the critical pressure starting to nucleation is irrespective
引文
1.吴舜英,徐敬一.泡沫塑料成型化学工业出版社,1992:1
    2. Ozkan E Thermal and mechanical properties of cellular polystyrene and polyurethane insulation materials aged on a fiat roof in hot-dry climate. Journal of Testing & Evaluation. 1994, 22 (2): 149-160
    3. Nimmer RP, Stokes VK and Ysseldyke DA Mechanical properties of rigid thermoplastic foams-Part Ⅱ: Stiffness and strength data for modified polyphenylene oxide forms. Polymer Engineering and Science. 1988, 28(22): 1501-1508
    4. Progelhof RC, Kumar S and Throne JL. High speed puncture impact studies of three low pressure styrene thermoplastic structural foam plaques. Advances in Polymer Technology. 1983, 3(1): 15-22
    5. Zhang Y, Heath RJ and Hourston DJ. Morphology, mechanical properties, and thermal stability of polyurethane-epoxide resin interpenetrating polymer network rigid foams. Journal of Applied Polymer Science. 2000, 75(3): 406-416
    6. Lye SW, Lee SG and Tor SB. Parametric study of the shock characteristics of expandable polystyrene foam protective packaging. Polymer Engineering and Science. 1998, 38(4): 558-565
    7. Singh SN, Bums SB and Costa JS. Method of increasing the solubility of hydrocarbons and HFCs in polyurethanes raw materials and the effects on the performance and processing characteristics of construction foams. Cellular Polymers. 1997, 16(6): 444-467
    8.钱志屏.泡沫塑料.中国石化出版社,1998:2.5
    9. Hunter D and Magnusson B. Polyurethane foam catalysts for applications in non staining instrument panels. SAE (society of automotive engineers) Transactions. 1990, 99(5): 769-774
    10. Vincent JH, Aitken RJ and Mark D. Porous plastic foam filtration media: penetration characteristics and applications in particle size-selective sampling.??Journal of aerosol science. 1993, 24(7): 929-944
    11.李铁骑,齐昆等.塑料挤出发泡制品的成型工艺与应用.塑料.1994,23(1):24-28
    12. Martini JE and Ellen J. Masters Thesis. Massachusetts Institute of Technology, 1981
    13. Martini JE, Suh NP and Baldwin DF. Microcellular closed cell foams and their method of manufacture. U.S. Patent. 4,473,665, 1984
    14. Kumar V, VanderWel M, Weller J, et al. Experimental characterization of the tensile behavior of microcellular polycarbonate foams. Joumal of Engineering Materials and Technology, Transactions of the ASME. 1994, 116(4): 439-445
    15. Williams JM and Wrobleski DA. Microstructures and properties of some microcellular foams. Journal of Materials Science. 1989, 24(11): 4062-4067
    16. Matuana LM., Park CB and Balatinecz JJ. Structures and mechanical properties of microcellular foamed polyvinyl chloride. Cellular Polymers. 1998, 17(1): 1-16
    17. Kumar V, Juntunen RP and Barlow C. Impact strength of high relative density solid state carbon dioxide blown crystallizable poly(ethylene terephthalate) microcellular foams. Cellular Polymers. 2000, 19(1): 25-37
    18. Ozkul MH, Mark JE and Aubert JH. Elastic and plastic mechanical responses of microcellular foams. Journal of Applied Polymer Science. 1993, 48(5): 767-774
    19. Collias DI. and Baird DG. Tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrices and microcellular foams. Polymer Engineering and Science. 1995, 35(14): 1167-1177
    20. Park CB, Suh NP and Baldwin DF. Method for providing continuous processing microcellular and supermicrocellular foamed materials. U.S. Patent. 5,866,053, 1999
    21. Baldwin DF, Park CB and Suh NP, et al. Supermicrocellular foamed plastics. U.S. Patent. 5,334,356, 1994
    22. Handa YP, Zhang ZY. New pathways to microcellular and ultramicrocellular polymeric foams. American Society of Mechanical Engineers, Materials Division.??1998,82:1-4
    23. Handa YP and Zhang ZY. New technique for measuring retrograde vitrification in polymer-gas systems and for making ultramicrocellular foams from the retrograde phase. Journal of Polymer Science, Part B: Polymer Physics. 2000, 38(5): 716-725
    24. Baldwin DF, Park CB and Suh NP. Extrusion system for the processing of microcellular polymer sheets: shaping and cell growth control. Polymer Engineering and Science. 1996, 36(10)1:425-1435
    25. Grunbauer HJM, Broos JAF, Thoen JA, et al. Fine celled CFC-free rigid foam new machinery with low boiling blowing agents. Journal of Reinforced Plastics and Composites. 1994, 13(4): 361-370
    26. Krueger DC and Reichel CJ. Chlorodifluoromethane as the primary blowing agent for rigid urethane foams using conventional low and high pressure foam mixing equipment. Polyurethanes world congress. 1991:220-224
    27. Toensmeier PA. Blowing agents, CFC replacement becomes more promising. Modern Plastics. 1989, 66(9): 53-56
    28. Grunbauer HJM, Thoen JA and Smits GF. Low boiling blowing agents for rigid polyurethane foams: A new concept for nucleation and expansion of CFC-11 flee foams. Polymeric materials science and engineering, proceedings of the ACS division of polymeric materials science and engineering. 1992, 67:503-505
    29. Singh SN, Burns SB, Costa JS and Bonapersona V. Method of increasing the solubility of hydrocarbons and HFCs in polyurethanes raw materials and the effects on the performance and processing characteristics of construction foams. Cellular Polymers. 1997, 16(6): 444-467
    30. Perman CA, Hendrickson WA and Riechert ME. Method of making thermoplastic articles using supercritical fluids. U.S. Patent. 5,670,102, 1997
    31. Arora KA, Lesser AJ and McCarthy TJ. Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules, 1998, 31(14): 4614-4620
    32. Arora KA, Lesser AJ and McCarthy TJ. Compressive behavior of microcellular polystyrene foams processed in supercritical carbon dioxide. Polymer Engineering??and Science. 1998, 38(12): 2055-2062
    33. Goel SK and Beckman EJ. Generation of microcellular polymeric foams using supercritical carbon dioxide, Ⅱ: cell growth and skin formation. Polymer Engineering and Science. 1994, 34(14): 1148-1156
    34. Cha SW, Suh NP, Baldwin DF, et al. Microcellular plastics foamed with supercritieal fluid. U.S. Patent. 5, 158, 986, 1992
    35. Kumar V and Weller JE. Model for the unfoamed skin on microcellular foams. Polymer Engineering and Science. 1994, 34(3): 169-173
    36. Kumar V and Weller JE. Bubble nucleation in microcellular polycarbonate foams. Polymeric Materials Science and Engineering. 1992, 67: 501-502
    37. Weller JE and Kumar V. On the skin thickness of microcellular foams: The effect of foaming temperature. Annual Technical Conference, Conference Proceedings. 1997, 2: 2037-2041
    38. Baldwin DF, Park CB and Suh NP. Extrusion system for the processing of microcellular polymer sheets: shaping and cell growth control. Polymer Engineering and Science. 1996, 36(10): 1425-1435
    39. Baldwin DF, Park CB and Sub NP. Microcellular sheet extrusion system process design moldels for shaping and cell growth control. Polymer Engineering and Science. 1998, 38(4): 674-687
    40. Shimbo M, Nishida K, Nishikawa Shigeo, et al. Foam extrusion technology of microcellular plastics. American Society of Mechanical Engineers, Materials Division. 1998, 82: 15-20
    41. Huang Q, Kloetzer R, Seibig B, et al. Extrusion of microcellular polysulfone using chemical blowing agents. Joumal of Applied Polymer Science. 1998, 69(9): 1753-1760
    42. Park CB, Behravesh AH and Venter RD, Low density microcellular foam processing in extrusion using CO_2, Polymer Engineering and Science. 1998, 38(11): 1812-1823
    43. Park CB, Baldwin DF and Suh NP. Axiomatic design of a microcellular filament extrusion system. Research in Engineenng Design. 1996, 8(3): 166-17744. Park CB, Baldwin DF and Suh NP. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering and Science. 1995, 35(5): 432-440
    45. Baldwin DF, Park CB and Suh NP. Microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states, Part Ⅱ: Cell growth and process design, Polymer Engineering and Science. 1996, 36(11): 1446-1453
    46. Hall PG and Stoeckli HF. Adsorption of nitrogen, n-butane and neo-pentane on chlorohydrocarbon polymers. Trans Faraday. 1969, 65(564): 3334-3340
    47. Hopfenberg HB, Holley RH. Effect of penetrant activity and temperature on anomalous diffusion of hydrocarbons and solvent crazing in polystyrene-1. Polymer Engineering and Science. 1969, 9(4): 242-249
    48. Hansen RH and Martin WM. Novel methods for the production of foamed polymers, Ⅱ. nucleation of dissovled gas by finely divided metals. Joumal of Polymer Science, Part B: polymer letters. 1965, 3: 325-330
    49. Hansen RH. Production of fine cells in the extrusion of foams. SPE Joumal. 1962, 18(1): 77-82
    50. Blyler LL and Kwei TK. Flow behavior of polyethylene melts containing dissolved gases. Journal of Polymer Science, Part C: polymer symposia. 1971, 35: 165-176
    51. Deshpande Ns and Barigou M. Performance characteristics of novel mechanical foam breakers in a stirred tank reactor. Joumal of Chemical Technology and Biotechnology. 1999, 74(10): 979-987
    52. Djelveh G, Gros JB and Cornet JF. Foaming process analysis for a stirred column with a narrow annular region. Chemical Engineering Science. 1998, 53(17): 3157-3160
    53. Blander M. Bubble nucleation in liquids. Advances in Colloid and Interface Science. 1979, 10: 1-32
    54. Ramesh NS, Rasmussen DH and Campbell GA. Heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass transition particles, Part Ⅰ: mathematical modeling and numerical??simulation. Polymer Engineering and Science. 1994, 34(22): 1685-1697
    55. Stewart CW. Nucleation and growth of bubbles in elastomers. Journal of Polymer Science, Part A-2: Polymer Physics. 1970, 8(6): 937-955
    56. Frenkel J. Kinetic theory of liquids. New York. 1955
    57. Gerum E, Straub J and Grigul U. Superheating in nucleate boiling calculated by the heterogeneous nucleation theory. International Joumal of Heat and Mass Transfer. 1979, 22(4): 517-524
    58. Skripov VP. Metastable Liquids. John Wiley & Sons. New York, 1974
    59. Gabrielli C, Huet F and Keddam M. Characterization of electrolytic bubble evolution by spectral analysis, application to a corroding electrode. Journal of Applied Electrochemistry. 1984, 15(4): 503-508
    60. Golorin VS, Kolchugin BA and Zakharova EA. Investigation of the mechanism of nucleate boiling of ethyl alcohol and benzene by means of high-speed motionpicture photography. Heat Transfer-Soviet Research. 1978, 10(4): 79-98
    61. Skripov V, Baidakov V, Ermakov G, et al. Superheated liquids: thermophysical properties, homogeneous nucleation and explosive boiling-up. American Society of Mechanical Engineers. 1977: 77-87
    62. Hayns MR and Wood MH. Model for the simultaneous heterogeneous and homogeneous nucleation of gas bubbles. Proceedings of The Royal Society of London, Series A: Mathematical and Physical Sciences. 1979: 331-343
    63. Katz JL and Wiedersich H. Effect of insoluble gas molecules on nucleation of voids in materials supersaturated with both vacancies and interstitials. Joumal of Nuclear Materials. 1973, 46(1): 41-45
    64.胡英.近代化工热力学—应用研究的新进展.科学技术文献出版社,1994:48
    65.徐祖耀.相变原理.科学出版社,1988
    66.Blander M and Katz JL. Bubble nucleation in liquids. AIChE Journal, 1975,21(5): 833-848
    67.徐济鉴,贾斗南编,鲁钟琪主审.沸腾传热与气液两相流.原子能出版社,1993:362
    68. Abraham EF. Homogeneous Nucleation. Academic Press. New York. 1974: 125-??127
    69. Petty DG, Blythe PA and Shih CJ. Near-equilibrium heterogeneous nucleation. Letters in Applied and Engineering Sciences. 1977, 5(1): 1-12
    70. Ward CA, Johnson WR, Venter RD, et al. Heterogeneous bubble nucleation and conditions for growth in a liquid-gas system of constant mass and volume. Joumal of Applied Physics. 1983, 54(4): 1833-1843
    71. Rybnikar F. Heterogeneous nucleation at interfaces in isotactic polypropylene. Polymer, 1969, 10(9): 747-750
    72. Colton JS and Suh NP. Nucleation of microcellular foam: theory and practice. Polymer Engineering and Science. 1987, 27(7): 500-503
    73. Wilt PM. Nucleation rates and bubble stability in water-carbon dioxide solutions. Journal of Colloid and Interface Science. 1986, 112(2): 530-538
    74.[美]Moore WJ著.基础物理化学.江逢霖译.复旦大学出版社,1990
    75. Ciholas PA and Wilt PM. Nucleation rates in water-carbon dioxide solutions: the spherical cavity case. Joumal of Colloid and Interface Science. 1988, 123(1): 296-298
    76. Colton JS and Suh NP. Nucleation of microcellular foam: theory and practice. Polymer Engineering and Science. 1987, 27(7): 500-503
    77. Han JH and Han CD. Bubble nucleation in polymeric liquids, I. bubble nucleation in concentrated polymer solutions. Joumal of Polymer Science, Part B: Polymer Physics. 1990, 28: 711-741
    78. Smolyak BM and Pavlov PA. Heterogeneous nucleation in water superheated under'clean' conditions. Fluid Mechanics. 1987, 16(5): 16-21
    79.筏义人,徐德恒等著.高分子表面的基础和应用.化学工业出版社,1990
    80.戴干策.聚合物加工中的传递现象.中国石化出版社,1999
    81. Faridi N, Dey, SK and Chawda A, Measurement of solubility of gases m semicrystalline polymers, Annual Technical Conference-ANTEC, Conference Proceedings, 1997, 2: 2221-2226
    82.尚金山,郑菊英.高分子化学及物理学.兵器工业出版社,1990
    83. Akiba I and Masuoka H. Measurements of Henry's constants for hydrocarbon??vapors in polystyrene and poly(phenylene sulfide) powders by gas chromatography. Journal of Chemical Engineering of Japan. 1998, 31(3): 313-319
    84. Han CD and Ma CY. Foam extrusion characteristics of thermoplastic resin with fluorocarbon blowing agent, Ⅰ: low-density polyethylene foam extrusion. Journal of Applied Polymer Science. 1983, 28(9): 2961-2982
    85. Han CD and Ma CY, Foam extrusion characteristics of thermoplastic resin with fluorocarbon blowing agent, Ⅲ: polystyrene foam extrusion. Joumal of Applied Polymer Science. 1983, 28(9): 2983-2998
    86. Han JH and Han CD. Study of bubble nucleation in a mixture of molten polymer and volatile liquid in a shear flow field. Polymer Engineering and Science. 1988, 28(24): 1616-1627
    87. Lee ST. Shear effects on thermoplastic foam nucleation, Polymer Engineering and Science. 1993, 33(7): 418-422
    88. Byon SK and Youn JR. Ultrasonic processing of thermoplastic foam. Polymer Engineering and Science. 1990, 30(3): 147-152
    89. Cho WJ, Park H and Youn JR Ultrasonic bubble nucleation in polyurethane for RIM applications. American Society of Mechanical Engineers, Materials Division. 1992, 38: 15-24
    90. Cho WJ, Park H and Youn JR. Ultrasonic bubble nucleation in reaction injection moulding of polyurethane. Proceedings of the Institution of Mechanical Engineers, Part B: Joumal of Engineering Manufacture. 1994, 208(B2): 121-128
    91. Youn JR and Park H. Bubble growth in reaction injection molded parts foamed by ultrasonic excitation. Polymer Engineering and Science. 1999, 39(3): 457-468
    92. Park H and Youn JR. Processing of cellular polyurethane by the reaction injection molding. American Society of Mechanical Engineers, Materials Division. 1994, 53: 125-137
    93. Park H and Youn JR. Study on reaction injection molding of polyurethane microcellular foam. Polymer Engineering and Science. 1995, 35(23): 1899-1906
    94. Park CB and Chung LK. Study of cell nucleation in the extrusion of polypropylene foams. Polymer Engineering and Science. 1997, 37(1): 1-1095. Park, John J, Katz, Leon, et al. Polypropylene foam sheets. U. S. Patent. 5, 116, 881, 1993
    96. Alteepping, Josef, Nebe, Juergen P. Production of low density polypropylene foam. U. S. Patent. 4, 940, 736, 1990
    97. Chung LK, Park CB and Behravesh AH. Effect of branched structure on the cell morphology of extruded polypropylene foams, Ⅰ: Cell nucleation. Journal of Engineering and Applied Science. 1996, 2: 1941-1947
    98. Park CB, Chung LK and Song SW. Effect of talc on cell nucleation in extrusion foam processing of polypropylene with CO_2 and isopentane. Cellular Polymers. 1998, 17(4): 221-251
    99. Colton JS and Suh NP. Nucleation of microcellular thermoplastic foam with additives: partI: theoretical considerations. Polymer Engineering and Science. 1987, 27(7): 485-492
    100. Colton JS and Suh NP. Nucleation of microcellular thermoplastic foam with additives: part Ⅱ: experimental results and discussion. Polymer Engineering and Science. 1987, 27(7): 493-499
    101. Colton JS. Nucleation of microcellular foams in semi-crystalline thermoplastics. Material and Manufacturing Processes. 1989, 4(2): 253-262
    102. Doroudiani S, Park CB, Kortschot MT, et al. Effect of morphology on microcellular foaming of semi-crystalline polymers. Annual Technical ConferenceANTEC, Conference Proceedings. 1995, 2: 2183-2188
    103. Baldwin DF, Park CB and Suh NP. Microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. Part Ⅰ: Microcell nucleation. Polymer Engineering and Science. 1996, 36(11): 1437-1445
    104. Baldwin DF, Park CB and Suh NP. Comparison of the microcellular processing of semi-crystalline and amorphous poly(ethylene terephthalate). Annual Technical Conference-ANTEC, Conference Proceedings. 1994, 2: 1951-1957
    105. Goel SK and Beckman EJ. Plasticization of poly (methyl methacrylate) (PMMA) networks by supercritical carbon dioxide. Polymer. 1993, 34(7): 1410-1417
    106. Goel SK and Beckman EJ. Nucleation and growth in microcellular materials:??supercritical CO_2 as foaming agent. AIChE Journal. 1995, 41(2): 357-367
    107. Kumar V and Suh NP. A process for making microcellular thermoplastic parts. Polymer Engineering and Science. 1990, 30(20): 1323-1329
    108. Ramesh NS, Rasmussen DH and Campbell GA. Heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass transition particles. Part Ⅰ: mathematical modeling and numerical simulation. Polymer Engineering and Science. 1994, 34(22): 1685-1697
    109. Ramesh NS, Rasmussen DH and Campbell GA. Heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass transition particles. Part Ⅱ: experimental results and discussion. Polymer Engineering and Science. 1994, 34(22): 1698-1706
    110. Donald AM and Kramer EJ. Intemal structure of rubber particles and craze breakdown in high-impact polystyrene(hips). Joumal of Materials Science. 1982, 17(8): 2351-2358
    111. Donald AM and Kramer EJ. Mechanism for craze-tip advance in glassy polymers. Philosophical Magazine A: Physics of Condensed Matter, Defects and Mechanical Properties. 1981, 43(4): 857-870
    112.刘凤岐,汤心颐.高分子物理.高等教育出版社,1995
    113. Li BC and Pun C. Fundamentals of polymer physics. Beijing, Chemical Industry Press, 1999
    114.何曼君,陈维孝,董西侠.高分子物理(修订版).复旦大学出版社,1990:65-68
    115.[瑞典]拉贝克JF.高分子科学实验方法:物理原理与应用.吴世康,漆宗能等译.科学出版社,1987:405
    116.邓云祥,刘振兴,冯开才.高分子化学、物理和应用基础.高等教育出版社,1997
    117. Porter and David. Combining molecular and continuum mechanics concepts for constitutive equations of polymer melt flow. Joumal of Non-Newtonian Fluid Mechanics. 1997, 68(2-3): 141-152
    118.王梓杰,王淑芝.高分子化学及物理.中国轻工业出版社,1992
    119. Han CD, Rheology in polymer processing. New York, Academic Press, 1976120. White JL. Principles of polymer engineering rheology. New York, Wiley, 1990
    121.[英]伦克.聚合物流变学.宋家琪等译.国防工业出版社,1983
    122. Yanovsky YG. Polymer rheology: theory and practice. London: Elsevier Applied Science. 1993.
    123.卓启疆.聚合物自由体积.成都科技大学出版社,1987:1-2
    124. Fujita H. Comments on free volume theories for polymer-solvent systems. Chemical Engineering Science. 1993, 48(17): 3037-3042
    125.金日光主编.高聚物流变学及其在加工中的应用.化学工业出版社,1986:440-441
    126. Kleinert H. Path integrals in quantum mechanics, statistics, and polymer physics. New Jersey, World Scientific, 1995.
    127.张有方.工程数学:线性代数、概率论、数理统计.浙江大学出版社,1994:185-187
    128.上海交通大学应用数学系.概率论与数理统计初步.上海交通大学出版社,1989
    129. Han CD and Villamizar CA. Studies on structural foam processing i. the rheology of foam extrusion. Polymer Engineering and Science. 1978, 18(9): 687-698
    130. Han CD and Kim YW. Malhotra KD, Study of foam extrusion using a chemical blowing agent. Joumal of Applied Polymer Science. 1976, 20(6): 1583-1595
    131. Han CD and Ma CY. Foam extrusion characteristics of thermoplastic resin with fluorocarbon blowing agent: i. low-density polyethylene foam extrusion. Joumal of Applied Polymer Science. 1983, 28(9): 2961-2982
    132. Ma CY and Han CD. Foam extrusion characteristics of thermoplastic resin with fluorocarbon blowing agent: ii. polystyrene foam extrusion. Joumal of Applied Polymer Science. 1983, 28(9): 2983-2998
    133. Yang HH and Han CD. Foam extrusion characteristics of thermoplastic resin with fluorocarbon blowing agent, iii. foam sheet extrusion of polystyrene and lowdensity polyethylene. Joumal of Applied Polymer Science. 1985, 30(8): 3297-3316
    134. Yoo HJ and Han CD. Studies on structural foam processing em dash 3. bubble dynamics in foam extrusion through a converging die. Polymer Engineering and??Science. 1981, 21(2): 69-75
    135. Bigg DM, Preston JR and Brenner D. Experimental technique for predicting foam processability and physical properties. Polymer Engineering and Science. 1976, 16(10): 706-711
    136. Kraynik AM. Rheological aspects of thermoplastic foam extrusion. Polymer Engineering and Science. 1981, 21(2): 80-85
    137. Mackay ME and Astarita G. Analysis of entry flow to determine elongation flow properties revisited. Journal of Non-Newtonian Fluid Mechanics. 1997, 70(3): 219-235
    138.[美]韩CD著.聚合物加工流变学.徐僖,吴大诚译.科学技术出版社,1985
    139. Oka SJ. Phys. Soc. Japan. 1964, 19: 1481
    140. Kwon TH, Shen SF and Wang KK. Pressure Drop of polymeric melts in conical converging flow: experiments and prediction. Polyer Engineering and Science. 1986, 26(3): 214-224
    141. Boels RL, Davis HL and Bogue DC. Entrance flows of polymeric materials: pressure drop and flow patterns. Polyer Engineering and Science. 1970, 10(1): 24-31
    142.吴其晔,巫静安.高分子材料流变学导论.化学工业出版社,1994
    143.周彦豪.聚合物加工流变学基础.西安交通大学出版社,1988
    144.翟淦波,黄有发.高分子材料加工机械设计理论基础及应用.华南理工大学出版社,1995
    145. Gerhardt LJ, Garg A and Manke CW. Concentration-dependent viscoelastic scaling models for polydimethylsiloxane melts with dissolved carbon dioxide. Joumal of Polymer Science, Part B: Polymer Physics. 1998, 36(11): 1911-1918
    146. Kwag C, Manke CW and Gulari E. Rheology of molten polystyrene with dissolved supercritical and near-critical gases. Journal of Polymer Science, Part B: Polymer Physics. 1999, 37, 19: 2771-2781
    147. Gerhardt LJ, Manke CW and Gulari E. Rheology of polydimethylsiloxane swollen with supercritical carbon dioxide. Joumal of Polymer Science, Part B: Polymer Physics. 1997, 35(3): 523-534148. Han CD and Ma C-Y. Rheological Properties of Mixtures of Molten Polymer and Fluorocarbon Blowing Agent Ⅰ: Mixtures of Low-Density Polyethylene and Fluorocarbon Blowing Agent. Joumal of Applied Polyer Science. 1983, 28(2): 831-850
    149. Kawaguchi MN and Denn MM. Visualization of the flow of a thermotropic liquid crystalline polymer in a tube with a conical contraction. Joumal of Non-Newtonian Fluid Mechanics. 1997, 69(2-3): 207-219
    150. Slattery JC. Momentum, energy, and mass transport in continua. McGraw-Hill, New York, 1972
    151. Slattery JC. Interfacial Transport Phenomena. Springer-Verlag, New York, 1990
    152.胡英.近代化工热力学—应用研究的新进展.科学技术文献出版社,1994
    153.蔡祖恢.工程热力学.高等教育出版社,1994
    154. Landau, LD and Lifshits EM. Theory of Elasticity. Pergamon, London, 1959
    155.胡英.流体的分子热力学.高等教育出版社,1983:158-161
    156. Kwak HY and Lee SJ. Journal of Heat Transfer. 1991(113): 714
    157.朱自强.流体相平衡原理及其应用.浙江大学出版社,1990:175-177
    158.汪存信,宋昭华,屈松生编物理化学:热力学·相平衡·统计热力学.武汉大学出版社,1997
    159.[美]普劳斯尼茨JM.流体相平衡的分子热力学,第二版.骆赞椿等译.化学工业出版社,1990
    160. Florry PJ. Principles of polymer chemistry. Comell University Press, New York, 1953
    161.张开.高分子界面科学.中国石油化工出版社,1997
    162.利帕托夫C,涅斯捷罗夫AE编.聚合物物理化学手册,第一卷:聚合物溶液与混合物的性质.阎家宾,张玉译.中国石化出版社,1995
    163. Han CD and Yoo HJ. Oscillatory Behavior of a Gas Bubble Growth (or Collapsing) in Viscoelastic Liquids. AIChE Joumal. 1982, 28(6): 1002-1009
    164. Han CD and Yoo HJ. Studies on Structural Foam Processing Ⅳ. Bubble Growth During Mold Filling. Polymer Engineering and Science. 1981, 21(9): 518-533
    165. Han JH and Han CD. Bubble nucleation in polymeric liquids: Ⅰ: Theoretical??considerations. Journal of Polymer Science, Part B: Polymer Physics. 1990, 28: 742-741
    166.秦国友著.定量金相.四川科学技术出版社,1987:102-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700