用户名: 密码: 验证码:
聚合物气体辅助口模挤出成型的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤出是聚合物加工的一种重要成型方法,塑料制品中40%是通过挤出加工成型。由于聚合物熔体的高粘性、粘弹性,传统挤出成型时易出现挤出胀大,由于挤出熔体和挤出口模的非滑移粘着导致挤出口模压降大,当挤出速度超过材料的临界挤出速度时挤出物表面产生“鲨鱼皮”和挤出破裂等现象,以上三大难题严重影响挤出制品精度、限制挤出速度提升,导致挤出能耗高。产生以上问题的根源在于传统挤出技术采用非滑移粘着剪切口模挤出方式,使得口模壁面对挤出熔体的阻力大。气辅挤出技术通过气体辅助控制系统和气体辅助挤出口模,使挤出时在挤出口模壁面产生一稳定的气垫膜层,挤出由非滑移粘着剪切口模挤出方式转换为完全滑移非粘着剪切口模挤出方式,从而将口模壁面对挤出熔体的摩擦阻力降到最低限度,熔体在口模中呈柱塞状流动。本文从实验和数值模拟两方面对气辅口模挤出成型进行了系统而深入的研究,主要研究工作概述如下:
     1.对有关挤出胀大、减粘降阻、熔体破裂及壁面滑移的研究进展进行了综述,指出气辅挤出技术是解决以上问题的有效方法。
     2.建立了气辅挤出实验装置。根据气辅挤出对气体压力和温度控制要求,建立了气辅挤出成型压力控制系统和温度控制系统,设计加工了气辅挤出口模,完成了整套实验装置的安装和调试。
     3.进行了深入的实验研究。研究了工艺参数(气体压力、气体流量、气体温度、挤出流量)、口模结构参数(口模有气辅段长度L_2、环形缝隙δ)以及操作顺序(气阀和挤出螺杆的开启顺序)对气垫膜层的建立及其稳定性的影响;分别研究了气体压力、气体流量、环形缝隙δ、有气辅段长度L_2对挤出速度(熔体从口模中挤出的线速度)、挤出流量和挤出物直径的影响;采用和传统挤出相对比的方式研究了气辅挤出对口模压降、挤出胀大和挤出物表面质量的影响。
     4.基于流体力学三大方程和Rivlin-Ericksen粘弹本构方程建立了气辅口模挤出成型的机理模型,根据气辅挤出过程的特点,通过合理的简化与假设和方程的无量纲化,形成了有限元方程,以壁面剪切应力为零的边界条件代替气垫膜层作用,自由表面采用脊线法更新,应用Successive Substitution和Quasi-Newton Updates迭代技术,利用通用的CFD有限元软件FIDAP实现了对有限元方程的求解。分别对轴对称结构口模、方形截面口模和L形截面口模的气辅挤出过程进行了数值模拟,得到气辅挤出成型口模内外的速度场、温度场、压力场、应力场和剪切速率的分布,并和传统挤出过程进行了对比;研究了不同口模截面形状的气辅挤出中挤出流量、气辅挤出口模有气辅段长度L_2、本构方程中反映挤出熔体粘性和弹性的参
Extrusion is one of the basic methods in polymer processing. More than 40% of plastic products are produced through extrusion. However, in normal extrusion, several problems appear. Firstly, due to the high viscosity and viscoelasticity of polymer melts, appears in extrusion the die swell which makes it more difficult to enhance the precision of extruded products. The next is the large pressure drop which leads to high energy consumption and the third is the appearing of "sharkskin" and melt rupture when the extrusion speed exceeds the limit of the processed materials, which astricts the efficiency of extrusion. The sticking point about the problems is the no-slip adhesive shearing extrusion mechanism adopted in normal extrusion and big resistance appears at the interface of die wall and polymer melt. In gas-assisted extrusion, a stable gas layer is set up at the interface of the polymer melt and die wall by means of the gas controlling system and gas-assisted extrusion die, so the extrusion process falls in fully slip non-adhesive shearing extrusion in the die, the friction between the melts and the die is thereby reduced greatly and the flowing molten polymer in the die is like a rod. The experimental study and numerical simulation on gas-assisted extrusion have been conducted in this paper. The main works is listed below.
    1. The research advances about die swell, the reduction of friction between die wall and polymer melt, wall slip and melt fracture in polymer extrusion are described in the paper.
    2. A gas-assisted extrusion experimental device has been built. A gas pressure controlling unit and a gas temperature controlling unit have been designed to keep the gas pressure and gas temperature under appropriate level and a gas-assisted extrusion die has been designed and manufactured. The device is used successfully in the gas-assisted extrusion experiments.
    3. The extensive experiments on gas assisted extrusion have been conducted. We have investigated the influence of process conditions (such as gas-pressure, gas-flow rate, gas-temperature, melt flow rate), the dimension of extrusion die (L2, length of gas-assisted extrusion die, 5, size of the gas inlet) and the turning on order of gas valve and extrusion screw on the establishment and stability of gas layer between the die wall and the molten polymer. We have also studied the impact of gas-pressure, gas-flow rate, δ and L_2 on the flow rate of molten polymer, on the diameter of extruded rods. By comparing to the normal extrusion and gas-assisted extrusion, the influence on the die swell and surface quality has been studied too.
    4. Based on the three equations (continuity equation, momentum equation, energy equation) and Rivlin-Ericksen viscoelastic constitutive equation, through reasonable simplification and
引文
1.高峰,李海梅,申长雨.塑料成型加工适用技术讲座(第四讲):挤出成型发展现状.工程塑料应用,2003,31(6):52-55
    2.刘耀中,王敏杰,刘斌.塑料异型材挤出模CAD技术发展概况.塑料科技,2002,152(6):46-49
    3.吕柏源,唐跃,赵永仙等.挤出成型与制品应用.北京:化学工业出版社,2002
    4.李亮,吴大鸣.精密挤出—挤出成型研究的新方向.塑料,2002,(1):30-33
    5.赵丹阳,宋满仓,王敏杰.塑料异型材挤出技术的现状与发展.机械工程师,2003,(9):7—10
    6.王加龙.热塑性塑料挤出生产技术.北京:化学工业出版社,2003
    7.瞿金平,胡汉杰.聚合物成型原理及成型技术.北京:化学工业出版社,2001
    8.梁基照.聚合物短口型挤出胀大方程.合成橡胶工业,1995,18(3):171-173
    9.梁基照.混炼胶长口型挤出胀大的预测.合成橡胶工业,1997,20(3):44-45
    10.徐佩弦.高聚物流变学及其应用.北京:化学工业出版社,2003
    11.周彦豪.聚合物流变学基础.陕西:西安交通大学出版社,1987
    12. A. C-Y. Wong. Factors affecting extrudate swell and melt rate. Journal of Materials Processing Techonology, 1998,79:163-169
    13. A. C-Y. Wong, H. H. A. Lo, Melt flow rate and die swell ratio of blended polypropylene used in the fibre industry. Journal. of Materials Processing Technology, 1995,48:613-618
    14. P. Santelicds. Die swell of viscoelastic polymers. ANTE, 94:1885-1889
    15.金光日.聚合物加工流变学基础.北京:化学工业出版社,1996
    16. Y. Sasaki, et al. Numerical study of extrudate swell. ANTE' 94:1212-1215
    17. R.R.Huilgol. Some qualitive and quantitive features of die swell. Polym. Eng. Sci, 1978,18(8):643-648
    18. A. Garcia-Rejon, R. W. Diraddo, M. E. Rgan. Effect of die geometry and flow characteristics on viscoelastic annular swell. J. Non-Newtonian Fluid Mech. 1995, 60:107-128
    19. Yasuhiko. Otsuki. Numerical simulation of annular extrudate swell of polymer melts. Ploym. Eng. Sci. 1997,37(7):1171-118120. David C Huang, et al. Extrudate swell from silt and capillary dies: An experimental and theoretical study. Polym. Eng. Sci. 1979,19(9):609-616
    21. Ji-Zao Liang. Effect of the die angle on the extrusion swell of rubber compounds. Journal of materials Processing Technology, 1995, 52:207-212
    22. R. Ahmed, R. F. Liang, M. R. Mackley. The experimental observation and numerical prediction of planar entry flow and die swell for molten polyethylenes. J. Non-Newtonian Fluid Mech, 1995, 59:129-153
    23. Ji-Zhao Liang. Estimation of die swell ratio for polymer melts from exit pressure drop data. Polymer Testing, 2001,20:29-31
    24. C. Allain, M. C. Loitre, P. Perrot. Experimental investigation and scaling law analysis of die swell in semi-dilute polymer solution. J. Non-Newtonian Fluid Mech, 1997, 73: 51-56
    25. Tanner R.I. A theory of die swell. J Polym. Sci Part A-2: Polymer Physics, 1970, 8 (12):2067-2078
    26.柳和生,熊洪槐,涂志刚,包忠诩.聚合物挤出胀大研究进展.塑性工程学报,2001,8(1):13-18
    27.郑融,唐国俊.一个新的挤出胀大方程.高分子通讯,1986,(3):161-167
    28. Ji-Zhao Liang. A relationship between extrudate swell ratio and entry stored elastic strain energy during die flow of tyre compounds. Poly Testing, 2004,23:441-446
    29. Chang P W, Pattern T W, Finlayson B A. Collocation and Galerkin finite element methods for viscoelastic fluid flow I. description of method and problems with fixed geometry. Comp Fluids, 1979,7(4):267-283
    30. Crochet M J, Keunings R. Die swell of a Maxwell fluid: numerical prediction. J. Non-Newtonian Fluid Mech. 1980,7:199-212
    31. Crochet M J, Keunings R. Finite element analysis of die swell of ahighly elastic fluid. J. Non-Newtonian Fluid Mech, 1982,10:339-356
    32. Bush M B, Tanner R I. A boundary element investigation of extrudate swell, J. Non-Newtonian Fluid Mech, 1985,18:143-162
    33.涂志刚,熊洪槐,柳和生.挤塑口模中三维路线示踪与停留时间分布.中国塑料,2001,15(3):92-94
    34.涂志刚.聚合物异型材口模挤出三维流动研究,南昌大学,博士学位论文,2001
    35. G. Barakos, E. Mitsoulis. Non-isothermal viscoelastic simulations of extrusion??through dies and prediction of the bending phenomenon. J. Non-Newtonian Fluid Mech, 1996, 62:55-79
    36.范毓润,范西俊,路甬祥.挤出胀大流动的有限元方法.力学学报,1990,22(3):287-292
    37. Yasuhiko. Otsuki, Toshihisa. Kajiwara, Kazumori. Fumatsu. Numerical simulations of annular extrude swell using various type of viscoelastic models. Polym. Eng. Sci, 1999,39(10):1969-1981
    38. H. X. Huang, C. M. Liao. Prediction of parison swell in plastics extrusion blow molding using a neural network method. Polymer Testing, 2002,21:745-749
    39. Normandin M, Clermont J R, Guillet J, et al. Three-dimensional extrudate swell obeying a memory-integral equation. J. Non-Newtonian Fluid Mech. 1999,87:1-25
    40.李勇,江体乾.聚合物熔体三维挤出胀大的数值模拟.力学学报,2002,34(6):856-862
    41. Tome M F, Mangiavaccbi N, Cuminato J A, et al. A finite difference technique for simulation unsteady viscoelastic free surface flows. J. Non-Newtonian Fluid Mech, 2002,106:61-106
    42. Cormenzana J, Ledda A, Laso M, et al. Calculation of free surface flows using CONNFFESSIT. J. Rheol. 2001,45(1):237-258
    43. Yuan X F, Ball R.C, Edwards S F. Dynamical modeling of viscoelastic extrusion flows. J. Non-Newtonian Fluid Mech. 1994,54:423-435
    44. Georgios C, Georgiou. The time-dependent compressible poiseuille and extrudate swell flows of a Carreau fluid with slip at the wall. J. Non-Newtonian Fluid Mech, 2003,109:93-114
    45.用Wagner本构方程对聚合物挤出胀大的三维有限元分析.华东理工大学学报,2002,28(1):96—100
    46. N. Phan-thien. Influence of wall slip on extrudate swell: a boundary element investigation, J. Non-newtonian Fluid Mech. 1988,26:327-340
    47. P. Jay, J.M. Pian, N. Ei Kissi, J. Cizeron. The reduction of viscous extrusion stresses and extrudate swell computation using slippery exit surfaces. J. Non-Newtonian Fluid Mech. 1998,79:599-617
    48.钱百年,童玉清,汪传生,瞿雄伟.气膜润滑剪切机头及其在短纤维增强胶管中的应用.橡胶工业,1997,44(6):323-326
    49.黄立.橡胶挤出机气膜润滑口型中胶料流动行为的研究,北京化工大学.学位论文,1993
    50.尹延国,朱元吉,解挺.润滑挤出成型技术.现代塑料加工应用,1996,(4):37-40
    51. Isabelle Fras, Philippe Cassagnau, Alain Michel, Lubrication and slip flow during??extrusion of plasticized PVC compounds in the presence of lead stabilizer, Polymer,1999,40:1261-1269
    52. Eugene E. Rosenbaum, Stuart K. Randa, Asvvas F. Hatzikiriakos, Charles W.Stewart, Donald L. Henry, Marlin Buckmaster. Boron nitride as a processing aid for the extrusion of polyolefens and fluoropolymers. Polymer engineering and science, 2000,40(1):179-190
    53.刘秉志,孙晓林,霍克山,邹元传.高速挤出用润滑母料的研究.哈尔滨电工学院学报,1995,18(1):64—67
    54.李艳梅,刘廷华.双螺杆强制润滑挤出UHMWPE板材的研究.高分子材料科学与工程,2003,(6):194-197
    55.尹延国.朱元吉,王晓枫,解挺.润滑挤出方法与模具设计.塑料科技,1997,(6):44-46
    56. J. Casulli, J.R. Clermont, A. Von Zieglert, B. Mena. The oscillating die: an useful concept in polymer extrusion. Poly Eng Sci, 1990,30(23):1551-1556
    57. Qu J P, Peng X F, He H Z. Reaserch on plastic beheaviors of LDPE melt during capillary dynamic extrusion. Journal of South China University of Technology (Natural Science), 1988,26(11):1-7
    58. Isayev A I, Effect of oscillation during extrusion on rheology and mechanical properties of polymer. Advances in Polymer Technology, 1990,10:31-45
    59.彭响方,瞿金平,周南桥、文生平.聚合物动态挤出流变行为研究,中国塑料 2000,14(1):42-46
    60.彭响方,瞿金平,周南桥.低密度聚乙烯毛细管动态挤出时的挤出胀大研究,中国塑料,1999,13(9):89-92
    61.彭响方,瞿金平,周南桥,文生平.动态挤出对聚合物流动不稳定行为的影响.塑料工业,1999,27(9):22-28
    62.吴其晔,巫静安.高分子材料流变学.北京:高等教育出版社,2002
    63.陈晓嫒,王港,黄锐.毛细管中聚合物熔体不稳定流动的研究进展.2003,31(3):58-62
    64. M. R. Mackery, R. P. G. Rutgers, D.G. Gilbert. Surface instabilities during the extrusion of linear low density polyethylene. J. Non-Newtonian Fluid Mech. 1998, 76:281-297
    65. H. Munstedt, M. Schmidt, E. Wassner. Stick and slip phenomena during extrusion of polyethylene melts as investigatedhy Laser-Dopper Velocimetry. J. Rheol. 2000, 44(2):413-427
    66.顾学军,陈小嫒,范五一.线性聚合物毛细管挤出中熔体破裂研究进展.塑料工业,2002,??30(6):5-7
    67. J. P. Tordella. Unstable flow of molten polymers. Rheology, 1969,5:58-92
    68. Huseby T W. Rheol. 1966,10(1):181
    69. Mcleish T C B. J. Polym. Sci: PartB, 1987
    70. Cecile Venet, Bruno Vergnes. Stress distribution around capillary die exit: an interpretation of the onset of sharkskin defect. J. Non-Newtonian Fluid Mech. 2000,93:117-132
    71. M. Mooney, Explicit formulas for slip and fluidity, J. Rheol. 1931,2:210-223
    72. Ma Caoyang, White J L, Weissert F C, et al. Flow patterns in elastomers and their carbon black compounds during extrusion through dies. Rubber Chem Tech. 1985,58: 815
    73.梁基照,唐国俊,黄泽成.挤出过程中NR/SBR胶料壁面滑移行为的研究.华南理工大学学报(自然科学版),1994,22(1):120-123
    74. Justin R. Barone, Shi-Qing Wang. Adhesive wall slip on organic surfaces. J. Non-Newtonian Fluid Mech. 2000,91:31-36
    75. Daniel D. Joseph. Steep wave fronts on extrudates of polymer melts and solutions: Lubrication layers and boundary lubrication. J. Non-Newtonian Fluid Mech. 1997,70:187-203
    76. Y. Cohen, A. B. Metzner, Apparent slip flow of polymer solution, J. Rheol. 1985,29:67-102
    77. K. P. Chen, D. D. Joseph, Elastic short wave inabilities in extension flow of viscoelastic liquids. J. Non-Newtonian Fluid Mech. 1922,24:189-211
    78. W. F. Busse. Two decades of high polymer physics: a survey and forecast. Phys. Today, 1964,9:32-41
    79. G. V. Vinogradov, A. Ya. Malkin, E. K. Yanovskii, et al. Viscoelastic properties and flow of narrow distribution polybutadienes and polyisoprenes. J. Polym. Sci. Part A2, 1972,10:1061-1084
    80.王克俭,周持兴.考虑壁面滑移的Z-W流变模型及其应用.高分子通报,2003,2:8-17
    81.吴舜英,许忠斌,戴荣生,包建文.挤出口模内壁面滑移机理研究.轻工机械,2001,(1):4-7
    82. Johan L.A. Dubbeldam, Jaap Molenaar. Dynamics of the spurt instability in polymer extrusion. J. Non-Newtonian Fluid Mech, 2003,112:217-235
    83. C.F.J. Den Doelder, R.J. Koopmans, J. Molenaar, A.A.F. Van de Ven. Comparing the wall??slip and the constitutive approach for modeling spurt instabilities in polymer melt flows. J. Non-Newtonian Fluid Mech, 1998, 75:25-41
    84. Yogesh M. Joshi, Ashish K.Lele, R.A. Mashelkar. A unified wall slip model. J. Non-Newtonian Fluid Mech, 2000, 94:135-149
    85. Hubert Hervet, Liliance Leger. Flow with slip at the wall: from simple to complex fluids. C. R. Physics 2003,4:241-249
    86. D.A. Hill, T. Hasegawa. On the apparent relation between adhesive failure and melt fracture. J. Rheol, 1990, 34:891-897
    87. G. Hatzikiriakos, J.M.Dealy. Wall slip of molten high-density polyethylene: Ⅱ. Capillary rheometer studies. J. Rheol, 1992, 36:703-741
    88. S. G. Hatzikiriakos, J.M. Dealy. Role of slip and fracture in the oscillating flow of HDPE in a capillary. 1992, 36:845-884
    89. U. Yilmazer, D. M. Kalyon. Slip effects in capillary and parallel disk torsional flows of highly filled suspensions. J. Rheol, 1989, 33:1197-1205
    90. C.F.J. den Doelder, R.J. Koopmans, J. Molenaar. Quantitative modelling of HDPE spurt experiments using wall slip and generalized Newtonian flow. J. Non-Newtonian Fluid Mech, 1998, 79:503-514
    91.吴廷禄,刘忠仁.氟聚合物加工助剂在HDPE中的应用.塑料,2002,31(6):15-16
    92.朗笑梅,王淑英,何书艳,李欣,付义.含氟流变剂在聚烯烃加工中的应用.塑料,2003,32(3):9-12
    93. C.K. Chan, C. Whitehouse, P. Gao, C. K. Chai. Flow induced chain alignment and disentanglement as the viscosity reduction mechanism within TLCP/HDPE blends. Polymer, 2001, 42:7847-7856
    94. P. Jay, J.M. Piau, N. Ei Kissi, J. Cizeron. The reduction of viscous extrusion stresses and extrudate swell computation using slippery exit sarfaces. J. Non-Newtonian Fluid Mech, 1998, 79:599-617
    95. Ryszard Brzoskowski, James L. White, Witold Szydlowski et al. Air-lubricated die for extrusion of rubber compounds. Rubber Chemistry and Techonlogy, 1987, 60: 945-956
    96. R.F.Liang, M. R. Mackery. The gas-assisted extrusion of molten polyethylene. J. Rheol. 2001, 45(1):211-226
    97.古大治.高分子流体动力学.四川:四川教育出版社,1988
    98. Murilo F. Tome, Brian Duffy, Sean Mckee. A numerical technique for solving unsteady??non-Newtonian free surface flows. J. Non-Newtonian Fluid Mech. 1996,62:9-34
    99. M. S. Darwish, J. R. Whiteman, Numerical modelling of viscoelastic liquids using a finite-volume method, J. Non-Newtonian Fluid Mech, 1992,45:311-337
    100. U. Lang, W. Michaeli, Comparison of velocity measurements and different calculation methods in silt dies. ANTEC' 97:2289-2293
    101. J.R. Clermont, et al. Numerical simulation of extrudate swell for Oldroyd-B fluid using the stream-tube analysis and a streamline approximation. J. Non-Newtonian Fluid Mech, 1993,50:193-215
    102.杨广军.挤出胀大数值模拟.郑州工业大学,硕士学位论文,1996
    103.叶占根.粘弹性流体的数值模拟及研究.清华大学,硕士学位论文,1998
    104. Tekha R Rao, Bruce A. Finlayson, Viscoelastic flow simulation using cubic stress finite elements, J. Non-Newtonian Fluid Mech. 1992,43:61-82
    105. A. Fortin, A. Zinc. Computing viscoelastic fluid flow problem at low cost. J. Non-Newtonian Fluid Mech, 1992,45:209-229
    106. C. Berando, et al. A finite element method for computing the flow of multi-mode viscoelastic fluids: comparson with experiments. J. Non-Newtonian Fluid Mech, 1998,75:1-23
    107. R. Kajiwara, et al. Numerical simulation of converging flow of polymer melts through a tapered silt die. J. Non-Newtonian Fluid Mech, 1993,48:111-124
    108. Giacomin A. J, Jeyaseelan. R.S. A constitutive theory for polyolefins in large amplitude oscillatory shear. Polym. Eng. Sci, 1995,15(9):768-777
    109. Luis Gasst, William Ellingson. Die swell measurements of second-order fluids: numerical experiments. J. Numer. Meth. Fluids, 1999,29:1-18
    110.申长雨.塑料模具计算机辅助工程.河南:河南科学出版社,1998
    111. K. R.J. Ellwood et al, Three-dimensional streamlined finite elements: Design of extrusion dies, International Journal for Numerical Methods in Fluids, 1992,14:13-24
    112. A. Karagiannis et al. Three-dimensional non-isothermal extrusion flows, Rheol. Acta. 1989,28:121-133
    113. V. Legat, J.-M. Marchal, Die Dsign: An Implicit formulation for the inverse problem, International Journal for Numerical Methods in Fluids, 1993,16:29-42
    114. T. Tran-Cong, N. Phan-Thien, Die Design by a Boundary Element Method, J. Non-Newtonian Fluid Mech., 1988,30:37-46115. B. Caswell, M. Viriyayuthakorn, J. Non-Newt. Fluid Mech., 1984, 37:16-35
    116. Fidap Manusl. User' s Manual. Fluent, Inc. 1999
    117.匡唐清.气体辅助注射成型注气控制系统研制,南昌大学,硕士学位论文,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700