用户名: 密码: 验证码:
GEP/PO共混物的原位成纤及其形态、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以聚乙烯(PE)和聚丙烯(PP)为主的通用塑料高性能化是当前及今后高分子材料科学与工程领域的一项重要研究课题。以聚烯烃(PO)为主体的共混改性是实现通用塑料高性能化的一条重要途径。在共混过程中使分散相原位形成一些特殊形态,从而较大幅度提高材料性能、增加材料功能,是共混改性的一个重要发展趋势。本论文提出在共混物加工和其制品失效过程中应力、温度场作用下,使分散相原位成纤,从而简便、高效、清洁地达到通用塑料高性能化。
     本论文对PO为主体的通用工程塑料(GEP)/PO共混物分别在熔融和固相下的原位成纤及其形态、结构、性能进行了研究,取得了大量有价值的数据和结果。这对丰富和发展聚合物共混和合金化改性理论具有较重要的学术价值,为开发新型聚合物共混物及合金提供了新的途径。主要研究成果:
     (一)挤出-热拉伸-淬冷制备GEP/PO原位微纤化共混物及形态与性能研究采用“熔融挤出-热拉伸-淬冷(melt extrusion-hot stretching-quenching)”制备原位微纤化共混物(in-situ microfibrillar blend,IMB),为了保证在随后加工中微纤不被破坏,采用了低温成型(基体的加工温度)制备试样,系统研究了聚对苯二甲酸乙二醇酯(PET)/聚乙烯(PE)共混物的原位成纤及其形态与性能。
     (1)通过研究不同加工设备、不同口模结构及不同共混物体系对成纤的影响,发现带矩形窄缝状口模的挤出机采用“熔融挤出-热拉伸-淬冷”能产生最好的纤维结构,PET/PE体系的成纤效果最好。
     (2)热拉伸比恒定时,PET微纤形态特征主要受PET含量的影响。增加PET含量,纤维直径变大,分布变宽,但最小纤维直径基本不变。IMB拉伸强度较通常共混物可提高约100%。PET含量为15 wt%左右时,IMB试样呈明显的脆性,通常共混物试样有较好的韧性。这是不同变形机理引起的:球状粒子在试样拉伸过程中与基体产生了界面滑动,而纤维与基体没有。
     (3)固定共混物组成,热拉伸比从1(无拉伸)增加到47.62,PET粒子相继从球形转变成椭球、棒、纤维和微纤。除最小粒径保持基本不变,最大和平均
    
    李忠明:GEP用O共混物的原位成纤及其形态、结构与性能
    粒径均逐渐减小。拉伸比增加,IMB拉伸模量和强度有显著增加。试样的断裂
    伸长率随热拉伸比增加剧烈下降,产生明显的韧一脆转变。
     (4)推导出跟纤维特性、基体特性及成型工艺参数等因素相关的IMB强度
    计算公式。提出了含一定长径比分散相的共混物的韧一脆转变模型:分散相粒子
    为应力集中体,靠近分散相粒子的基体层为银纹裂纹集中区(A)和离分散相粒子
    稍远的基体层为塑性变形区(B)。不存在B区,则属脆性断裂;A区厚度较小,
    B区较大,则属韧性断裂。材料发生韧一脆转变与基体特性、分散相特征(长径
    比、直径、长度)、分散相体积分数、破坏时的外界条件(温度、应变速率)等有
    关。强度和韧一脆转变的预测结果与实验吻合。
     (5)比基本断裂功(印eeifie essential work of fracture,we)适合表征pET爪E微
    纤化共混物的韧性。在PET含量为15 phr时w。有最大值;热拉伸比适中时,
    we也有最大值。
     (6)乙烯一醋酸乙烯酷共聚物(EVA)能改善PET/PE微纤化共混物的界面。增
    容后,共混物的拉伸强度,特别是断裂伸长率有显著提高。we能较好地评价EVA
    的增容效果。加入少量增容剂和催化剂后,共混物的w。大幅度增加。
    (二)GEP份。原位微纤化共混物的结晶特性与结晶结构
     采用多种手段表征了原位微纤对PE和聚丙烯(PP)结晶特性和结晶结构的
    影响。由于PP的结晶特性较PE更引人注意,因此重点研究了PET/PP微纤化
    共混物。
     (1)示差扫描量热仪(D SC)研究PET/PE和PET用P微纤化共混物的非等温结
    晶特性表明,PET微纤对PE和PP有良好结晶成核作用,特别是可将PP结晶
    温度提高约10℃。增加降温速率,结晶峰变宽且向低温方向移动,但总体看,
    微纤化共混物较纯基体相聚合物变化较小。采用Jeziomy、Ozawa、Mo等非等
    温结晶动力学方法处理,PET/PP通常共混物及微纤化共混物的结晶过程呈两个
    阶段,两个阶段的结晶动力学参数相差很大。swt%PET微纤对PP己能起到良
    好结晶促进作用,再增加微纤含量,PP相的结晶参数变化不大。热拉伸比4.0
    的PET微纤对PP相结晶能起到良好促进作用,再增加热拉伸比,PP相的结晶
    参数变化也不大。
     (2),J“角x一射线散射(S AxS)和热台偏光显微镜(Po哟在线研究PET加P原
    位微纤化共混物非等温和等温结晶过程的结构和形态再次表明,PET微纤对
    
    四川大学博士学位论文
    PP有良好的异相成核作用。剪切有利于纯PP和PET/PP微纤化共混物结晶,
    但即使有剪切作用,微纤化共混物的结晶起始和结束温度均较纯PP高。发现
    结晶形态跟结晶温度有关,当结晶温度为145和150oC时,形成球晶,温度为
    130和120oC时,形成横晶。这为研究横晶对高分子材料力学性能影响提供了
    条件。初步研究表明,横晶使PET用P原位微纤化共混物拉伸强度和模量增加。
     (3)研究了PET/PP原位微纤化共混物(未结晶处理)的结晶形态和结构。
    SEM照片表明,PET微纤含量15wt%的共混物中,横晶相互搭结、贯通形成
    横晶
Performance enhancement of general-purpose plastics (mainly polyethylene (PE) and polypropylene (PP)) is one of the most important research subjects in the field of polymer materials science and engineering at present and in the future. Blending modification is a major route. One of the promising methods is to generate some unique in-situ morphology such as fibers and plates during blending which can enhance the mechanical properties and add some functional properties to the original materials. This dissertation puts forward a simple, effective and clean process to improve the properties of general-purpose plastics.
    The in-situ fibrillation of the polyolefins (PO) based general engineering plastics (GEP)/PO blends during melt and solid state and their morphology, structure and properties were investigated in this thesis. A large quantity of valuable data and results were obtained, which is of importance to develop the theory for blending and alloying of polymer blends. The main results are:
    (I) Morphology and properties of GEP/PO in-situ microfibrillar blends obtained by extrusion-hot stretching-quenching method
    The in-situ microfibrillar blend (IMB) was prepared by melt extrusion-hot stretching-quenching process. The testing samples were injection molded at the processing temperature of matrix to avoid destroying the in-situ microfibers formed in the aforementioned process. The morphology and properties of polyethylene terephthalate (PET)/polyethylene (PE) blend were studied systematically.
    (1) The influences of different processing apparatus (extruder, injection machine and the extruder on HAAKE rheometer), the die geometry (slit die, sheet die and rod die) and the blend components on the fibrillation of GEP/PO blends were studied. The results showed that the extruder with a rectangular slit die is the best to form micorfibers, and the optimal polymer pair was PET/PE system.
    (2) At a fxied stretching ratio, The microfiber morphology characteristics were a function of PET content. With the increase of PET content, he microfiber became larger and its distribution wider with a relatively constant minimum fiber diameter. The tensile strength of PET/PE
    
    
    
    microfibrillar blend were increased by 100% compared to the common PET/PE blend with spherical dispersion. The microfibrillar blend showed a tough-brittle transition at 15 wt% of PET concentration, while the common blend still exhibit good toughness. This was caused by two different deformation mechanisms: there was slippage between the spherical particles and the matrix for the common blend, but no slippage between the microfibers and the matrix for the microfibrillar blend.
    (3) Fixing blend composition, the PET particles were deformed from spheres to ellipsoids, to rodlike particles and finally to well-defined microfibers when increasing the HSR from 1 to 47. The maximum and average diameters of PET particles reduced steadily while the minimum fiber diameter remained constant. The tensile modulus and strength of PET/PE blends were significantly enhanced with increasing hot stretching ratio. The ultimate elongation was greatly decreased with the increase of hot stretching ratio and there is a critical hot stretching ratio, above which the ductile-brittle transition occurred.
    (4) An expression for tensile strength calculation of the microfiber-contained blend was developed, which showed the relationship between the tensile strength of the microfibrillar blend and the parameters of the fiber reinforcement, matrix properties, material parameters, and especially processing conditions. Another model was attempted to predict the tough-brittle transition of the incompatible polymer blend containing the dispersed particles with a specific aspect ratio. In this model, the dispersed particles were regarded as the stress concentration body, and the matrix was divided into two regions: one closer to the particles is the craze and crack concentration region (A) which is responsible for the brittle fracture of the materials, the other region far away
引文
[1]Xu Xi(徐僖). Paper Preprint of '93 International Symposium on Special Engineering Plastics Application and Technology(93全国特种工程塑料应用技术研讨会论文预印集),Chengdu(成都), 1994, p.4.
    [2]Leaversuch. Mod Plast, 1990, 67: 48.
    [3]Int CL: C08 F12/08, 4/64,(Jpn.) KoKyo Koho. 1991, p.14.
    [4]R G Raj and B V KoKta. Polym Eng Sci, 1991, 31: 1358.
    
    
    [5]H D Schriber. Polym Eng Sci, 1990, 30: 263.
    [6]A Galeski. Polym Eng Sci, 1992, 32:1217.
    [7]P M Bigg. Polym Eng Sci, 1988, 28: 830.
    [8]A J Penings. Pure Appl Chem, 1983, 55: 77.
    [9]B D Favis and J D Chalifoux. Polymer, 1988, 27: 1761.
    [10]T L Carte. J Appl Polym Sci, 1993, 48: 61.
    [11]Boutevin B. Polym Eng Sci, 1996, 36: 879.
    [12]T DTraugott. J Appl Polym Sci, 1983, 28: 2947.
    [13]D Sambaru. Polym Eng Sci, 1993, 33: 827.
    [14]G Kumaravel. Adv Polyml Tech, 1996, 15:191.
    [15]N K Kalfoglou, D S Skafidas and J K Kallitsis. Polymer, 1995, 36:4453.
    [16]N K Kalfoglou, D S Skafidas and J K Kallitsis. Eur Polym J, 1994, 30:933.
    [17]N K Kalfoglou, D S Skafidas and J K Kallitsis. Polymer, 1994, 35(17):3624.
    [18]M Evstatiev, S Fakirov, G Bechtold and K Friederich. Adv Polym Tech, 2000, 19:249.
    [19]S Endo, K Min and L James. Polym Eng Sci, 1986, 26:45.
    [20]T Nishio, K Higashi and T Ogihara. The proceeding of the Ninth Annu. Meeting of the Polymer Processing Society, England, 1993, p. 279.
    [21]T D Traugott, J W Barlow and D R Poul. J Polym Sci Part B: Polym Phs, 1991, 29:945.
    [22]Li Zhong-Ming(李忠明), Yang Ming-Bo(杨鸣波) and Feng Jian-Min(冯建民), Polymer Sinica Acta(高分子学校), 1999, (1):113.
    [23]Zheng Xue-Jing(郑学晶), Li Zhong-Ming(李忠明),Yang Ming-Bo(杨鸣波) and Feng Jian-Min(冯建民). Journal of China Plastics(中国塑料), 2000,14:61.
    [24]M-B Yang, Z-M Li, J-M Feng and R Huang. The Proceeding of 16th Annual Meeting of Polymer Processing Society, Shanghai, Jun 21-23, 2000, p.628.
    [25]R P Allen. Polym Eng Sci, 1992, 32:1703.
    [26]J M Wills, B D Favis and C Lavallee. J Mater Sci, 1993, 28:1749.
    [27]J M Wills and B D Favis. Polym Eng Sci, 1988, 28:1416.
    [28]M-B Yang, Z-M Li and J-M Feng. Polym Eng Sci, 1998, 38: 678.
    [29]H J Sue, J Huang and A F Yee. Polymer, 33: 4868.
    [30]A F Yee. Polym Mater Sci Eng Div, 1990, 63:286.
    [31]J S He. The proceedings of the Sixth meeting of the Polymer Processing Society, Shanghai, 2000, p.313.
    [32]R Gonzalez-Nunez, M Arellano, F J Moscoso, V M Gonzalez-Remero and B D Favis. Polymer, 2001, 42: 5485.
    [33]B D Favis. In "Polymer Blends and Alloys" edited by G O Shonaik, G P Simon, New York:
    
    Marcel Dekker, Inc, 1999, p.502.
    [34]I Delaby, B Ernst, D Froelich and R Muller. Polym Eng Sci, 1996, 36:1627.
    [35]K Min and J L White. Polym Eng Sci, 1984, 24: 1327.
    [36]B D Favis and J M Wills.J Polym Sci Part B: Polym Phys, 1990, 28:2259.
    [37]B D Favis and J P Chalifoux. Polymer, 1988, 29:1761.
    [38]N Tokita. Rubber Chem Technol, 1977,50:292.
    [39]N Chapleau and B D Favis. J Mater Sci, 1995, 30:142.
    [40]B D Favis and D Therrient. Polymer, 1991, 32:1474.
    [41]B D Favis and J P Chalifoux. Polym Eng Sci, 1987, 27:1591.
    [42]N R Gonzalez, B D Favis and P J Carreau. Polym Eng Sci, 1993, 30: 851.
    [43]G I Taylor. Proc R Sci, 1954, A226:34.
    [44]B D Favis.J Mater Sci, 1990, 39: 285.
    [45]B D Favis, C Lavallee and A Derdouri. J Mater Sci, 1992, 27:4211.
    [46]H J Vanoene. Colloid Intern Sci, 1972, 40: 448.
    [47]Amos J L, O R McIntyre and J L McCurdy. US Patent, 1954, 2, 694, 692.
    [48]P M Subramanian. Polym Eng Sci, 1985, 25(8): 483.
    [49]Z-M Li, M-B Yang, J-M Feng and R Huang. J Mater Sci, 2001, 311:2013
    [50]Feng Jian-Min(冯建民),Li Zhong-Ming(李忠明) and Yang Ming-Bo(杨鸣波), Polymer Materials Science and Engineering(高分子材料科学与工程), 1998, 14:144.
    [51]Li Zhong-Ming(李忠明),Yang Ming-Bo(杨鸣波) and Feng Jian-Min(冯建民). Polymer Materials Science and Engineering(高分子材料科学与工程), 1999, 15:115.
    [52]B Fisa and B D Favis. Polym Eng Sci, 1990, 30:1052.
    [53]S Uemura and M Takayangi. J Appl Polym Sci, 1966, 10:113.
    [54]T Kurauchi and T Ohita. J Mater Sci, 1984, 19:1699.
    [55]S Wu. Polymer, 1990, 29: 3368.
    [56]P V Gheluwe, B D Favis and J P Chalifoux. J Mater Sci, 1988, 23:3910.
    [57]G Kiss. Polym Eng Sci, 1987, 27: 410.
    [58]A I Isayev. In "Liquid-Crystalline Polymer Systems. ACS Symposium Series", edited by A I Isayev, T Kyu and S Z D Cheng, Anaheim, April 2-7, 1995, p. 1.
    [59]Y Seo. In: "Handbook of Engineering Polymeric Materials" edited by N P Cheremisinoff, New York: Marcel Dekker, Inc, 1999, p.585.
    [60]W Brostow. Polymer, 1990, 31: 979.
    [61]D Paul, S Newman. "Polymer Blends", New York: Academic Press, 1978.
    [62]L Utracki. "Polymer Alloys and Blends: Thermodynamic and Rheology", Munich: Hanser,1989.
    
    
    [63]M J Folkes and P S Hope. "Polymer Blends and Alloys", London: Chapman and Hall, 1993.
    [64]F N Cogswell, B P Griffin and J B Rose. US Patent, 1981, 4, 386, 174; 1984, 4, 438, 236.
    [65]M Froix. US Patent, 1984, 4, 460, 735.
    [66]A I Isayev and M Modic. US Patent, 1988, 4, 728, 698.
    [67]A I Isayev and M Modic. Polym Compos, 1987, 8: 158.
    [68]K G Blizard and D G Baird. Polym Eng Sci, 1987, 27: 653.
    [69]R A Weiss, W Huh and L Nicolais. Polym Eng Sci, 1987, 27: 684.
    [70]S S Bafna, J P Desouza, T Sun and D G Baird. Polym Eng Sci, 1993, 33: 808.
    [71]S S Bafna, T Sun and D G Baird. Polymer, 1993, 34:708.
    [72]R Viswanathan. MS Thesis, The University of Akron, 1993.
    [73]A I Isayev and S Swaminathan. in "Advanced Composites. Ⅲ Expanding Technology", ASM, 1987, p. 259.
    [74]M T Heino, P T Hietaoja, T P Vainio and J V Seppala. J Appl Polym Sci, 1994, 51: 259.
    [75]D G Baird and A M Sukhadia. US Patent, 1993, 5, 225,448.
    [76]A M Sukhadia, A Datta and D G Baird. Intern Polym Process, 1992, 7:218.
    [77]A I Isayev and T Limtasiri. in "International Encyclopedia of Composites Vol 3", S M Lee, ed, New York: VCH, 1990, p55.
    [78]V G Kulichikhin and N A Plate. Polym Sci (USSR), 1991, 33A: 3.
    [79]D Dutta, H Fruitwala, A Kohli and R A Weiss. Polym Eng Sci, 1990, 30:1005.
    [80]A A Handlos and D G Baird. Marcromol Rev Chem Phys, 1995, C35:183.
    [81]K G Blizard, C Federici, O Federico and L L Chapoy. Polym Eng Sci, 1990, 30:1442.
    [82]D Seery, S Kenig, A Seigmann and M Narkis. Polym Eng Sci, 1993, 33:1548.
    [83]S Joslin, W Jackson and R Farris. J Appl Polym Sci, 1994, 54: 289.
    [84]D Beery, S Kenig, A Senigmann and M Narkis. Polym Egn Sci, 1993, 33:1548.
    [85]F Shi and X S Yi, J Intern Polym Mater, 1994, 25: 243.
    [86]S S Bafna, T Sun, J P desouza and D G Baird. Polymer, 1995, 36: 259.
    [87]C Ryu, Y Seo, S S Hwang, S M Hong, T S Park and K U Kim. Intern Polym Process, 1994,9: 266.
    [88]S Lee, S M Hong, Y Seo, T S Park, S S Hwang, K U Kim and J W Lee. Polymer, 1994,36:519.
    [89]S Joslin W Jackson and R Farris. J Appl Polym Sci, 1994, 54:439.
    [90]T Kyu and P Zhuang. Polymer Commun, 1988, 29: 99.
    [91]H Karam and J L Bellinger. Ind Eng Chem Fund, 1968, 7:576.
    [92]C D Han. "'Multiphase Flow", New York: Academic Press, 1981.
    [93]G V Vinogradov, B V Yarlykov, M V Tsebreko, A V Yudin and T I Ablazova. Polymer,
    
    1975, 16:609.
    [94]A Mehta and A I Isayev. Polym Eng Sci, 1991, 31:963.
    [95]J V Seppala, T M Heino and C Kapanen. J Appl Polym Sci, 1992, 44:1051.
    [96]M T Heino and J V Seppala. J Appl Polym Sci, 1992, 44:2185.
    [97]A Valenza, F P LaMantia, L I Minkova, S DePedris, M Paci and P L Magagnini. J Appl Polym Sci, 1994, 52:1653.
    [98]W J Jackson, Jr and H F Kuhfuss. J Poly Sci Polym Chem Ed, 1976, 14:2043.
    [99]D Beery, S Kenig, and A Siegmann. Polym Eng Sci, 1991, 31:459.
    [100]Ramanathan, R, K G Blizzard and D G Baird. SPE ANTEC, 1987, 36:1399.
    [101]D Acierno, E Amendola, L Nicholais and R Nobile. Mol Cryst Liq Cryst, 1987, 153: 533.
    [102]A I Isayev and P R Subramanian. Polym Eng Sci, 1992, 32:85.
    [103]P R Subramanian and A I Isayev. Polymer, 1991, 32:1961.
    [104]A Valenza F P LaMantia, L I Minkova, S DePedris, M Paci and P L Magagnini. J Appl Polym Sci, 1994, 52:1653.
    [105]A Ajji, and P A Gignac. Polym Eng Sci, 1992, 32:903.
    [106]S Kenig. Polym Adv Technol, 1991, 2:20.
    [107]B R Bassett and A F Yee. Polym Compos, 1990, 11:10.
    [108]T C Hsu, A M Lichkus and I R Harrison. Polym Eng Sci 1993, 33: 860.
    [109]D Drtta R A Weiss and K Kristal. Polym Eng Sci, 1993, 33: 838.
    [110]Q Lin and A F Yee. Polymer, 1994, 35: 3463.
    [111]M R Nobile, E Amendola, L Nicolais, D Acierno and C Cafgna, Polym Eng Sci, 1989, 29:244.
    [112]G Crevecoeur and G Groeninckx. Polym Eng Sci, 1993, 33: 937.
    [113]G Crevecoeur and G Groeninckx. Polym Eng Sci, 1990, 30: 532.
    [114]A Datta, D G Baird. Polymer, 1995, 36: 505.
    [115]A Datta, H H Chen and D G Baird. Polymer, 1993, 34: 759.
    [116]B Y Shin and I J Chung. J Polymer, 1989, 21: 851.
    [117]R E S Bretas and D G Baird. Polymer, 1992, 33: 5233.
    [118]W Brostow. Polymer. 1990, 31:979.
    [119]G Illing and J Aradt. Kunststoffe, 1982, 72:87.
    [120]N Mekhilef and A Ait Kadi. Polym Eng Sci, 1992, 32:894.
    [121]X D Li, M C Chen, Y H Huang and G M Cong. Polym. J., 1997, 29:975.
    [122]Z-M Li, X-R Fu, M-B Yang, J-M Feng and R Huang. J Polym Mater, 2002, 19:195.
    [123]B Majumdar, D R Paul. In "Polymer Blends, Vol 1: Formulation" edited by D R Paul and C B Bucknall, New York: John Wiley & Sons, Inc., 2000, p. 539.
    
    
    [124]Z-M Li, M-B Yang, J-M Feng and R Huang. Polym-Plast Eng Tech, 2002.41:19.
    [125]A Leclair and B D Favis. Polymer, 1996, 37: 4723.
    [126]A Datta, H H Chen and D G Baird. Polymer, 1993, 34:759.
    [127]A Datta and D G Baird. Polymer, 1995, 36: 505.
    [128]H J O'Donnel and D G Baird. Polymer, 1995, 36:31113.
    [129]F P LaMatia, R Seaffaro and P L Magagnini. Polym EngSci, 1997, 37:1164.
    [130]F P LaMantia, R scaffaro and P L Magagnini. J Appl Polym Sci, 1999, 71:603.
    [131]A I Isayev and M J Modic. Polym Compos, 1987, 8:158.
    [132]C U Ko and G L Wildes. J Appl Polym Sci, 1989, 37:3069.
    [133]A G C Machiels, K F Denys, J J Van Dam and A Posthuma De Boer. Polym Eng Sci, 1997,37: 59.
    [134]A G C Machiels, K F Denys, J J Van Dam and A Posthuma De Boer. Polym Eng Sci, 1996, 36:2451.
    [135]L E Nielsen. "Mechanical Properties of Polymers and Composites", New York: Marcel Dekker, 1974, p.455.
    [136]T C Hsu, A M Lichkus and I Rharrison. Polym Eng Sci, 1993, 33:860.
    [137]S H Juang and S C Kin. Polym J, 1988, 20:73.
    [138]H Ishida and P Bussi. Macromolecules, 1991, 24: 3569.
    [139]J Loos, T Schimanski, J Hofman, T Peijs and P J Lemstra. Polymer, 2001, 42:3827.
    [140]T Stren, E Wachtel and G Marom. J Appl Polym Sci, 1997, 35:2429.
    [141]F V Lacroix, J Loos and K Schulte. Polymer, 1999, 40:843.
    [142]M G Huson and W J McGill. J Polym Sci, Polym Chem, 1984, 22:3571.
    [143]D Campbell and M M Qayyum. J Polym Sci, Polym Phys, 1980, 18:83.
    [144]M A L Manchado, J Biagiotti, L Torre and J M Kenny. Polym Eng Sci, 2000, 40:2194.
    [145]Zhang Jun(张军) and He Jiasong(何嘉松). Polymer Communications(高分子通报), 2000,(4):10.
    [146]X D Li, M C Chen, Y H Huang and G M Cong. Polym Eng Sci, 1999, 39:881.
    [147]Z-M Li, M-B Yang, J-M Feng and R Huang. J Mater Tech Eng, 2002,18:419.
    [148]M Evstatiev and S Fakirov. Polymer, 1992, 33:877.
    [149]M Evstatiev, J M Schultz, S Fakirov and K Friedrich. Polym Eng Sci, 2001,41:192.
    [150]S Fakirov, M Evstatiev. Adv Mater, 1994, 6: 395.
    [151]S Fakirov, M Evstatiev and S Petrovich. Macromolecules, 1993, 26:5219.
    [152]M Evstatiev, J M Schultz, S Petrovich, G Georgiev, S Fakirov and K Friedrich. J Appl Polym Sci, 1998, 67:723.
    [153]S Fakirov, O Samokovliyski, N Stribeck, A A Apostolov, Z Denchev, D Sapoundjieva, M
    
    Evstatiev, A Meyer and M Stamm. Macromolecules, 2001, 34: 3314.
    [154]M Evstatiev, S Fakirov and K Friedrich. In "Polymer Blends, Vol. 2 Performance", edited by D R Paul and C B Bueknall, New York: John Wiley & Sons, 1999, p. 455.
    [155]Z-M Li, W. Yang, R Huang, M-B Yang. Chinese J Mater Res(材料研究学报), 已出校稿
    [156]M F Boyaud, A Ait-Kadi, M Bousmina, A Michel and P Cassagnau. Polymer, 2001, 42:6515.
    [157]Z-M Li, M-B Yang, J-M Feng, W Yang and R Huang. Mater Lett, 2002, 56:756.
    [158]Z-M Li, M-B Yang, B H Xie, J-M Feng and R Huang. Mater Res Bull, 2002, 37:2185..
    [159]Z-M Li, M-B Yang, J-M Feng and R Huang. Polym Eng Sci, 2003, 43: 615.
    [160]Z-M Li, M-B Yang, R Huang and J-M Feng. Recycling of thermoplastics utilizing in-situ fibrillation technique(利用原位微纤化共混物制备方法回收热塑性塑料),China Patent(中国专利),No:03135186.7,2003.
    [161]Z-M Li, X-B Xu, M-B Yang and R Huang. Fabrication of the conductive fillers filled composite able to generate electrically conductive in-situ microfiber network(可形成原位导电微纤网络的复合材料的制备方法),China Patent(中国专利),No:03135186.7,2003.
    [162]Z-M Li, X-B Xu, A Lu, K-Z Shen, R Huang, M-B Yang. Carbon, 印刷中.
    [163]Z-M Li, W Yang, S Y Yang, M-B Yang, B H Xie, J-M Feng and R Huang. Mater Res Bull,已出校稿。
    [164]Z-M Li, W Yang, S Y Yang, M-B Yang, B H Xie, J-M Feng and R Huang. Journal of Northwest Polytechnic University(西北工业大学学报),印刷中.
    [165]Z-M Li, W Yang, S Y Yang, M-B Yang, B H Xie, J-M Feng and R Huang. Macro Mater Eng, 印刷中.
    [166]Z-M Li, W Yang, L B Li, M-B Yang, B H Xie, J-M Feng and R Huang. J Polym Sci, Part B: eolym ehys, 已出校稿
    [167]Z-M Li, L B Li, W Yang, M-B Yang, B H Xie and R Huang. Macro Rapid Commun, submitted.
    [168]Z-M Li, W Yang, S Y Yang, M-B Yang, J-M Feng and R Huang. J Mater Sci, 已出校稿.
    [169]Z-M Li, B H Xie, S Y Yang, M-B Yang, J-M Feng and R Huang. J Mater Sci, 已出校稿.
    [170]Z-M Li, M-B Yang, A Lu, B-H Xie, W Yang, J-M Feng and R Huang. J Mater Sci Lett, 2002, 21:1063
    [171]Z-M Li, M-B Yang, J-M Feng and R Huang. Polym Eng Sci, 在印刷中
    [172]Z-M Li, W Yang, B-H Xie, R Huang, M-B Yang, J-M Feng. J Macro Sci-Phys, 在印刷中.
    [173]Z-M Li(李忠明),M-B Yang(杨鸣波),J-M Feng(冯建民)and R Huang(黄锐).Acta
    
    Polymeric Sinica(高分子学报), 2001, (1):32.
    [174]Z-M Li, M-B Yang, J-M Feng, R Huang. J Mater Sci, 2001, 36:2013
    [175]Z-M Li, M-B Yang, J-M Feng, R Huang. J Mater Sci Lett, 2000, 19:23
    [176]Z-M Li, M-B Yang, J-M Feng, R Huang. J Polym Mater, 2002, 19:195.
    [177]M-B Yang, Z-M Li, J-M Feng. Polym Eng Sci, 1998, 38:879

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700