用户名: 密码: 验证码:
用于精密挤出成型的气辅挤出口模设计数值模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气辅挤出作为一种新型的聚合物材料成型工艺,通过在熔体和口模内壁之间形成一层气体辅助层,使熔体以完全滑移非粘着的方式挤出成型,可有效减小挤出胀大,因此在精密挤出成型方面有着潜在的应用价值。国内外的研究者在气辅挤出成型方面开展了多年的研究工作,利用数值模拟技术探讨了气辅挤出成型机理,并搭建了实验系统,取得了颇有成效的研究成果。但是要实现气辅挤出的工业化应用,还必须在以下几方面展开进一步的研究:(1)稳定气辅挤出的工艺条件;(2)实验中挤出缩小问题;(3)口模入口部位的设计如何判定:(4)对精密挤出条件下口模滑移段长度或工艺条件设定不能进行预测/判断。因此,围绕上述四个方面继续深入研究,进一步改进和提高挤出制品的径向尺寸精度,对于气辅挤出工艺、口模优化设计和挤出过程智能控制,都具有非常重要的理论意义和工程价值。
     首先采用有限体积法和Generalized Navier's slip law方程,建立了气辅挤出口模内熔体流动的数学模型,并给出了控制方程组的Galerkin有限元离散化形式,针对气辅挤出过程高We数难收敛的问题,提出采用EVSS/SUPG混合有限元方法,同时结合渐变法和汤普森变换实现数值模拟的稳定收敛。
     实验研究了工艺参数对气辅层稳定性的影响。结果表明,气体压力与熔体压力大致相等是实现稳定气辅挤出的前提条件。当气体压力过大时,气体会穿透熔体,在熔体内部形成气泡,从而对制品质量造成较大影响;反之,则不能形成气辅层。气体流量对实现稳定气辅挤出非常重要,大流量容易引起气体紊流,使挤出物表面产生波纹形状,合理设置气体流量,可获得稳定的气辅挤出。
     数值模拟研究了气体和熔体在非等温热交换作用下的熔体的温度场、黏度场。研究结果表明:当气体温度低于熔体温度时,聚合物熔体粘流活化能大的,口模滑移段尺寸长的,在气辅挤出中相对容易出现半固态熔膜现象,从而堵塞口模通道,引起挤出缩小现象。提高气体温度使之等于熔体温度,可在根本上消除半固态熔膜引起的挤出缩小现象。并通过实验验证了模拟结果。
     针对直角形、圆锥形和圆弧形口模入口结构中存在不光滑的连接点,构建了反向相切和三次高精度插值两种流线形入口几何构型。对聚合物在五种不同入口气辅口模内的熔体流动进行了数值模拟研究,考察了各口模中压力场、速度场、应力场和挤出胀大的特点。结果发现流线形口模挤出压力小、流动速度大、N_1应力集中程度小、挤出胀大比小,成为非流线型口模强有力的竞争者。同时发现成型段L/D≥1且滑移段为成型段1/2的气辅口模,离模后挤出胀大比与口模入口几何结构无关。
     将气辅挤出口模简化为圆棒模型,对熔体在不同滑移段长度的气辅口模内的流动进行模拟研究。考察了剪切速率、松弛时间对挤出胀大的影响,讨论了滑移段长度与压力降、挤出胀大、应力集中之间的关系。通过大量的数值模拟研究发现,熔体在滑移段的停留时间与材料松弛时间之比与挤出胀大比之间存在指数衰减关系,其关系可用方程B=1+Ae~(-t/λ)表示。并通过其它文献给出的实验数据论证本文所提方程的有效性和可靠性,为滑移段长度设计或工艺参数控制提供理论依据。
     对HDPE、PP、ABS三种通用性热塑性塑料进行了气辅挤出试验,测量并观察了挤出制品的径向尺寸、表面质量和压力降。对上章数值模拟结果进行了实验验证。基于数值模拟和实验结果,证明了本文所提出的方程可以用来预测气辅挤出制品的径向尺寸,用来指导气辅挤出口模滑移段长度的设计。
Gas-assisted extrusion (GAE) is a new polymer molding technique. In the extrusion processing, a stable gas layer is established at the interface of metal die and molten polymer by injecting gas into the extrusion die, which makes the molten polymer is extruded out with a full slip mode. GAE technology can significantly reduce die swell ratio, so it has potential applications in the manufacturing of precise extrusion. Researchers have been studying gas-assisted extrusion for many years, and get many research achievements in numerical simulation and experiments. While for achieving industrial applications, it is also necessary to further study in the following three areas:(1) the stable process of gas-assisted extrusion is not perfect; (2) the extrudate's radius is smaller than the die's radius; (3) the die entrance is difficult to design; (4) no predicting or judging methods can be applied to the slip length of GAE die and the process conditions under the precise extrusion. Thus, more attention is required to be paid to the deep study of the four problems mentioned above, and further improvement on the radial dimensional accuracy of extrusion products is of great theoretical and practical significance for gas-assisted extrusion process optimum design and intelligent control.
     Based on the finite volume method and Generalized Navier's slip law, a numerical simulation system describing the flow of visco-elastic polymer when it passes through the gas-assisted extrusion die is established; at the same time, the finite element discrete forms of the governing equations are built, and the mixed finite element methods of EVSS/SUPG (Elastic-Viscous Stress Split elastic/Streamline Upwind Petrov-Galerkin), the Evolution method, and Thompson transformation are utilized to resolve the problem that high weissenberg often made computations difficult.
     Drawing on an experimental assemble system of gas-assisting extrusion, we can find the effect which the technical parameters have on the stability of gas-assisting extrusion. These experiments show that the gas can be injected into the GAE die when the gas pressure is higher than the melt pressure at the gas injection point. The GAE process could not be operated when the pressure of melt is beyond the pressure of gas. When the gas pressure is equal to the flowing polymer' s pressure, then a stable, uniform gas layer is formed at the interface between the molten polymer and the metal die. In addition these experiments also indicate that the control of gas mass flow appears to be an important part of obtaining a stable extrusion. When the gas flow is small, the melt extrudate in the form of laminar flow. When the gas mass flow is large, a periodic product deformation termed 'blistering' is observed and the gas generated turbulence forced the melt vibration extrusion.
     By using the model and method developed in this study, the temperature profile and viscocity profile were numerically simulated for non-isothermal heat exchange from cool-gas to hot- melt. The results reveal that when the temperature of the gas is below the temperature of the melt, when the polymer melt flow activation energy is larger and when the slip length is longer, it is easier to form a stationary polymer layer attached to the die wall and to leave a "semisolid" layer of polymer at the wall, which blocked the die and caused the diminishing of the extrudate. To raise the temperature of gas near the melt might eliminate semi-solid membrane. The simulation results are verified though this experiment and the diminished problem of extrusion products in previous research is successfully solved.
     In view of the uneven junctions in the right-angle shape, the conical shape, or the arc shape entrance structure, two stream-lined entrance geometric configurations is constructed, which are reverse-tangent and coped with three supra-precision interpolations respectively. Numerical simulations are conducted with the melt flow in five different entrance gas-assisted dies. The features of the pressure field, the velocity field, the stress field, and the extrusion swell in each die are also investigated. The analysis showed that the stream-lined dies had smaller extrusion pressure, bigger flow velocity, smaller concentration degree, and smaller die swell ratio although it is difficult to design and process them. As for those gas-assisted dies whose formed segments' L/D was equal to or beyond 1 and whose slip segments is half of formed segments, the extrusion swell ratio released from the die had nothing to do with the die's entrance because the elastic strain stored in the entrance could be released completely in the gas-assisted section.
     By simplifying the gas-assisted extrusion dies into rod models, a numerical simulation is conducted to investigate the flow of melts of different lengths of slip parts in the gas-assisted dies. The effects of shear rate and relaxation time on die swell ratio are investigated with the aid of this simulation. The interrelation among the slip length on the drop pressure, die swell and the stress concentration is also examined. It is found that drop pressure could be largely reduced while surface quality could be greatly raised with the increase of slip length. From the simulation, an equation about the die swell ratio is proposed which can be applied to the design of GAE die, relating the residence time of melt in slip part and relaxation time. The mathematical relationship can be written in B = 1 + Ae~(-t/λ), which essence is that molten polymer at slip part in deformation attenuation process. With reference to the available documents, the validity and reliability of the formula mentioned above was proved experimentally, thus providing a solid theoretical basis for the design of slip part and the control of technical parameters.
     In this simulation, GAE experiments on HDPE, PP and ABS were carried out; The major parameters of extrusion products, such as the pressure drop, radial dimension, and the surface quality, are measured or examined. The numerical simulation results are validated. Constructed on the basis of simulation and experiments, it has been verified that the formula can be used to predict the radial dimension of extrusion products and be used to guide the optimum design of the slip length as well as the design of the length of slip parts in the gas-assisted extrusion dies.
引文
[1]吴大鸣.精密挤出技术的开发和应用展望[J].塑料工业,2007(2):34-41.
    [2]徐佩弦.高聚物流变学及其应用[M].北京:化学工业出版社,2003.
    [3]江波.我国塑料成型机与辅机的发展现状与技术水平分析(下)[J].橡塑技术与装备,2002(11):4-11.
    [4]宗莳.塑料挤出机五大发展趋势[J].中国包装工业,2007(3):20.
    [5]吴大鸣,刘颖,李晓林.精密挤出成型原理及技术[M].北京:化学工业出版社,2004.
    [6]夏弦谱.平膜、片材挤出成型厚度精度控制方法[J].塑料科技,2005(8):19-23.
    [7]李亮.高聚物精密挤出及其制品壁厚均匀性的研究[D].北京化工大学,2002.
    [8]吴大鸣,李晓林,刘颖.影响挤出成型精密度的因素[J].塑料,2003(1):26-30.
    [9]操亚平.高聚物精密挤出机理初探(一)影响高聚物精密挤出的工艺因素[D].北京化工大学,2001.
    [10]周彦豪.聚合物加工流变学基础[M].西安:西安交通大学出版社,1998.
    [11]Sombatsompop,N,Sergsiri,S.Die swell ratio of polystyrene melt from an electromagnetized capillary die in an extrusion rheometer:effects of barrel diameter,shear rate and die temperature[J].POLYM ADVAN TECHNOL,2004,5(8):472-480.
    [12]Sombatsompop,N,Intawong,N.Extrudate swell and flow analysis of polystyrene melt flowing in an electro-magnetized die in a single screw extruder[J].POLYM ADVAN TECHNOL,2005,16(7):505-514.
    [13]刘斌,马俊.Polyflow逆向挤出工程在异型材口模设计中的应用[J].塑料科技,2008(01):64-70.
    [14]薛平,赵永生,王哲.逆向挤出在木塑异型材挤出口模设计中的应用[J].现代塑料加工应用,2005(12):53-56.
    [15]陈晋南,吴荣芳.数值模拟橡胶挤出口模内熔体的非等温流动[J].北京理工大学学报,2008(7):626-630.
    [16]戴元坎,孙艳菊,周持兴.汽车橡胶密封条挤出口模结构分析及其实验验证[J].高分子材料科学与工程,2008(7):109-112.
    [17]戴元坎,李向阳,周持兴.橡胶密封条挤出流道的计算机模拟优化设计[J].合成橡胶工业,2008(7):124-128.
    [18]Tanner R I.A theory of die swell[J].J Polym Sci Part A-2:Polymer Physics,1970,8(12):2067-2078.
    [19] Roger I. Tanner. A theory of die-swell revisited [J]. Journal of Non-Newtonian Fluid Mechanics, 2005,2(129): 85-87.
    [20] Fluent.Inc. POLYFLOW: For Computational Fluid Dynamics (CFD) Analysis[OL].http://fluent.com/software/polyflow/visco.htm.
    [21] Yu Zhong, Zhiyong Zhu, Shi-Qing Wang. Synthesis and rheological properties of polystyrene/layered silicate nanocomposite [J]. Polymer, 2005,46(9): 1306-1315.
    [22] Nah, C, Kader, M.A, Min-Young Lyu. A study on melt processing and thermal properties of fluoroelastomer nanocomposites[J]. Composites Science and Technology,2006,66(10):1431-1443.
    [23] Bandyopadhyay A, De Sarkar, M Bhowmick. Rheological behavior of hybrid rubber nanocomposites[J]. RUBBER CHEM TECHNOL, 2005, 78 (5): 806-826 .
    [24] Liang Ji-Zhao. Effects of particle size on melt viscoelastic properties during capillary extrusion of glass bead-filled LDPE composites[J]. J THERMOPLAST COMPOS, 2006,19(6): 703-713.
    [25] Moly KA, Bhagawan S, Thomas S. Melt elasticity behaviour and extrudate characteristics of LLDPE/EVA blends: effect of blend ratio, ompatibilisation and dynamic cross-linking[J]. MATER LETT, 2002,53 (4-5): 346-352 .
    [26] Stabik J. Influence of filler particle geometry on die swell[J]. INT POLYM PROC, 2004,19(4): 350-355.
    [27] Seema A, Kutty SK.N. Rheological characteristics of short nylon-6 fiber-reinforced acrylonitrile butadiene rubber containing epoxy resin as bonding agent [J]. POLYM-PLAST TECHNOL, 2005,44 (8-9): 1413-1427.
    [28] Shah BL, Matuana LM. Online measurement of rheological properties of PVC/wood-flour composites[J]. J VINYL ADDIT TECHN , 2004,10 (3): 121-128 .
    [29] Samsudin MS. Effect of filler treatments on rheological behavior of calcium carbonate and talc-filled polypropylene hybrid composites[J]. J APPL POLYM SCI, 2006,102(6):5421-5426.
    [30] Intawong NT, Sombatsompop N. Experimental studies on radial extrudate swell and velocity profiles of flowing PS melt in an electro-magnetized die of an extrusion rheometer[J].POLYM ENG SCI, 2004,44 (12): 2298-2307.
    [31] Li J, Guo SY, Liang M. Effects of ultrasonic oscillation on processing behaviors of PS,EPDM, and PS/EPDM blend[J]. J APPL POLYM SCI, 2006,100 (3): 1856-1863.
    [32] Liu YJ. Elastic behavior analysis of polymer melt extruding through capillary with an additional sinusoidal vibration[J]. POLYM BULL, 2006,56 (6): 599-606.
    [33]徐佩弦.高聚物流变学及其应用[M].北京:化学工业出版社,2003.
    [34]吴其晔,巫定安.高分子材料流变学[M].北京:化学工业出版社,2002.
    [35]K.B.Migler,Y.Son,F.Qiao and K.Flynn.Extensional deformation,cohesive failure,and boundary conditions during sharkskin melt fracture[J].J.Rheol,2002,46(2):383-400.
    [36]N.El Kissi.J.M.Piau.Adhesion of linear low density polyethylene for flow regimes with sharkskin[J].J.Rheol,1994,38(5):1447-1463.
    [37]R.P.G.Rutgers,M.R.Mackley.The correlation of experimental surface extrusion instabilities with numerically predicted exit surface stress concentrations and melt strength for linear low-density polyethylene,[J].J.Rheol,2000,44(6):1319-1334.
    [38]R.H.Moynihan,D.G.Baird,R.Ramanathan.Additional observations on the surface melt fracture behaviour of LLDPE[J].J.Non-Newtonian Fluid Mech,1990,36(12):255-263.
    [39]Achilleos EC,Georgiou G,Hatzikidakos SG.Role of processing aids in the extrusion of aids for extrusion of polyethylene[J].J VINYL ADDIT TECHN,2005,11(3):127-131.
    [40]F.Legrand,J.M.Piau.Spatially resolved stress birefringence and flow visualization in the flow instabilities of a polydimethylsiioxane extruded though a slit die[J].J.Non-Newtonian Fluid Mech,1998,77(5):123-150.
    [41]Kulikov,O.Novel processing aids for extrusion of polyethylene[J].J VINYL ADDIT TECHN,2005,11(3):127-131.
    [42]Arda,DR,Mackley,MR.The effect of die exit curvature,die surface roughness and a fluoropolymer additive on sharkskin extrusion instabilities in polyethylene processing[J].Journal of Non-Newtonian Fluid Mechanics,2005,126(1):47-61.
    [43]Yingzi Chen,Huilin Li.Effect of ultrasound on the viscoelasticity and rheology of polystyrene extruded through a slit die[J].Journal of Applied Polymer Science,2006,100(4):2907-2911.
    [44]江波,许澍华,李翔.高聚物成型加工装备与技术研究现状及发展[J].橡塑技术与装备,2003(11):23-27.
    [45]江波,许澍华,李翔.塑料挤出装备研究现状及开发[J].工程塑料应用,2003(3):33-38.
    [46]张春吉,唐跃,张惠敏.塑料挤出成型发展概况[J].工程塑料应用,2004(2):41-45.
    [47]吴大鸣.精密挤出技术的开发和应用[J].国外塑料,2008(3):48-55.
    [48]R.F.Liang,M.R.Mackery.The gas-assisted extrusion of molten polyethylene[J].Rheology,2001,45(1):211-226.
    [49]Arda DR,Mackley MR.Sharkskin instabilities and the effect of slip from gas-assisted extrusion[J].Rheoiogica Acta,2005,44(4):352-359.
    [50]鄢超.聚合物缝形口模气辅挤出流动数值模拟[D].南昌大学,2004.
    [51]黄兴元.聚合物气体辅助挤出成型的理论及实验研究[D].南昌大学,2006.
    [52]胡晨章.气辅挤出成型机理三维等温粘弹性数值模拟研究[D].南昌大学,2006.
    [53]卢臣.塑料异型材气辅挤出口模流动的理论与实验研究[D].南昌大学,2007.
    [54]蔡奎.气辅共挤成型界面不稳定的数值模拟研究[D].南昌大学,2006.
    [55]尹智龙.聚合物气辅共挤成型数值模拟研究[D].南昌大学,2007.
    [56]张效迅,崔振山,周国发.黏弹性聚合物熔体多相成型界面不稳定的机理分析[J].化工学报,2007(2):432-439.
    [57]LEE WS.Experimental study on extrudate swell and die geometry of profile extrusion[J].POLYMER ENGINEERING AND SCIENCE,2000,40(4):1081-1085.
    [58]GIFFORD WA.Compensating for die swell in the design of profile dies[J].POLYMER ENGINEERING AND SCIENCE,2005,43(3):1657-1662.
    [59]GANVIR Vivek,LELE Ashish,THAOKAR Rochish.Simulation of viscoelastic flows of polymer solutions in abrupt contractions using an arbitrary Lagrangian Eulerian(ALE) based finite element method[J].Journal of Non-Newtonian Fluid Mechanics,2005,126(1):47-61.
    [60]赵良知.不同角度圆锥口模对聚合物熔体挤出胀大的影响[J].塑料工业,2005(33):116-119.
    [61]Ji-Zhao Liang..Effect of the die angle on the extrusion swell of rubber compound[J].Journal of Materials Processing Technology,1995,52(2):207-212.
    [62]W.A.Gordon,C.J.Van Tyne,Y.H.Moon.Axisymmetric extrusion through adaptable dies-Part 1:Flexible velocity fields and power terms[J].International Journal of Mechanical Sciences,2007(49)1:86-95.
    [63]R.Ponalagusamy,R.Narayanasamy and P.Srinivasan.Design and development of streamlined extrusion dies a Bezier curve approach[J].Journal of Materials Processing Technology,2005,3(161):375-380.
    [64]R.Narayanasamy,R.Ponalagnsamy,R.Venkatesan.An upper bound solution to extrusion of circular billet to circular shape through cosine dies[J].Materials & Desig,2006,5(27):411-415.
    [65]R.Ponalagusamy,R.Narayanasamy,R.Venkatesan.Computer-aided metal flow investigation in streamlined extrusion dies[J].Materials & Design,2006,6(7):1-12.
    [66]G S H Chan,K K B Hon.Integration of computing techniques for plastics extrusion die design[J],computer-aided engineer journal,1990,4(31):37-42.
    [67]刘斌.塑料挤出流动数值分析及其模具结构设计优化研究[D].大连理工大学,2003.
    [68]李学章.篮网式管机头中熔体流动的模拟及分析[D].北京化工大学,2005.
    [69]Jay.P,Piau.J.M.The reduction of viscous extrusion stresses and extrudate swell computation using slippery exit surfaces[J].J.Non-Newtonian Fluid Mech,1998,(79)5:599-617.
    [70]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2007.
    [71]E.JOHN FINNEMORE,JOSEPH B,FRANZINI.FLUID MECHANICS WITH ENGINEERING APPLICATIONS(TENTH EDITION)[M].McGraw-Hill,2008.
    [71]瞿金平,胡汉杰.聚合物成型原理及其应用[M].北京:化学工业出版社,2001.
    [72]申长雨,李倩.橡塑模具优化设计技术[M].北京:化学工业出版社,1997.
    [73]周国发,孙懋.聚合物全三维非稳态非等温多相分层流动成型过程的理论模型和数值模拟[J].机械工程学报,2004(9):37-46.
    [74]梁基照.聚合物材料加工流变学[M].北京:国防工业出版社,2008.
    [75]J.Hron,C.Le Roux,J.Malek.A challenge in Navier-Stokes-based continuum modeling:Maxwell-Burnett slip law[J].Phys.Fluids,2008,16(10):1063-1078.
    [76]Fan Yurun.A comparative study of the discontinuous Galerkin and continuous SUPG finite element methods for computation of viscoelastic flows[J].Computer Methods in Applied Mechanics and Engineering,1997,(141)15:47-65.
    [77]马文琦,孙红镱.塑料成型模拟软件技术基础与应用[M].北京:中国铁道出版社,2006。
    [78]Michael kotelyanskii.Simulation method for polymers[M].Marcel dekker.Inc,2004.
    [79]Kathleen Feigl.Development and evaluation of a micro-macro algorithm for the simulation of polymer flow[J].Journal of computational physics,2006,216(10):92-113.
    [80]周持兴,俞炜.聚合物加工理论[M].北京:科学出版社,2004.
    [81]刘瑞霞.塑料挤出成型[M].北京:化学工业出版社,2005.
    [82]卢少忠等.塑料挤出机头设计经验[M].北京:机械工业出版社,2003.
    [83]TA Instruments.QDMA动态力学性能分析仪入门指南[M].TA Instruments-Waters LLC,2004.
    [84]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2003.
    [85]Kevin P.Menard.Dynamic Mechanical Analysis:A Practical Introduction[M].CRC-Press,2007.
    [86]Tim A.Osswald,Juan P.ernandez-Ortiz.Polymer Processing-Modeling and Simulation[M].Hanser Gardner Publications,2006.
    [87]朱复华.挤出理论及应用[M].北京:中国轻工业出版社,2001.
    [88]王新月,杨清真.热力学与气体动力学基础[M].西安:西北工业大学出版社,2004.
    [89]B.Hallmark,M.R.Mackley.THE MANUFACTURE OF MICRO CAPILLARY POLYMER FILM EXTRUSIONS[J].Advanced engineering materials,2005,7(6):545-547.
    [90]王新月,胡春波.气体动力学基础[M].西安:西北工业大学出版社,2006.
    [91]陶文铨.数值传热学[M].西安:西安交通大学出版社,2004.
    [92]潘祖仁.高分子化学[M].北京:化学工业出版社,2006.
    [93]卢少忠.塑料挤出机头设计经验[M].北京:机械工业出版社,2003.
    [94]沈继红.用固体核磁技术分析PE 100管材料的抗熔垂性[J].合成树脂与塑料,2007(4):12-15.
    [95]汪永斌,杨锐,张丽叶.辐照改性聚丙烯抗熔垂能力的研究[J].中国塑料,2005(11):20-25
    [96]Hertel,D.Three-dimensional entrance flow of a low-density polyethylene(LDPE) and a linear low-density polyethylene(LLDPE) into a slit die[J].Journal of Non-Newtonian Fluid Mechanics,2008,2(3):82-94.
    [97]K.Lee,M.R.Mackley.The significance of slip in matching polyethylene processing data with numerical simulation[J].Journal of Non-Newtonian Fluid Mechanics,2000,94(2):159-177.
    [98]W.迈切里.塑料橡胶挤出模头设计[M].北京:中国轻工业出版社,1999.
    [99]John D.Anderson.Fundamentals of Aerodynamics[M].McGraw-Hill Inc,1991.
    [100]张丽叶.挤出成型[M].北京:化学工业出版社,2002.
    [101]GunasekeraJ S.Hoshino S.Analysis of extrusion or drawing of polygonal sections through straightly converging dies[J].Trans ASME,1992,104(4):38-44.
    [102]冯振兴.连续统计力学及其数值模拟[M].湖北:武汉大学出版社,2002.
    [103]顾国芳,曹炽康.聚合物流变学基础[M].上海:同济大学出版社,2000.
    [104]Mustafa Ketabchi,Hossein Seyedrezai.Energy analysis of L-section extrusion using two different streamlined dies[J].Journal of Materials Processing Technology,2007,189(6):242-246.
    [105]B.Tremblay.Sharkskin defects of polymer melts:the role of cohesion and adhesion[J].J.Rheol,1991,35(6):985-998.
    [106]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2006.
    [107]焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版社,2003.
    [108]郁文娟.聚氯乙烯通过矩形口模挤出时离模膨胀的研究[J].塑料科技,1995(3):22-26.
    [109]刘广建.超高分子质量聚乙烯[M].北京:化学工业出版社,2001.
    [110]D.R.Lippits,S.Rastogi,G.W.H.Hohne.Melting kinetics in polymers[J].PHYSICAL REVIEW LETTERS,2006,96(2):218-221.
    [111]Savvas G.Hatzikiriakos,Kalman B.Migler.Polymer Processing Instability:contral and understanding[M].Marcel Dekker,2005.
    [112]阿克洛民斯 J.J.Introduction to polymer viscoelasticity[M].北京:科学出版社,2004.
    [113]张少实,庄茁.复合材料与粘弹性力学[M].北京:机械工业出版社,2006.
    [114]束德林.工程材料力学性能[M].北京:机械工业出版社,2007.
    [115]J.J.M.Baltussen,M.G.Northolt.The Eyring reduced time model for viscoelastic and yield deformation of polymer fibrespolymer[J].J.Rheol,2004,45(5):1717-1728.
    [116]李兆敏 蔡国琰.非牛顿(?)体力学[M].山东:石油大学出版社,1998.
    [117]Zehev Tadmor,Costas G Gogos.Principles of polymer processing[M].WILEY,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700