用户名: 密码: 验证码:
模拟伺服阀滑阀工况的配磨测试台研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伺服阀滑阀在加工过程中,滑阀各边叠合量大小需要配磨。配磨工序包括滑阀叠合量测试和阀芯磨削。本文采用一种模拟伺服阀滑阀工作状况的新的测试方法,这种测试方法利用液压缸作为伺服阀滑阀的负载,而液压缸空载运行。该测试方法能够实现测试阀口自动切换,一次测量能够完成滑阀两边叠合量测量,以确定磨削量,同时,能够测量总叠合量,从总体上反映滑阀的流量特性。该测试方法对伺服阀滑阀测试技术的发展以及其他液压测试具有重要意义。
     首先,对测试基本原理进行阐述并分析,根据流体力学等知识建立位移-流量理想数学模型,指出阀口较小时阀芯位移与阀口流量不是线性关系,这表明数据处理要避开小开口;对模拟伺服阀滑阀工作状况的原理进行分析,并且根据阀口流量、阀芯位移和测试时间确定液压缸的主要参数,这为测试台油路设计以及液压缸选型具有指导意义。
     其次,设计了整个测试台,包括硬件部分和测试软件。硬件部分主要介绍了各部分的设计思想以及主要参数的计算过程,包括测试夹具设计、液压泵站设计、液压泵的选择、油路设计、管路选择、集成块设计、回油系统设计、温度控制、电气电路设计、计算机数据采集与控制等。测试软件主要介绍了各个主要模块的编程实现方法,包括测量主程序、步进电机驱动及细分技术、数据采集、叠合量计算等。
     最后,单边叠合量实验验证了测试台的不重复性误差在±0.5μm以内,结果表明测试台能够达到生产要求,对滑阀配磨具有重要意义。
During the processing of spool valve of servo valve, each edge of the spool valve overlap value requires match grinding. Match grinding processes include spool valve overlap value test and valve spool grinding. This paper adopts an new test method in simulation work conditions of spool valve of servo valve, which takes advantage of the hydraulic cylinder as the operating load of spool valve of servo valve, however the hydraulic cylinder works without operating load. This test method which can automatically switch the test valve mouth, can measure two edges of the spool valve overlap once, determining the value of grinding. At the same time, it can measure the total overlap value, reflecting the flow characteristics of spool valve on the whole. This test method for the development of the test technology of spool valve of servo valve and other hydraulic test has important significance.
     Firstly, analyzing and explaining the fundamental test theory to establish displacement and flow model, indicating the relation of displacement and flow is not linear when the valve mouth is small, this shows that data processing need avoid the small valve mouth. And analyzing the theory of the hydraulic cylinder simulating the work conditions of spool valve of servo valve, in the meantime, depending on the valve mouth flow, valve spool and test time to determine the main parameters of hydraulic cylinder. It can make an important guidance for designing the oil-way and selecting the hydraulic cylinder model.
     Secondly, designing all the parts of test workbench, which includes the hardware part and the test software. The hardware part mainly introduces the design concepts and the calculation processes of main parameter of all of the components, that includes the design of jig and hydraulic pump station and oil-way and manifold block and return oil system and electrical circuit, selecting the hydraulic pump and piping and the composition of computer data acquisition and control system. The test software mainly states each of the main modules for the programming method, that includes the main measurement program, stepping motor driver and subdivision technology, data acquisition and overlap calculation, and so on.
     At last, the experiment of single overlap value verifies repetitive measurement error below±0.5μm, and the result shows that test workbench can reach the production requirements. So the test workbench have an important significance for match grinding of spool valve.
引文
[1]苏东海,任大林,杨京兰.电液比例阀与电液伺服阀性能比较及前景展望[J].液压气动与密封,2008,(4): 1-4.
    [2]李其朋,丁凡.电液伺服阀技术研究现状及发展趋势[J].工程机械,2003,(6):28-33.
    [3]李宜霞,陈奎生.一种新型的电液伺服阀[J].机床与液压, 2006,(4):142-143.
    [4] Jia Z Y, Ma J W, Wang F J, et al. Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System[J]. Chinese Journal of Mechanical Engineering, 2010,23(2):200-208.
    [5] Zhou M L, Tian Y T, Gao W, et al. High precise control method for a new type of Piezoelectric electro-hydraulic servo valve. Journal of Central South University of Technology [J]. Central South University of Technology, 2007(6):832-837.
    [6]方群,黄增.电液伺服阀的发展历史、研究现状及发展趋势[J].机床与液压,2007. 35(11):162-165.
    [7]潘旭东,张丽,王广林.基于Fluent软件的滑阀流量特性的数值仿真研究[J].装备制造技术,2007,(9):6-7,20.
    [8] Mashatoshi M, Hirochi Y, Nariaki H. Flow characteristics of a spool valve[J]. Japan Society of Mechanical Engineers, 2003, 69(679):561-567.
    [9] Fu W Z, Li M Z, Cai Z Y, et al. Numerical simulation on 3D fluid velocity field in spool valve[J]. Harbin Institute of Technology, 2007, 39(1):149-152.
    [10] Hayase T, Cheng P, Hayashi S. Numerical analysis of transient flow through spool valve[J]. JSME, 1995, 61(584):1382-1388.
    [11] Gao D R, Wang Y Q, ZhaoY K. Numerical simulation of flow field inside hydraulic spool valve[J]. China Ocean Press, 2003, 14(4):31-39.
    [12]田源道.对滑阀中液流流态切换现象的试验及研究[J].液压与气动,1985(3):25-27.
    [13] Pan X D, Wang G L, Zhang L. Simulation study on spool edge's round angleeffects on spool valve orifice discharge characteristic[C]. Trans Tech Publications, 2008:918-922.
    [14]陈吉红,宁德初,梁建成.滑阀副配磨参数测量的理论研究[J].国防科技大学学报. 1991,13(1):73-78.
    [15]王世民,陈吉红,梁建成,等.滑阀副配磨参数微机控制测量系统的研究[J].国防科技大学学报,1991,13(1):79-85.
    [16]陈伦强,罗克然,陶崇德.精密电液伺服阀芯轴向精磨闭环控制系统的研究[J].航天工艺. 1992,(4):29-31.
    [17]张建峰,周永强,王广林.微机控制伺服阀液动配磨精密测量技术[J].液压与气动,1999,(2):48-51.
    [18]赵军,陶崇德.一种用微机控制的轴向自动配磨系统[J].微电子学与计算机,1990,(9):18-20.
    [19]李振军,周永强.单片机及多种流量计在伺服阀气动配磨中的应用[J].航空精密制造技术,2002,38(5):36-39,42.
    [20]潘旭东,王广林,邵东向.伺服阀滑阀叠合量测量方法[J].振动、测试与诊断,2009, 29(4):392-397.
    [21]王广林,潘旭东,卢泽生,等.伺服阀叠合量液动配磨测量台的研制[J].液压与气动,2005,(10):64-69.
    [22]潘旭东.伺服阀滑阀叠合量液动测量系统及其关键技术的研究[D].哈尔滨:哈尔滨工业大学学位论文,2008:1-80.
    [23] Pan X D, Wang G L, Shao D X Measurement of spool valve overlap value of servo valve[J]. Nanjing University of Aeronautics an Astronautics, 2009,29(4):392-397.
    [24]徐超峰.伺服阀叠合量液动测量台恒压油源系统的研究[D].哈尔滨:哈尔滨工业大学学位论文,2006:1-47.
    [25]陆敏恂,李万莉.流体力学与液压传动[M].上海:同济大学出版社,2006:6-47.
    [26]吴拓.机床夹具设计手册[M].北京:化学工业出版社,2010:62-125.
    [27]成大先.机械设计手册第五版弹簧[M].北京:化学工业出版社,2010:8-35.
    [28]李永贵.液压系统设计中的禁忌.机械与电子[J]. 2009,(13):99-100.
    [29]潘铭.液压系统设计经验点滴.流体传动与控制[J]. 2008,(1):53-54.
    [30]许贤良,王传礼.液压传动[M].北京:国防工业出版社,2006:1-8,27-78,94-96,117-120.
    [31] Zhang H, Tian S J, Gao Y M, et al. CFD-Based Optimal Design of Duct Nets in Hydraulic Manifold Block[J]. Journal of WuhanUniversity of Technology, 2006(S2):621-625.
    [32] Cao Y N, Tian S J, Wang Y A, et al. Study on Simulation Method of Pipeline Networks Dynamic Characteristic in Hydraulic Manifold Block[J]. Journal of Do nghua Univers ity, 2008,25(6):659-663.
    [33]高卫国,牛文铁,张大卫.基于多智能体的液压集成块智能设计[J].计算机工程与应用,2010,46(9):55-58.
    [34]李尧忠,谢友室.液压集成块三维CAD系统研究[J].航空工艺技术,1996,(4):22-23.
    [35]周惠友,钟廷修.液压集成块的CAD设计[J].计算机辅助设计与制造,2000,(12):34-36.
    [36] Wu Z Y, Chen A G, Fang Y W, et al. The study of subdivision driving method of pulse width modulation of fixed frequency of power stepping motor[C]. International Academic Publishers, 1999:603-606.
    [37] Li G Q, Meng Z P, Ma F S, et al. Calculation of stratum surface principal curvature based on a moving least square method[J]. Journal of China University of Mining & Technology, 2008,18(1):59-63.
    [38] Gu X Q, Kang H W, Cao H X. The least-spuare method in complex number domain[J]. Progess in Natural Science. 2006, 16(3):307-312.
    [39]李潮锐.实验数据处理方法的合理选择[J].实验技术与管理,2006,23(4):23-27.
    [40]潘旭东,王广林.伺服阀滑阀副叠合量测试技术中的数据处理方法[J].宇航计测技术,2005,25(4):11-15.
    [41]陈玉华,林来宾.测量系统重复性误差和重现性误差的分析方法[J].电子质量,2007,(11):53-55.
    [42]安卫.精度与重复性的区别[J].航空精密制造技术,1997, 33(3):24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700