用户名: 密码: 验证码:
汽车自动离合器接合过程控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动变速器是汽车变速器的发展方向,机械自动变速器AMT具有成本低、结构简单、传动效率高、经济性好的特点,对现有手动变速器改动小,易于产业化开发,是一种特别适合我国国情的自动变速器。自动离合器是AMT系统最重要的一个功能模块,也是AMT控制的难点和核心。同时它也可以单独作为一个产品开发,同手动变速器相比,自动离合器可大大减轻驾驶强度,提高驾驶舒适性及安全性。自动离合器控制难点在于离合器最佳接合规律的制定和对于离合器接合规律的准确跟踪,目前这两方面的研究均不太成熟,本文主要围绕这两个大的方面进行了自适应控制策略仿真以及试验研究,最后针对试验样车开发了自动离合器控制系统,并进行了相关的道路试验。
     1)分析了现有离合器驱动机构的优缺点,在此基础上设计了一种新的电动式驱动机构,采用蜗卷弹簧进行力矩补偿,可以减轻驱动电机的负荷并改善系统的动态性能;采用成熟传感器作为位置传感器,并设计有机械限位机构。分析了蜗卷弹簧机构的设计方法。建立了离合器、驱动机构和电机一体化的动力学模型,为离合器位置跟踪控制器的设计打下了理论基础。
     2)利用电涡流测功机系统测取了DA465Q发动机的速度特性,利用数据拟合方法建立了发动机转矩数学模型。建立了车辆传动系统动力学仿真模型。分析了影响离合器接合规律的因素,根据离合器起步控制目标,提出了一种改进的发动机局部恒转速控制策略,作为离合器起步总体控制原则。针对发动机恒转速控制实现问题,提出了一种模糊控制和规则协调控制相结合的控制策略。以节气门开度、发动机转速相对偏差及发动机转速变化率为控制量,设计了模糊控制算法;以最低接合转速、离合器输入输出转速差和离合器输出轴转速为辅助控制量,设计了调整规则。多种起步工况的仿真试验表明所提出的控制策略具有较好的控制效果和较强的适应性,为自动离合器控制软件的开发提供了理论依据。
     3)针对离合器磨损补偿问题,提出了一种空行程自学习补偿控制策略,利用离合器磨损后扭矩传递特性相对不变的特点来在线检测空行程结束点的位置,该策略简单易行,具有较强的实用性。
     4)针对转速信号的滤波问题,提出了一种自适应中值决策滤波和巴特沃思滤波相结合的滤波算法,利用自适应中值决策滤波滤除较大的脉冲干扰,利用巴特沃思滤波器进行平滑滤波。试验结果表明,同普通中值滤波和单纯的FIR滤波相比,该滤波算法能够利用最小的滤波窗口滤除大脉冲干扰,同时具有较好的平滑性,能够实现快速、准确滤波。
     5)离合器位置跟踪控制是一个较复杂的非线性控制问题,本文利用神经元控制理论,设计了具有前馈控制作用的增益可调整离合器位置神经元自适应PID控制器。利用神经元的自学习功能实现权系数的自动调整,利用前馈控制增强控制器的动态性能,利用PSD算法实现增益的自动调整。试验表明,它能够实现离合器位置的准确跟踪,位置跟踪动、静态误差小,另外,它能够适应离合器负荷和目标接合速度的非线性变化,同时能够适应系统参数的变化,表现出了良好的鲁棒性,可以满足离合器位置跟踪控制要求。
     6)以infineon XC164CS高性能16位单片机为核心,针对样车设计了自动离合器控制器,根据车辆运行工况和控制策略编写了控制软件。为方便系统的调试,开发了自动离合器辅助调试软件。在样车上进行了多种工况的起步试验和换档试验,试验表明车辆在各工况下均能顺利起步,平地起步时车辆起步平稳,发动机转速波动小,且能充分体现驾驶员意图;坡道起步时,能够防止车辆后溜与发动机熄火,表明控制系统对不同工况均具有较好的适应性。目前样车行驶已经超过了1.5万公里,系统运行良好,车辆舒适性和安全性均达到要求,取得了较好的成效。
Automatic transmission is the development tendency of transmission for vehicle. Automatic mechanical transmission (AMT) has many merits such as low cost, simple structure, high transmission efficiency and good fuel mileage; moreover it needs few changes with the structure of present manual transmission, so AMT is a promising transmission which is suitable for the situation of our country. Automatic clutch is the most important module of AMT and the core and difficulty of ATM control. At the same time, automatic clutch can be developed as an independent production, which can decrease driving intension and improve comfort and safety of driving compared with manual transmission. The control difficulty of automatic clutch focuses on two aspects: how to figure out the optimum engagement rule and how to track the target engagement position precisely. The present researches on them are not mature enough. Aiming the two problems mentioned before, adaptive control strategies were deeply studied. Finally, aiming at a sample car automatic clutch control system was developed and long terms experiments were carried out.
     1) The merits and shortcomings of clutch driving mechanism existing were analyzed and a new driving mechanism based on DC motor was designed. In the scheme a whirl spring was adopted to compensate load toque, by which the load of motor can be reduced and system’s dynamic performance will be improved. Additionally, a mechanical limited mechanism was devised. The design method of whirl spring mechanism was represented in detail. Furthermore, the integrated dynamic model of mechanism including clutch, worm reduction box, compensating spring and motor was established, which is the theoretical foundation of position tracking control.
     2) Utilizing eddy current dynamometer system, the steady load characteristic of DA465Q engine was measured, and the mathematical model of engine torque was established by way of data fitting method. Moreover the dynamic simulation model of transmission system of vehicle was established. The factors influencing clutch engagement were analyzed. According to the control aim of starting, an improved strategy of constant engine speed in part process is proposed as a total control principle. For the realization of the strategy, a compound control strategy combining fuzzy control and rule coordinating control is proposed. Throttle opening, engine speed relative deviation and engine speed rate were chosen as control parameters to construct fuzzy algorithm, while the minimum engine speed for engaging, the difference of input and output axis speed of clutch and out axis speed of clutch were chosen auxiliary control parameters to design rule controller. The starting simulation results of diverse conditions indicate that the strategy had good control effect and good adaptability, and it provided the theoretical gist for the control software design.
     3) A self-learning compensating strategy was put forward to solve the problem of clutch abrasion. The position of unloaded displacement termination point was measured dynamically on line by using the character that the torsion transmission characteristic of clutch kept relatively constant. The method is feasible and practical.
     4) A compound filtering method based on self-adaptive median decision filter and IIR filter was proposed to solve the problem of rotation speed signal filtering. Self-adaptive median decision filter was used to filter the big impulse disturbing signal and low order butterworth filter was used to smooth the signal. The experiment results show that the compound filtering method can accurately filter the singular value with the smallest filtering window under big density disturbance and has good smoothing ability compared with common medium filter and pure FIR filter. Real-time and accurate filtering can be implemented.
     5) Accurate and quick position tracking of automatic clutch is difficult on account of its nonlinear characteristic. In this subject a neuron adaptive PID controller with feedforward and adjustable gain was designed. The feedforward control was able to accelerate the response of controller, the weight of neuron was adaptively adjusted by self-study function, and PSD algorithm was proposed to adjust its gain. The clutch position tracking experiments showed that the controller could adapt the nonlinear change of clutch load and target engaging speed with small position error. This indicated that the controller had good robustness and can meet position tracking control command.
     6) The electronic control unit (ECU) of automatic clutch was developed for the sample car based on infineon XC164CS microcontroller. According to vehicle’s running conditions and control strategy, the control software was developed. Moreover, an auxiliary debugging software was developed based on VB for convenience to debug. The control system starting and shift experiments under diverse condition were carried out on the sample car. The experiments showed that the vehicle can start successfully on no matter flat road or slope road. While starting on flat road, the vehicle started smoothly according to driver’s intention with low engine speed fluctuating; while starting on slope it can prevent vehicle from countermarching and engine halting. This indicates that the automatic clutch control system has good performance. Until now the sample car has traveled over 15,000 km, and the comfort and safety is satisfying, which indicates that the control strategy is effective.
引文
[1]刘钊,黄宗益,李庆.轿车用自动变速器的发展动态[J].传动技术,2000, (1): 1~8.
    [2]苏光大,左永荣.自动变速器综述[J].汽车与控制,1999, 27(2): 85~88.
    [3]葛安林.变速器的自动控制系统[J].汽车技术,2002, (1): 1~4.
    [4]王旭东.汽车电子控制装置与应用[M].机械工业出版社,2007: 120~150.
    [5]张泰岭,过学迅,吴涛.汽车自动变速器在中国的发展现状及前景[J].汽车研究与开发,1996, (6): 7~10.
    [6]周有强,崔学良,董志峰.机械无级变速器发展概述[J].机械传动,2005, 29(1): 65~68.
    [7]孙龙林,何仁.汽车无级变速(CVT)技术的发展概况与未来趋势[J].世界汽车,2001, (2): 4~6.
    [8] Hendriks E, Heegde P, Prooijen V T. Aspects of a Metal Pushing V-belt for Automotive Application[J]. SAE Tech Paper Series, 881734, 1988: 1311~1321.
    [9]王旭东,张仁海,周美兰.干式复合带无级自动变速器系统与速比电机控制策略的研究[J].汽车技术,2004, (5): 4~7.
    [10]葛安林.车辆自动变速理论与设计[M].机械工业出版社,1993: 220~250.
    [11]葛安林.电控机械式自动变速器(AMT) [J].汽车技术,2001, (10): 1~4.
    [12]周云山,于秀敏.汽车电控系统理论与设计[M].北京理工大学出版社,1999:224~283.
    [13]梁珍.自动换挡机械式变速器(AMT)在欧洲5大品牌载货汽车上的应用[J].商用汽车,2002, (8): 58~60.
    [14]杨志刚,曹长修,黄建明.智能控制技术在汽车AMT中的应用[J].重庆交通学院学报,2002, 21(4): 110~113.
    [15]黄建明.机械自动变速器的控制策略研究[D].重庆:重庆大学, 2004: 1~15.
    [16] Yoshimura, A Hirako. Automated Mechanical Transmission Control[J]. SAE Paper 861052, 1986: 870~876.
    [17] Jef Daniels. Semi-automatic Transmission[J]. Automotive Engineering, 1997 (2): 29-31.
    [18] Tatsuyuki Ohashi, Syouji Asatsuke, Hiroshi Moriya. Honda’s 4 Speed AllClitch Automatic Transmission [J]. SAE Paper 980819, 1998: 1~9.
    [19] A Crowther, N Zhang, D K Liu, et al. Analysis and Simulation of Clutch Engagement Judder and Stick-slip in Automotive Powertrain Systems. Proceedings of the Institution of Mechanical Engineers[J]. 2004, 218: 1427~1445.
    [20] N Narumi, H Suzuki, R Sakakiyama. Trends of Powertrain Control [J], SAE Paper 901154, 1990: 1295~1305.
    [21] Horiuch K. Isuzu NAVAI systems for buses and trucks[R]. Isuzu Technical Report, 1984.
    [22] Robert Fischer, Georg Schneider. The XSG Family: Dry Clutches and Electric Motors as Core Elements of the Future Automated Gearbox[J]. Luk Symposimu, 2002: 145~160.
    [23] Akira Watanabe. Microcomputer Mechanical Clutch and Transmission Control[J]. SAE paper 840055, 1984: 1~10.
    [24] Burkhard Pollak. Electro-Mechanical Actuators Shifting Transmissions Into Gear[J]. Luk Symposimu, 2002: 173~183.
    [25] Hitoshi Kasai. A Unique Development Method for Microcomputer Controlled Mechanical Clutch and Transmission[J]. SAE paper 860599, 1986: 12~18.
    [26] Gerhard Wagner. Improvement of Fuel Economy in Passenger Cars Using New Transmission Concepts[C]. Global Powertrain Congress on Advanced Transmission/Drivetrain Systems, 2002: 61~66.
    [27] Han Sang Jo, Yeong Park, Jang Moo Lee, et al. A Study on the Improvement of the Shift Characteristics for the Passenger Car Automatic Transmission[J]. Vehicle Design, 2000, 23(3): 307~328.
    [28] Shiiba, Taichi, Suda. Development of driving simulator with full vehicle model of multibody dynamics[J]. JSAE Review, 2002, 23(2): 223~230.
    [29] Burkhard Kremmling, Robert Fischer. The Automated Clutch-The new LuK ECM[R]. Technic report of Luk Co., 1994: 158~175.
    [30] Furukawa H, Hagiwara K, Fujita M, et.al. Robust Control of an Automatic Transmission System for Passenger Vehicles[C]. Proceedings of the 3rd IEEE Conference on Control Applications, New York, USA, 1994: 397~402.
    [31]葛安林,李焕松,武文治,等.动态三参数最佳换档规律的研究[J].汽车工程,1992, 14(4): 239~246.
    [32]申水文,张建武,葛安林,等.模糊自适应滤波技术在AMT车辆信息处理中的工程应用[J].信号处理,1998, (9): 279~284.
    [33]习纲,张建武,陈俐.汽车AMT离合器的非线性滑模控制[J].中国机械工程,2003, 13(2): 171~174.
    [34]杨志刚.汽车自动变速系统智能控制方法研究[D].重庆:重庆大学,2003: 20~25.
    [35]刘振军,秦大同,胡建军.重型车辆自动变速技术及发展趋势[J].重庆大学学报,2003, 26(10): 10~14.
    [36]何忠波,白鸿柏.AMT技术的发展现状与展望[J].农业机械学报,2007, 38(5): 181~186.
    [37] Jonas Fredriksson, Bo Egardt. Nonlinear control applied to gearshifting in automated manual transmissions[C]. Proceedings of the 39th IEEE Conference on Decision and Control, 2000: 210~213.
    [38]程东升.电机驱动自动离合器接合过程的动力学特性及控制研究[D].上海:上海交通大学,2003: 85~90.
    [39]孙承顺.汽车自动离合器控制系统快速开发研究[D].上海:上海交通大学,2003: 45~55.
    [40] David J, Natarajan N. Design of an optimal clutch controller for commercial trucks[C]. Proceedings of the 2005 American Control Conference, 2005: 1599~1606.
    [41] Morselli R, Zanasi R, Cirsone, et al. Dynamic modeling and control of electro-hydraulic wet clutches[C]. Proceedings of 2003 IEEE Conference on Intelligent Transportation System, 2003: 660~ 665.
    [42]叶明,秦大同,刘振军.直流伺服电机驱动的自动离合器控制[J].机械设计与研究,2003, 19(2): 35~37.
    [43] Huifang Kong, Chongwei Zhang. A Research of Fuzzy Control Technology on AMT Vehicle Clutches[C]. Proceedings of the 6th world congress on intelligent control and automation, 2006: 8537~8539.
    [44]李志伟,李翠芬,杜志岐.电机驱动式AMT离合器接合控制研究[J].车辆与动力技术,2006, (3): 13~15.
    [45]刘锦升.自动离合器控制装置:中国,CN96239207.3[P]. 1999-02-10.
    [46]大连锦华汽车电子有限公司.电控电动机械式自动变速装置:中国,CN99206123.7[P]. 2002-02-02.
    [47]张建武,孙承顺,叶晓峰.自动离合器助力机构:中国,CN 03150617.8 [P]. 2004-07-28.
    [48] Lhomme W, Trigui R, Bouscayrol A, et al. Validation of Mechanical Transmission with Clutch using Hardware-In-the-Loop Simulation[C]. Proceedings of 2007 IEEE Vehicle Power and Propulsion Conference, 2007: 425~431.
    [49] Szadkowski A, McNerney G J. Clutch engagement simulation: engagement with throttle[J]. SAE Paper 922483, 1992: 1~13.
    [50] Sumdida S, Nobumoto K. Vehicle Startup Control System Using Friction Clutch. JSAE Review, 1985, (4): 48~58.
    [51] Luigi Glielmo, Luigi Iannelli, Vladimiro Vacca, et al. Speed control for automated manual transmission with dry clutch[C]. Proceedings of the 43th IEEE conference on decision and control. 2004: 1709~1714.
    [52] Quan Zheng, Krishnaswamy Srinivasan, Giorgio Rizzoni. Transmission shift controller design based on a dynamic model of transmission response[J]. Control Engineering Practice , 1999: 1007~1014.
    [53] Centea D, Rahnejat H, Menday M T. The influence of the interface coefficient of friction upon the propensity to judder in automotive clutches[C]. Proceedings of the Institution of Mechanical Engineers, Part D: Automobile Engineering, 1999, 213(D3): 245~258.
    [54]施利克J M.借助健壮算法的自动离合器发动机与空转的闭环控制:中国,CN1086177[P]. 1994-05-04.
    [55]施利克J M.自动离合器的闭环发动机与爬行控制:中国,CN1072890[P]. 1993-06-09.
    [56]石冢松男,井上茂,上玉利恒夫.手动变速器操作研究[J].自动车研究,1984, 5(12): 35~37.
    [57] Osman K A, Higginson A M. Optimised vehicle velocity control and shift-point selection using neural networks Intelligent[J]. Engineering System Through Artificial Neural Networks, 1998, (8): 709~714.
    [58] Yang J H, Yu W H, Fu L C. Nonlinear observer-based adaptive tracking control for induction motors with unknown load[J]. IEEE Transaction on Industrial Electronics, 1995, 42(6): 579~585.
    [59] YasuoHojo, Kunihiro, Iwatsuki, et al. Toyota 5-Speed Automatic Transmissionwith Application of Modern control Theory[J].传动技术, 2001, (2): 22~27.
    [60] Jo Han-Sang, Park Yeong-Il, Lee Jang-Moo, et al. Study on the improvement of the shift characteristics for the passenger car automatic transmission[J]. International Journal of Vehicle Design, 2000, 23 (3): 55~59.
    [61] Shuiwen Shen. Study on Intelligent Shift strategy with the man-machine Technology [J]. SAE paper 973279, 1997: 665~670.
    [62] Jae-Bok Song, Kyung-Seok Byun. Throttle Actuator Control System for Vehicle Traction Control[J]. Mechatronics 9, 1999: 110~115.
    [63] Pietro Dolcini, Hubert Bechart, Carlos Canudas, et al. Observer-based optimal control of dry clutch engagement[C]. Proceedings of the 44th IEEE conference on decision and control, 2005: 440~445.
    [64]葛安林,姜家吉,武文治,等.机械式自动变速器及其动态模拟研究[J].汽车工程,1990, 12(3): 35~43.
    [65]葛舜,葛安林,武文治.自动变速器离合器的模糊控制[J].汽车技术,1996,(6): 7~12.
    [66] H Tanaka, H Wada. Fuzzy Control of Clutch Engagements for Automated Manual Transmission[J]. Vehicle System Dynamics, 1995, (24): 365~376.
    [67]申水文,张建武,罗邦杰,等.AMT离合器的综合模糊控制[J].汽车工程,1997, 19(6): 347~351.
    [68]雷雨龙,葛安林,李永军.离合器起步过程的控制策略[J].汽车工程,2000,22(4): 266~269.
    [69]陈俐,张建武.自动离合器的自适应最优控制[J].上海交通大学学报, 2000, 34(10): 1312~1316.
    [70]程东升,顾力强.基于反馈线性化的汽车AMT离合器滑模控制[J].汽车工程,2002, 24(5): 384~386.
    [71]黄建明,曹长修,苏玉刚.汽车起步过程的离合器控制[J].重庆大学学报(自然科学版),2005, 28(3): 91~94.
    [72] Haiou Liu, Huiyan Chen, Huarong Ding. Adaptive clutch engaging process control for automatic mechanical transmission[J]. Journal of Beijing Institute of Technology, 2005, 14(2): 170~174.
    [73]林世裕.膜片弹簧离合器的设计制造[M].东南大学出版社,1995: 220~230.
    [74]房法成.汽车离合器扭振减振器的工作特性[J].吉林工业大学学报,1995, 25(4): 91~95.
    [75]周尚廉.卷闸门平面蜗卷弹簧的优化设计[J].新技术新工艺,1988, (4): 32~34.
    [76]王峻峰,赵英俊,杨克冲.接触式平面蜗卷弹簧的改制代用[J].机械设计与制造工程,1995, (6): 37~39.
    [77]黄维钢.电控离合器控制系统的研究[D].上海:上海交通大学,1997: 30~40.
    [78]李永军,陈树星,崔勇.机械式自动变速器起车过程综合控制[J].汽车工程,2003, 25(2): 178~181.
    [79] Xu Z, Ioannou P. Adaptive throttle control for speed tracking[J]. Vehicle System Dynamics, 1994, 23(4): 293-306.
    [80] Sun Dongye, Qin Datong, Wang Hongyan. Study on Control Strategy of Clutch Starting for Car with a Metal Pushing Belt-planetary Gear Continuously Variable Transmission System[J]. Chinese Journal of Mechanical Engineering, 2002, 15(1): 43~47.
    [81]周美兰,谢先平,王旭东.汽车湿式离合器模糊控制策略研究及仿真[J].电机与控制学报,2005, 9(5): 55~58.
    [82]杨志刚.汽车自动变速系统智能控制方法研究[D].重庆:重庆大学,2003: 30~35.
    [83]刘振军.基于人-车-路环境下的汽车电控机械自动变速智能控制研究[D].重庆:重庆大学,2005: 42~58.
    [84] Franco Garofalo, Luigi Glielmo, Luigi Iannelli, et al. Smooth engagement for automotive dry clutch[C]. Proceedings of the 40th IEEE conference on decision and control, Orlando, Florida USA, 2001: 529~534.
    [85] Tang Xiaqing, Hou Chaozhen, Chen Yunchuang. Study of Controlling Clutch Engagement for AMT Based on Fuzzy Logic[J]. Journal of Beijing Institute of Technology, 2002, 11(1): 45~49.
    [86]王云成,施国标,于海涛.机械式自动变速器系统的离合器起步模糊控制[J].农业机械学报,2001, 31(6): 32~35.
    [87] Serrarens A, Dassen M, Steinbuch M. Simulation and control of an automotive dry clutch[C]. Proceedings of the 2004 American Control Conference, 2004: 4078~4083.
    [88]孙冬野,秦大同,王玉兴.自动车辆无级变速传动系统模糊控制策略研究[J].农业机械学报,2001, 32(3): 7~10.
    [89]王云成,施国标,康志东.模糊控制在AMT系统发动机转速控制中的应用[J].内燃机工程,2000, (2): 11~16.
    [90]孙冬野,秦大同.汽车离合器局部恒转速起步自动控制研究[J].机械工程学报,2003, 39(11): 108~112.
    [91] Shen Shuiwen, Yan Guozheng, Zhang Jianwu. An intelligent controller for the vehicle standing starts based on the rules and knowledge[J]. SAE Paper 973280, 1997: 41~46.
    [92] Luigi Glielmo, Francesco Vasca. Engagement control for automotive dry clutch[C]. Proceedings of American control conference, 2000: 1016~1018.
    [93]杨麟祥,岳继光.汽车自动变速箱的模糊控制研究[J].控制工程,2004, 11(3): 220~223.
    [94] Sun Dongye, Qin Datong, Wang Hongyan. Study on Control Strategy of Clutch Starting for Car with a Metal Pushing Belt-planetary Gear Continuously Variable Transmission System[J]. Chinese Journal of Mechanical Engineering, 2002, 15(1): 43~47.
    [95] Hou Changjiu, Ruan Da. Fuzzy control rules extraction from perception-based information using computing with words[J]. Information Sciences, 2002, 142(4): 275~29.
    [96]韩启纲,吴锡祺.计算机模糊控制技术与仪表装置[M].中国计量出版社,1999: 75~149.
    [97]何忠波,李国章,张培林.起步过程中离合器半接合点的试验研究[J].军械工程学院学报,2002, 14(2): 43~47.
    [98]何忠波,席军强,陈慧岩,等.电机驱动式自动离合器起步控制试验研究[J].农业机械学报,2003, 34(6): 25~29.
    [99]程军.亿恒(西门子)C166系列16位单片机原理与开发[M].北京航空航天大学出版社,2001: 25~30.
    [100]吴志红,朱元,王光宇.英飞凌16位单片机XC164CS的原理与基础应用[M].同济大学出版社,2006: 20~40.
    [101]卢亚斌.柴油机瞬时转速的提取和畸点的滤除[J].农机化研究,2007, 10: 198~199.
    [102]闫兵,张吉喜,董大伟.一种滤除内燃机曲轴瞬时转速信号中畸点的方法[J].内燃机工程,2001, 22(1): 7~10.
    [103] Eng How-lung, MaKai-kuang. Noise adaptive soft-switching median filter[J]. IEEE Transactions on Image Processing, 2001, 10(2): 242-251.
    [104] Zhang X M, Xu B S, Dong S Y. Adaptive switching median filter for the removal of impulse noise[J]. Opto-Electronic Engineering, 2006, 33(6): 78~83
    [105]张旭明,徐滨士.去除脉冲噪声的自适应开关中值滤波[J].光电工程,2006,33(6): 79~83.
    [106] Yan B, Zhang J X, Dong D W. A Method for filtering out distorted points from the crankshaft instantaneous rotation speed signal of engines[J]. Chinese Internal Combustion Engine Engineering, 2001, 22(1): 7~10.
    [107] Zhang F X, Fu Y L, Wang SH G. Optimization design method of IIR digital filters for robot force/position sensors[J]. Journal of Harbin Institute of Technology, 2007, 39(3): 391~393.
    [108] Sun T, Neuvo Y. Detail-preserving median based filters in image processing[J]. Pattern Recognition Letters,1994, 15(4): 341~347.
    [109]胡旺,冯伟森,李志蜀.针对脉冲噪声的双窗口自适应中值滤波方法[J].四川大学学报(工程科学版),2006, 38(4): 30~35.
    [110]方小明,姚善化.基于MATLAB辅助设计IIR滤波器的方法研究[J].仪表技术,2008,(3):30~34.
    [111]王宏,于泳,徐殿国.永磁同步电动机位置伺服系统[J].中国电机工程学报,2004, 24(7): 151~155.
    [112] Lin F J, Cui S L. Adaptive fuzzy sliding-mode control for PM synchronous servo motor drivers[J]. IEEE Proc control theory Appl, 1998, 145(1): 63~72.
    [113]陈俐,张建武,黄维纲.汽车电控离合器的反馈线性化控制[J].上海交通大学学报,2000, 34(3): 384~388.
    [114]孙承顺,张建武.反馈线性化与滑模控制方法在汽车AMT中的应用[J].系统仿真学报,2004, 16(4): 630~633.
    [115]赵和平,刘奋,张建武.自动离合器的变结构控制方法研究[J].农业机械学报,2002, 33(2): 24~27.
    [116]程东升,张建武.车辆AMT离合器离散变结构控制[J].农业机械学报,2003, 34(1): 31~34.
    [117] Umit Ozguner, Sulgi Hong, Yaodong Pan. Discrete-time Sliding Mode Control of Electronic Throttle Valve[C]. Proceedings of the 40th IEEE Conference on Decision and Control, 2001: 1819~1824.
    [118] Rigatos G G, Tzatestas C S, Tzatestas S G. Mobile robot motion control in partially unknown environment using a sliding-mode fuzzy-logic controller[J].Robotics and Autonomous systems, 2000, (33): 1~11.
    [119]刘美俊.基于改进学习算法的模糊神经网络控制系统[J].中国电机工程学报,2007, 27(19): 87~92.
    [120]吴晓刚,王旭东,余腾伟.电磁离合器电流的神经网络整定PID控制[J].电机与控制学报,2007, 11(4): 335~335.
    [121] Yang Y,Vilathgamuwa D M,Rahman M A. Imlementation of an artificial neural network based real-time adaptive controller for an interior permanent magnet motor driver[J]. IEEE Transactions on energy conversion, 2003, 39(1): 96~10.
    [122] Rahman M A,Hoque M A.On-line adaptive artificial network based vector control of permanent magnet synchronous motors[J]. IEEE Trans on Energy Conversion, 1998, 30(4): 311~318.
    [123]李士勇.模糊控制-神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996: 56~75.
    [124]孙宇新,刘贤兴.神经元控制器在数字调速系统中的实现和应用[J].电工技术学报,2005, 20(3): 85~89.
    [125]彭天好,徐兵,杨华勇.变频泵控马达调速系统单神经元自适应PID控制[J].中国机械工程,2003, 14(20): 1780~1783.
    [126]祝轩,侯榆青,路平立,等.基于单神经元PID控制器的闭环控制系统[J].西北大学学报,2004, 33(1): 413~416.
    [127] Senjiyu T, Miyazato H, Yokoda S, et al. Position control of ultrasonic motors using neural network[C]. Proc. IEEE Int. Symp. Industrial Electronics, 1996: 254~259.
    [128] Maohua Zhang, Changliang Xia, Yang Tian, et al. Speed Control of Brushless DC Motor Based on Single Neuron PID and Wavelet Neural Network[C]. 2007. IEEE International Conference on Control and Automation, 2007: 617~620.
    [129]游文明.神经元自适应变结构PSD控制算法研究[J].仪器仪表学报,2005, 26(6): 641~643.
    [130]焦斌,林家骏.直流伺服系统中单神经元PSD应用的改进[J].华东理工大学学报,2003, 29(5): 518~521.
    [131]陆利忠.测控系统中采样数据的预处理[J].测控技术,2000, 19(8): 15~16.
    [132]马明建,周长城.数据采集与处理技术[M].西安交通大学出版社,1998: 174~232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700