用户名: 密码: 验证码:
阿尔金构造带西段加里东期山根的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在阿尔金构造带西段,在原认为主要由高绿片岩相—低角闪岩相(下元古界)的阿尔金群中,发现有榴辉岩及麻粒岩相的孔兹岩系,它们分别分布在阿尔金山的北坡和南坡。本论文通过对榴辉岩及孔兹岩系的岩石学、矿物学、地球化学、同位素年代学及变形作用的研究,提出它们为阿尔金构造带西段加里东期陆陆碰撞造山作用的产物,并探讨了加里东山根的形成和演化过程,榴辉岩及孔兹岩系的区域构造意义及阿尔金断裂可能的位移量。
     阿尔金构造带西段的榴辉岩呈透镜状产于长英质片麻岩中,它主要经历了进变质的角闪岩相(P=6.04-8.70Kb,T=615-690℃)、峰期的榴辉岩相(P>15Kb,T=700-850℃)及减压过程中的麻粒岩相(P=11-14Kb,T=750℃)及角闪岩相(P=6.3-9.5,T=619-738℃)的变质作用,构成一个顺时针的PT轨迹。榴辉岩的稀土元素、微量元素及Sm-Nd同位素研究显示其原岩主要为过渡型的大洋拉斑玄武岩。选择保存较好的榴辉岩分别进行Sm-Nd和U-Pb的同位素年代学测定,其中测得全岩—石榴石—绿辉石的Sm-Nd等时线年龄为500±10Ma;四个颗粒的锆石U-Pb同位素测定获得的表面年龄很好地落在一致线上,并得出其权重平均值为503.9±5.3Ma。两种方法获得的基本一致的年龄数据代表了榴辉岩的峰期变质时代。榴辉岩及相关地质体的韧性形作用可分为三期,第一期变形以从N向S逆冲为特征,变形机制为简单剪切,代表造山带根部榴辉岩相—高压麻粒岩相条件下的变形作用;第二期变形作用为SN向挤压、近EW向拉伸的共轴变形,形成近EW向的拉伸线理,其变形条件为榴辉岩减压过程中的中高压角闪岩相,且在不同构造层次上产生不同的变形构造;第三期变形在含榴辉岩的深部单元表现为垂向挤出,变形条件为中低压角闪岩相,而在滑脱面之上的浅部单元为SN向的伸展作用。
     阿尔金构造带西段的孔兹岩系的主要由夕线石榴黑云二长片麻岩、石榴黑云二长片麻岩、含石墨夕线石榴黑云片岩等富铝的片麻岩(片岩)类和夹于片麻岩(片岩)中的石榴角闪二辉麻粒岩,并伴随有夕线榴长石石英岩及含石墨大理岩。岩石学及地球化学的初步研究表明富铝的片麻岩(片岩)的原岩为富铝的泥质和泥砂质沉积岩,所夹基性麻粒岩的原岩可能为大陆拉斑玄武岩,这套孔兹岩系的原岩可能形成于大陆边缘环境。孔兹岩系经历了麻粒岩相的变质作用,矿物的温压估算得到其峰期变质温度为700-850℃,压力为8-12Kb。岩石中变质锆石的U-Pb及Pb-Pb同位素测定获得447-462Ma的年龄值,代表其麻粒岩相的变质作用时代,富铝片麻岩中含继承组分的锆石还获得较老的上交点年龄,它可能代表其沉积岩原岩源区的年龄。孔兹岩系的变形作用可分为三期:第一期变形以SN向挤压、近EW向拉伸的共轴变形为特征;第二期变形表现为为从NW向SE的逆冲剪切作用;第三期变形则可能与阿尔金主断层的左行走滑活动有关。
     榴辉岩及孔兹岩系的447-503Ma的峰期变质年龄显示了阿尔金西段加里东期山根的存在,它的形成和演化经历了a:早期与榴辉岩形成有关的板块的俯冲和山根的形成,b:与榴辉岩的减压作用及孔兹岩系的形成有关的SN向挤压、EW向拉伸及c:晚期的折返作用——造山带根部的垂向挤出及较浅层次的伸展及扩展作用。
     通过阿尔金构造带西段的榴辉岩及孔兹岩系与柴北缘构造带的榴辉岩及麻粒岩相岩石的初步对比,认为它们可能同为加里东期的陆陆碰撞带的一部分,后来被阿尔金断裂的左行平移作用所切割,结合阿尔金构造带其它地质体与祁连造山带的对比,粗略地估计其位移大约在400—500km之间。
At western segment of Altyn Tagh tectonic belt, The eclogites and khondalite series were recognized in Altyn Group (Early Proterozoic?) Which had been thought prviously that it consists of high greenschist facies and lower amphibolitic facies metamorphic rocks. They crop out at the northern slope and southern slope of Altyn Tagh Mountains respectively. The purpose of this thesis is twofold. One is to present the Petrology, geochemistry , geochronologyl, and ductile deformation on eclogites and Khondalite series. On the basis of these, the second objective is to propose that the eclogite and Khondalite series resulted from Caledonian continent-continent collision, and discuss the formation and evolution of Caledonian orogenic root, the regional tectonic significance of eclogite and khondalite series and possible displacement of Altyn Tagh fault.
     The eclogites at western segment of Altyn Tagh tectonic belt occur as lens or boundins within quratz-feldspathic gniesses characterized by amphibolite-facies parageneses. It mainly experienced the prograde amphibolite-facies stage (P=6.06-8.70kb, t=615-690℃) ,peak eclogite-facies stage (P>15kb,T=700-850℃), granulitic facies stage (P=11-14kb,T=750℃) and ampbiolite-facies stage (P=6.3-9.5kb,T=619-738℃) during decompression. The trace element, rare earth element and Sm-Nd isotopic data suggest that most of the eclogites have protolith feature resembling T-type (transitional type) MORB (mid-ocean ridge basalt) . The well-preserved eclogite is selected for Sm-Nd and U-Pb isotopic dating. The Sm-Nd isotopic data yield an Whole rock-garnet-omphacite isochron of 500±10Ma age.The U-Pb isotopic measurements of zircons show that the four grain populations are near concordant and are well plotted on concordia curve, giving a weighted mean age 503.9±5.3Ma. Two kinds of methods obtain a similar age which reveals the peak metamorphic age of eclogites. Three stages of ductile deformation were recognized in eclogites and terrane related to eclogites . The first stage of deformation is characterized by thrusting from north to south with a deformation mechanism of simple shear, representing the deformation of orogenic root under the condition of eclogite-facies to high pressure granulite facies metamorphism. The second stage of deformation show coaxial deformation mechanism with SN compression and parallel-orogen EW stretching under the condition of middle-high pressure ampbiolite facies metamorphism. The third stage of deformation caused vertical extrusion of the under unit including eclogites and SN extension and thining of upper units.
     The Khondalite series are characterized by aluminum-rich gneisses(schists) consisting of sillimanite-garnet-biotite-monzonite gneiss, garnet-biotite-monzonite gniess, graphite-sillimanitebiotite schist, and garnet-amphibole two-pyroxene granulites occuring as lenses and layers within gneisses (schists). The petrology and geochemistry indicate that the protoliths of aluminum-rich gneisses(schists) are aluminum-rich pelitic and pelitic arenaceous sedimentary rocks, the protoliths of basic granulites are continental tholeiitic basalts. Therefore, the khondalite series may be produced at continental margin. They had suffered granulitic facies metamorphism with the peak temperatures of 700-850℃and the pressures of 8-12Kb.The U-Pb and Pb-Pb isotopic dating of zircons provided the ages of 447-462Ma representing the ages of peak granulitic metamorphism. The U-Pb dating of detrital zircons from aluminum-rich gneisses yielded older upper intercept ages which reflect the times of older materials derived from sourse rocks of the gneiss protoliths. Three stages of deformation can be observed in khondalite series.The first stage of deformation is characterized by co-axial SN compression and EW stretching under the condition of granulite facies metamorphism ; The second stage of deformation is represented by thrusting from NW to SE. The third stage of deformation may be related to sinistral strikeslipping of main Altyn Tagh fault.
     The ages of 447-503Ma for eclogite and khondalite series imply the existence of Caledonian orogenic root. The formation and evolution of orogenic root include: a: the subduction, continentcontinent collision and formation of orogenic root related to the formation of eclogite; b: SN compression and EW stretching related to early exhumation of eclogite and formation of khondalite series, and c: the vertical extrusion of orogenic root and simultaneous extension and spreading of upper crust.
     The tentative comparsion between eclogites and granulite facies rocks at western segment of Altyn Tagh, and North Qaidam Mountains imply that the western segment of Altyn Tagh tectonic belt is part of the Same Caledonian continent-continent collision orogenic belt as the North Qaidam tectonic belt, and is truncated by sinistral strike-slip Altyn Tagh fault. In combination with comparsion between other terraneain Altyn tagh Mountains and Qilian Mountains,the displacement of Altyn Tagh fault is about 400-500km.
引文
王荃,刘雪亚.1976.我国西部的古海洋地壳及其大地构造意义.地质科学.(1):42—55.
    肖序常,陈国铭,朱志直.1978.祁连古蛇绿岩的地质构造意义.地质学报.52:287—295.
    左国朝,刘寄陈.1987.北祁连早古生代大地构造演化.地质科学.(1):14—24.
    左国朝等.北山地区的早古生代板块构造.地质科学.1990.(4):305—314
    许志琴,徐惠芬,张建新等.1994.北祁连走廊南山加里东俯冲杂岩地体及动力学地质学报.(1):1-14.
    车自成,刘良,刘洪福等.阿尔金地区高压变质泥质岩石的发现及产出环境.科学通报,1995,40(14):1298-1300.
    刘良,车自成,罗金海等.阿尔金山西段榴辉岩的确定及地质意义,科学通报,1996,41(14):1485-1488.
    车自成,孙勇.阿尔金麻粒岩相杂岩的时代及塔里木盆地的基底,中国区域地质,1996,1:51-57.
    刘良,车自成,王焰等.阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据,科学通报,1998,43(8):880-883
    周勇,潘裕生.茫崖-肃北段阿尔金断裂右旋走滑运动的确定.地质科学,1998,33(1):9-16.
    张治洮.1985.阿尔金断裂的地质特征.中国地质科学院西安地质矿产研究所所刊.1985.20—32页.
    郑剑东.阿尔金断裂与断裂走滑断裂,内陆地震,1988,2(2):123—130.
    郑剑东.阿尔金山大地构造及其演化,现代地质,1991,5(4):347—354.
    谢富仁,刘光勋.阿尔金断裂带中段区域新构造应力场分析,中国地震,5(3).
    国家地震局.阿尔金活动断裂带.1992.北京:地震出版社。
    丁国瑜.阿尔金断裂的古地震与分段.第四纪研究,1995,2:97—106
    崔军文等.阿尔金断裂系.地质矿产部“八五”重点深部项目研究报告,1996。
    刘训,吴绍祖,傅德荣等.塔里木板块周缘的沉积-构造演化,乌鲁木齐:新疆科技卫生出版社,1997
    沈其韩,徐惠芬,张宗清等.中国早前寒武纪麻粒岩,北京:地质出版社,1992,107-109.
    王仁民,赖兴运,董卫东等,冀西北晚太古宙碰撞带的一些证据,见钱祥麟,王仁民主编:华北北部麻粒岩带地质演化,北京;地震出版社,1994,7-20.
    许志琴,崔军文,张建新.大陆山链的变形构造动力学.北京:冶金工业出版社,1996。
    许志琴,张建新,徐惠芬等.中国主要大陆山链韧性剪切带及动力学,北京:地质出版社,1997。
    张建新,许志琴等.北祁连加里东俯冲—增生楔及动力学,地质科学,1998,33(3):290-299.
    甘肃省地质矿产局.甘肃省区域地质志.北京:地质出版社,1989.
    青海省地质矿产局.青海省区域地质志.北京:地质出版社,1991.
    新疆维吾尔自治区地质矿产局。新疆维吾尔自治区区域地质志,北京:地质出版社,1993。
    陆松年,李惠民.蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年.中国地质科学院院报,1991,22:137—146.
    李曙光,李惠民,陈移之等。大别山-苏鲁地体超高压变质年代学—Ⅱ.U-Pb同位素体系。中国科学(D辑),1997,27(3):200—206。
    刘敦一,赵敦敏.用热离子反射质谱计直接测定单颗粒锆石~(207)Pb/~(206)Pb年龄.地质论评,1988,34:206-217.
    卢良兆,徐学纯,刘福来.中国北方早前寒武纪孔兹岩系.长春:长春出版社,1996.1-86
    王中刚等.稀土元素地球化学.北京:科学出版社.1989:247-291.
    张儒瑗,丛柏林.矿物温度计和矿物压力计.北京:地质出版社,1983.73-116
    杨经绥,许志琴等,柴北缘地区榴辉岩的发现及潜在的地质意义,科学通报,1998.43(14).
    梅华林,于海峰等,甘肃北山地区首次发现榴辉岩和古元古化岗质岩石.科学通报,1988,43(19):2103-2111
    郭召杰,张志诚,王建军,阿尔会北缘蛇绿岩的Sm-Nd等时线年龄及其大地构造意义,科学通报,43(18):1981-1984.
    Abalos B.. Omphacite fabric variation in the Cabo Ortegal eclogite (NW Spain); relationships with strain symmetry during high-pressure deformation, Journal of structural geology, 1997, 19: 621-637.
    Aerden D. G. A. M.. Tectonic evolution of the Montagne noire and a possible orogenic model for syncollional exhumation of deep rocks, Variscan belt, France, Tectonics, 1998, 17 (1): 62-79.
    Ai Y. A revision of the garnet-clinopyroxene Fe~(2+)-Mg exchange geothermometer. Contrib mineral Petrol, 1994, 115: 467-473.
    Anderson T. B. and Jamtveit B.. Uplift of deep crust during orogenic extensional collapse: A model based on field studies in the Sogn-Sunnfjord region of Western Norway. Tectonics, 1990, 9: 1091-1111.
    Andersen T. B. and Osmundsen P. T.. Deep crustal fabrics and a model the extensional collapse of the southwest Norwegian Caledonides, Journal of Structural Geology, 1994, 16: 1191-1203.
    Appel P., Moller A. and Schenk V.. High-pressure granulite facies metamorphism in the Pan-African belt of eastern Tanzanian: P-T-t evidence against granulite formation by continent collision, J. Metamorphic Geol., 1998, 16: 491-509.
    Baker A. J.. Eclogitic amphibolites from the Grampian Moines, Mineralogical Magaine, 1986, 50: 217-221.
    Boundy T M, Mezger K and Essene E J. Temporal and tectonic evolution of the granulite-eclogite association from the Bergen Arcs, western Norway. Lithos, 1997, 39: 159-178.
    Brocker M. and Klemd R.. Ultrahigh-pressure metamorphicsm in the Snieznik Mountain (sudrtes, Poland): P-T constraints and geological implications, The Journal of Geology, 1996, 104: 417-433.
    Carmignani L. And Kligfield R.. Crustal extension in the Northern Apennines: the transition from compression to extension in the Alpi Apuane core complex. Tectonics, 1993, 9: 1275-1303.
    Carswell D. A. Varscian high P-T metamorphism and uplift history in the Moldanubrian Zone of the Bohemian Massif in the Lower Austria, Eur. J. Mineral., 1993, 3: 323-342.
    Carswell D. A. and O'Brien P. J.. Thermobarometry and geotectonic significance of high-pressure granulites: example from the Moldanubian zone of the Bohemian Massif in the lower Austia, Joural of Petrology, 1993, 34: 427-459.
    Catalan J. R. M., Arenas R., Garcia F. D. et al., Variscan exhumation of a subducted Palezoic continental margin: The basal units of the Ordenes Complex, Galicia, NW Spain. Tectonics, 1996, 15 (1): 106-121.
    chen N. S., Sun M., You Z. D. and Malpas J.. Well-preserved garnet growth zoning in granulite from the Dabie Mountains, central China, J. metamorphic Geol., 1998, 16: 313-222.
    Cotkin S. J.. Ingeous and metamorphic petrology if the eclogitic Seljeneset meta-anorthosite and related jotunites, Western Gneiss Region, Norway, lithos, 1997:, 40: 1-30.
    Dewey J F.. Extensional collapse of orogens. Tectonics. 1988, 7, 1123-1139.
    England P. And Molnar P.. Surface uplift, uplift of rocks, and exhumation of rocks. Geology. 1990, 18: 1173-1176.
    Dunn S. R. and Medaris J. L. D.. Retrograged eclogites in the Western Gniess Region, Norway, and thermal evolution of the portion of the Scandinavian Caledonides, Lithos, 1989, 22: 229-245.
    Ellis D J, Green D H. An experimental study of the effect of Ca upon garnet-clinopyroxence Fe-Mg exchange equilibria. Contrib Mineral Petrol, 1979, 76: 413-419.
    Gebauer D., Lappin M. A. etal. The age and origin of some Norwegian eclogites: A U-Pb zircon and REE study. Chemical geology, 1985, 52 (2): 227-248.
    Graham C. M. And Powell R. A garnet-hornblende geothermometer and application to the Pelona schists, southern California, J. Metamorph. Geol. 1984, 2; 13-22.
    Griffin W. L. and Brueckner H. K. REE, Rb-Sr and Sm-Nd studies of Norwegian eclogites, Chemical Geology, 1985, 52: 249-271.
    Hacker B. R. Wang Q. C.. Ar/Ar geochronology of ultrahigh-pressure metamorphism in the central China, Tectonics, 14: 994-1006.
    Hammerschmidt K. and Franz G.. Retrograde evolution of eclogites: evidences from microstuctures and ~(40)Ar/~(40)Ar white mica dates, Munchberg Massif, northern Bavaria, Contrib Mineral Petrol, 1992, 111: 113-125.
    Hanson A. and Chang. et al., Discovery of eclogite in the Altun Tagh Mountains, SE Tarim Basin, NW China: EOS, Trans., AGU, 76 (17), Spring Meeting, Supplement, pp. 283.
    Harley L S. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol, 1984a, 86: 359-373.
    Harley L S. The solubility of alumina in orthopyroxene coexisting with garnet in FeO-MgO-Al_2O_3-SiO_2 and CaO-FeO-MgO-Al_2O_3-SiO_2. Journal of Petrology, 1984b, 25: 665-696.
    Henry C., Michard A. and Chopin C.. Geometry and structural evolution of ultra-high-pressure and high-pessure rocks from the Dora-Maira Massif, Western Alps, Italy, Journal of structural Geology, 1993, 15; 965-981.
    Holland T J B. The reaction albite=jadeite+quartz determined experimentally in the rang 600-1200℃. Am Mineral, 1980, 65; 129-143.
    Huene R Von and Scholl D W. 1993. The return of sialic meterial to the mantle indicated by terrigeneous meterial subducted at convergent margins. Tectonophysics. 219, 163-175.
    Jamtveit B.. Metamophic evolution of the Eiksunddal eclogite complex, Western Norway, and some tectonic implicatio as, contrib Mineral Petrol, 1987, 95: 82-99.
    Janak M., O'Brien P. J., Hurai V. and Reutel C.. Metamorphic evolution and fluid composition of garnetclinopyroxene amphibolites from the Tatra Mountains, Western Carpathians, LithOs, 1996, 39: 57-79.
    Ji S. and Martibnole J.. Ductility of garnet as an indicator of extremely high temperature deformation, Journal of Stuctural Geology, 1994, 16: 985-996.
    Ji S., Zhao P. and Saruwatari K.. Fructuring of garnet crystals in anisotropic metamorphic rocks during uplift, Journal Structural of Geology, 1997, 19: 603-620.
    Klemd R.. P-Tevolution and fluid inclusion characteristics of retrograded eclogites, Munchberg Complex, Germany, Contrib Mineral Petrol, 1989, 102: 221-229.
    Klemd R. and Schmadicke E.. High-pressure mrtamorphism in the Munchberg Gneiss complex and the Erzgebirge Crystaline complex: the influence of fluid and Reaction Kinetics, Chem. Erde, 1994, 54: 241-261.
    Krogh E J.. P-Tcondition for surrounding gneisses in the Kristiansund area, Western Norway, Contrib mineral Petrol, 19813, 75: 387-393.
    Krogh E J. The garnet-clinopyroxene Fe-Mg geothermometer; a reinterpretation of existing experimental data. Contrib mineral Petrol, 1988, 99; 44-48.
    Lammerer B. and Weger M.. Footwall uplift in an orogenic wedge: the Tauern Window in the Eastern Alps of Euope, Tectonophysics, 1998, 285: 213-230.
    Liou J. G., Zhang R. Y. and Jahn B. M.. Petrology, geochemistry and isotopic data on the ultrahigh-pressure jadeite quartzite from Shuanhe, Dabie Mountains, East-central China, Lithos, 1997, 41: 59-78.
    Markl G. and Bucher K.. Proterzoic eclogite from the Lofoten islands, northern Norway, Lithos, 1997, 42: 15-35.
    Mattauer M., Intracontiental subduction, crustal-mantle decollement and crustal stacking wedge in the Himalaya and other collision belts, Geol, Soc, London, Collision tectonics, 1985.
    Meschede M.. A method of discriminating between different types of mid-ocean ridge basalts and contiental tholeiites with Nb-Zr-Y diagram. Chemical Geology. 1986, 56: 207-218.
    Messiga B. and Bettini E.. Reactions behaviour during kelyphite and symplectite formation: a case study of mafic granulites and eclogites from the Bohemian Massif, Eur. J. Mineral., 1990, 2; 125-144.
    Mezger K., Essene E. J. and Halliday A. N.. Closure temperatures of the Sm-Nd system in the metamorphic garnets, Earth and Planetary Science Letters, 1992, 113: 397-409.
    Moller C. Decompressed eclogites in the Sveconorwegian (-Grenvillian) orogen of NW Sweden: petrology and tectonic implications, J. Metamorphic Geol., 1998, 16: 641-656.
    Molnar P. Continental tectonics-in the aftermath of plate tectonics. Nature, 1988, 335 (6186): 131-137. 133.
    Molnar, P. and Tapponnier, P., Cenozoic Tectonics of Asia: Effects of Continental Tectonics. Science, 1975, 189, 419-426,
    Oberhansli R., Candan O., Dora. O. O. and Durr S. T., Eclogites within the Menderes Massif/western Turkey, Lithos, 1997, 41: 135-150.
    O'Brien P. J., Rohr C., Okrusch M. and Patzak M.. Eclogite facies relics and a multistage breakdown in metabasites of the KTB pilot hole, NE Bavaia: implications for the Variscan tectonometamorphic evolution of the NW Bohemian Massif, Contrib Mineral Petrol 1992, 112: 261-278.
    O'Brien P. J., Kroner A. and Jaechel P.. Petrological and isotopic studies on Palaeozoic high-pressure granulites, Gory Sowie Mts, Polish Studetes, Journal of Petrology, 1997, 38: 433-456.
    O'Brien P. J.. Garnet zoning and reaction textures in overprinted eclogites, Bohemian Massif, European Variscides: A record of their thermal history during exhumation, Lithos, 1997, 41: 119-133.
    Owen J. V. and Dostal J.. Prograde metamorphism and decompression of the Gfohl gneiss, Czech Republic, Lithos, 1996, 38: 259-170.
    Pearce J. A. and Cann J. R. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Plantary Science Letters, 1973, 19: 290-300.
    Pearce J. A. and Norry M. J.. Petrogenetic implications of Ti, Zr, Y, and Nb variation in volcanic rocks. Contributions to Mineralogy and Petrology, 69: 33-47.
    Pearce, J. A.. Basalt geochemistry used to investigate past tectonic enviroment on Cyprus. Tectonophysics, 1975, 25; 41-67.
    Platt J. P.. Exhumation of high-pressure rocks: a review of concepts and processes. Terra Nova. 1993, 5, 119-133.
    Okrusch M. and Schmidt W.. Eclogite-facies rocks in the Saxonian Erzgebirge, Germany: high pressure metamorphism under contrasting P-T conditions, Control Mineral Petrol, 1992, 110: 226-241.
    Schmidt M. W. Amphibole composition in tonalite as a function of pressure; an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol, 1992, 110: 304-310.
    Sen S. K. and Bhattacharya A.. An orthopyroxene-garnet thermometer and its application to the Madras charnockites. Contrib Mineral Petrol, 1984, 88: 64-71.
    Spear F. S. and Markussen J. C.. Mineral Zoning, P-T-X-M phase relations, and Metamorphic evolution of some Adirndack granulite, New York, Journal of Petrology, 1997, 38: 757-783.
    Steltenpohl G. M., Cymerman Z., Krogh E. J. and Kunk M. J.. Exhumation of eclogitized continental basement during Variscan lithospheric delamination and gravitational collapse, sudety Mountains, Poland, Geology, 1993, 21: 1111-1114.
    Stuwe K. and Barr T. D. On uplift and exhumation during covergence. Tectonics, 17 (1): 80-88 Sun S S, Nesbitt R W and Sharaskin A Y. Geochemical characteristics of mid-ocean ridge basalts. Earth. Planet. Sci. Lrtt., 1979, 44; 119-138. 1991, 22; 137—146
    Tapponnier P. and Molnar P. Slip-line field theory and large-scale continental tectonics, Nature, 1976, 264, 319-324.
    Thompson A. B., Schulmann K. and Jezek J., Thermal evolution and exhumation and exhumation in obliquely convergent (transpressive) orogens. Tectonophysics, 1997, 280: 171-184.
    Vidal P and Hunziker J C. Systemtics and problems in isotope work on eclogites. Chemical geology, 1985, 52 (2): 129-141.
    Vincenzo G. D., Palmeri r. and Talarico F.. Petrology and geochronology of eclogites from Lanterman Mange, Antarctica, Journal of Petrology, 1997, 38: 1391-1415.
    Xu Ronghua. Two plutonic belts in western Kunlun. in "Abstracts of International Symposium of the Korakoyum and Kunlun Mountains", 1992, Kashi, China.
    Yin A. and Nie S.. Palinspastic reconstruction of western and central China from the middle Palezoic to the early Mesozoic [abs]: EOS (Transactions, American Geophyscial Union), P. 629.
    Zhou D. and Graham S. A.. Extrusion of the Altyn Tagh wedge: Akinematic model for the Altyn Tagh and palinspastic reconstruction of north China. Geology, 1996, 24 (5): 427-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700