用户名: 密码: 验证码:
新型N-酰胺基(硫)脲类中性阴离子受体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子识别是超分子化学领域研究的热点之一。因阴离子识别对于揭示生命过程中化学反应的本质具有重要意义,阴离子识别和传感研究备受关注。基于氢键作用的中性受体分子逐渐成为阴离子受体分子发展之主流,良好的阴离子识别性能是设计中性受体时考虑的关键因素;而评价受体性能的核心指标就是选择性和灵敏度。目前,提高中性受体阴离子结合性能的主要策略有四条:(1)增加氢键结合位点;(2)提高结合位点质子酸性;(3)借助静电引力的协同作用;(4)引入变构原理。本论文以N-酰胺基硫脲作为有效的阴离子结合位点,在传统阴离子中性受体研究的基础上,致力于探寻提高中性受体阴离子识别性能的新思路,并成功地构建了一系列具有良好阴离子识别性能的(硫)脲类中性受体,可以高效、高选择性乃至可于高竞争性水溶液中结合阴离子。论文共分为五章,分别包含以下主要内容:
     第一章为前言。首先简要介绍了超分子化学的研究现状和发展趋势;然后评述分子识别研究中基于氢键作用的中性阴离子受体的发展近况,着重论述中性受体设计时面临的挑战和当前的应对策略;最后,以此为基础、并基于本实验室已有的研究积累,提出本论文的研究设想。
     第二章为实验部分。详细介绍论文工作中所涉及主要试剂、仪器和受体分子的合成方法与结构鉴定。包括N-脂肪酰胺基-N'-(取代苯基)硫脲、聚-N-脂肪酰胺基-N'-苯基硫脲、N-乙酰胺基-N'-苯基脲、N-异烟酰胺基-N'-(取代苯基)硫脲和N-(2-(羟基)苄亚胺基)-N'-苯基脲等近三十种化合物。
     第三章合成了一类具有良好阴离子识别性能的N-脂肪酰胺基-N'-(取代苯基)-硫脲类中性受体,运用吸收光谱法研究了其与阴离子的结合、作用模式和影响因素。发现N-酰胺基端为脂肪酰胺基时,硫脲-NH酸性降低,但受体与阴离子的结合常数却有所提高。醇效应实验和CD_3CN中的核磁滴定表明受体分子与阴离子间通过氢键作用维系。分子两端取代基对受体-阴离子的结合产生不同影响:N'-苯基端取代基的推拉电子能力影响受体与阴离子结合能力;N-酰胺基端取代基则影响受体-阴离子结合物的吸收光谱形状。玻片表面固载聚-N-酰胺基-N'-苯基硫脲受体,利用接触角研究了受体与阴离子间的相互作用。本章还提出了提高受体对阴离子结合选择性的两条新途径:一是受体具有适宜的结构时,适当降低硫脲-NH的酸性以减小受体对阴离子的结合能力,可改善受体对某种阴离子结合的选择性;二是运用分子印迹技术,提高受体与阴离子结合的选择性。
     第四章合成了N-异烟酰胺基-N'-(取代苯基)硫脲类阴离子受体。受体分子以酰胺基硫脲为结合位点,吡啶环的引入可提高受体在水溶液中的溶解性。研究发现受体具有极强的阴离子结合性能,MeCN中与阴离子的结合常数大于10~7Lmol~(-1)数量级,可将阴离子识别拓展至H_2O-MeCN混合溶剂中。核磁滴定表明受体分子与阴离子间系氢键作用,无脱质子过程发生。首次实现了简单中性受体分子在纯水介质中的阴离子有效结合。基于酰胺-NH质子核磁位移的相关分析表明,分子中的吡啶环相当于含有强吸电子取代基的苯环,酰胺-NH质子足够的酸性,是受体具有良好阴离子结合性能的重要原因。但更为重要的因素在于极性溶液中分子两端的疏水芳基在疏水作用力下可相互靠近,形成一个有利于阴离子结合的疏水微环境,这是受体在水溶液仍保持较好的阴离子结合能力的关键因素。本研究为水溶液中中性阴离子受体的设计提供了一种新的策略,可望为基于硫脲基团的有机催化剂的设计提供借鉴。
     第五章设计合成了一种新型的同源协同变构型荧光受体:N-(2-(羟基)苄亚胺基)-N'-苯基脲,对F~-表现出高的响应灵敏度和结合选择性:F~-导致受体MeCN溶液颜色由无色转变为黄色,荧光增强300余倍;CH_3CO_2~-和H_2PO_4~-等其它阴离子存在时溶液颜色均无此变化,荧光增强不足20倍。实验发现,分子中含有的两个阴离子结合位点,酚羟基-OH和两个脲基氮氢-NH,与F~-发生了分步反应:第一个F~-与受体酚羟基-OH结合,导致-OH脱质子,受体发生构型变化,增强了第二个F~-与受体脲基氮氢-NH的氢键结合。同时受体分子结构的柔性确保第一步反应对第二步反应产生的协同促进作用能顺利进行。而受体与CH_3CO_2~-和H_2PO_4~-等阴离子的氢键结合一步完成,脲基氮氢-NH的阴离子氢键结合能力较硫脲弱,因此受体与CH_3CO_2~-和H_2PO_4~-等的结合能力也较弱。可见分步结合和变构效应是受体对F~-具有强的结合能力和高选择性的关键。本实验为探索高灵敏和高选择性阴离子受体分子的设计作出了有益的尝试。
     最后于附录部分总结了本论文的创新点,并展望后续研究工作。
Molecular recognition is one of the subjects receiving continuous interests in supramolecular chemistry. Since anions play a fundamental role in disclosing the essence of biological processes, anion recognition and sensing by synthetic receptors has received increasing recent attention. Especially, the development of neutral receptors based on hydrogen bonding has become a must for receptors of excellent anion-recognition ability. Selectivity and sensitivity are the key parameter in evaluating anion receptors, several strategies have been developed to improve anion-recognition ability of neutral receptors by incorporating more binding sites in a suitable arrangement, increasing the acidity of the hydrogen bonding donors, cooperating with electrostatic interactions, and utilizing allosteric interaction. In this thesis, a series of neutral anion receptors were designed and synthesized, employing the N-amido(thio)urea as an efficient binding site. Interactions of the binding moiety and anions were investigated in order to explore promising new approaches for improving anion-recognition ability of the neutral receptors.
     The dissertation consists of five chapters summarized as the following.
     Chapter 1 presents a general introduction to supramolecular chemistry relating to the researches in the development of neutral anion receptors based on hydrogen bond. Emphases were focused on the challenges existing in the design of neutral receptors, and the strategy resolving these problems. The objectives of this dissertation were proposed.
     Chapter 2 describes the syntheses and characterization of ca. 30 receptors designed in this thesis for anion recognition, including N-aliphaticamido-N'-(substituted)phenyl (thio)urea, poly-(N-amido-N'-phenyl)thiourea, N-(isonicotinamido)-N'-(substitutedphenyl)thioureas, and N-(2-(hydroxyl)benzylimino)-N'-phenylurea. The equipments, materials and methods involved in this dissertation are also described.
     Chapter 3 reports the anion binding of N-aliphaticamido-N-(substituted)phenyl (thio)urea. The N-amidothiourea binding site was employed on the basis of our previous work that showed a substantially enhanced anion binding affinity compared to the traditional N-phenylthiourea binding site. It was found that when the the acidity of thioureido -NH protons in N-aliphaticamido-N-phenylthioureas was lower than that in N-benzamido-N'-phenylthioureas, yet the anion binding ability was stronger. Protic solvent competition in MeCN by MeOH and ~1H NMR titrations in CD_CN supported the hydrogen bond interaction of the receptor with anion. The substituent of the N '-phenyl ring and of the N-amido group exist different influence on anion biding, the former remarkably influencing anion binding, while the latter affecting more to the absorption spectra of the receptor upon anion binding. Polymerizable N-amidothiourea-based receptors were polymerized and were fixated on the surface of glass. Contact angle measurements were used to understand interactions of anion and poly-N-amidothiourea-based receptors. Two new approaches were attempted to increase selectivity in anion binding, to properly decrease the acidity of thioureido -NH protons in a receptor with suitable structure, and to apply the molecular imprinting technology.
     Chapter 4 presents the design of N-(isonicotinamido)-N'-(substituted-phenyl) thioureas as simple neutral anion receptors capable of binding anion in aqueous solutions. A pyridine terminal was chosen to improve water solubility of the receptor molecules. These receptors showed substantial anion-binding ability in MeCN solution with binding constants of 10~7 L mol~(-1) order of magnitude. Significantly is that they showed sensitive response to anions such as CH_3CO_2~- in aqueous solutions with binding constants of 10~3 L mol~(-1) order of magnitude. The hydrogen bonding interaction between the receptor and anion was proved by ~1H NMR titration in CD_3CN, with no deprotonation occurring. The pyridine ring was shown to correspond to a phenyl ring bearing an electron withdrawing para-substituent of Hammett constant 0.75, which implied that the amido -NH is acidic enough to afford the capability of anion binding in aqueous solutions. Although this seems to point to the critical role of the acidity of the amido -NH proton, we showed that it was instead the less polar hydrophobic microenvironment afforded by the approaching of two aromatic rings in these receptors driven by hydrophobic interaction that promoted the anion binding in aqueous solutions. A new approach was provided for designing neutral receptors based on hydrogen bonding for anion binding in aqueous solutions by taking into account the receptor molecular conformation.
     Chapter 5 reports a homotropic allosteric receptor, N-(2-(hydroxyl)benzylimino)-N'-phenylurea, highly selective and sensitive for F~-. A moderate color change from colorless to yellow and a drastic fluorescence enhancement of c.a. 300 fold were observed when F~- is added to the receptor solution in MeCN, whereas other anion led to no color change and tiny fluorescence enhancement of less than 20 fold. The receptor bears three distinct hydrogen bonding groups, one phenolic -OH and two ureido NHs, which bind stepwise to F~-. Binding of the first F~- had a consequence of that of the subsequent interaction of the second F~-. The first F~- binding to the receptor's phenolic -OH resulted in the deprotonation and a conformation change in the receptor that reinforced its next binding to F~-. Differing from the stepwise binding to F~-, the receptor bound other anions such as CH_3CO_2~- and H_2PO_4~- in a single step via -OH and ureido -NH protons in a 1:1 stoichiometry. Since the acidity of the ureido -NH protons were known lower than that of the thioureido -NH protons, the anion binding ability of urea-based receptor should have been lower than those thiourea-based. The observed opposite thus suggested that it was the stepwise allosteric interactions that afforded both high selectivity and sensitivity for F~-. The study was expected to be of help for the design and development of highly selective and sensitive anion receptors.
     The main innovations of this dissertation were summarized and the prospection of the future work was discussed at the end.
引文
[1] Steed,J.W.;Atwood,J.L.(著),赵耀鹏,孙震(译)超分子化学.北京,化学工业出版社,2006.
    [2] 沈家聪,孙俊奇 超分子科学研究进展,中国科学院院刊,2004,19,420-424.
    [3] Desvergue, J. P.; Czarnik, A. W. Chemosensors of Ion and Molecular Recognition. Dordrecht, Kluwer Academic Publishers, 1997.
    [4] de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy,C. P.; Rademacher, J. T.; Rice, T. E. Signaling recognition events with fluorescent sensors and switches, Chem. Rev. 1997, 97, 1515-1566.
    [5] Matinez-Manez, R.; Sancenon, F. Fluorogenic and chromogenic chemosensors and reagents for anions, Chem. Rev. 2003,103, 4419-4476.
    [6] Special issue on anion sensing and recognition: Coord. Chem. Rev. 2003, 240,issue 1-2. (Include the following references 8 and 9.)
    [7] Schmidtchen, F. P.; Berger, M. Artificial organic host molecules for anions,Chem. Rev. 1997, 97, 1609-1646.
    [8] Best, M. D.; Tobey, S. L.; Anslyn, E. V. Abiotic guanidinium containing receptors for anionic species, Coord. Chem. Rev. 2003, 240, 3-15.
    [9] Llinares, J. M.; Powell, D.; Bowman-James, K. Ammonium based anion receptors, Coord. Chem. Rev. 2003, 240, 57-75.
    [10] Bowman-James, K. Alfred Werner revisited: the coordination chemistry of anions, Acc.Chem. Res. 2005, 38, 671-678.
    [11] Martinez-Manez, R.; Sancenon, F. New advances in fluorogenic anion chemosensors, J.Fluoresc.2005,15,267-285.
    [12] García-Espa(?)ia, E.;Díaz, P.; Lliares, J. M.; Bianchi, A. Anion coordination chemistry in aqueous solution of polyammonium receptors, Coord. Chem. Rev. 2006,250, 2952-2986.
    [13] Wichmann, K.; Antonioli,B.; Sohnel, T.; Wenzel, M.; Gloe, K.; Gloe, K.; Price, J. R.; Lindoy, L. F.; Blake, A. J.; Schroder, M. Polyamine-based anion receptors: extraction and structural studies, Coord. Chem. Rev. 2006, 250, 2987-3003.
    
    [14] Kang, S. O.; Hossain, M. A.; Bowman-James, K. Influence of dimensionality and charge on anion binding in amide-based marocyclic receptors, Coord. Chem. Rev.2006, 250, 3038-3052.
    
    [15] Schmuck, C. How to improve guanidinium cations for oxoanion binding in aqueous solution? The design of artificial peprtide receptors, Coord. Chem. Rev. 2006,250, 3053-3067.
    
    [16] O'Neil, E. J.; Smith, B. D. Anion recognition using dimetallic coordination complexes, Coord. Chem. Rev. 2006, 250, 3068-3080.
    
    [17] Filby, M. H.; Steed, J. W. A modular approach to organic, coordination complex and polymer based podand hosts for anion, Coord. Chem. Rev. 2006, 250,3200-3218.
    
    [18] Cafeo, G; Kohnke, F. H.; White, A. J. P.; Garozzo, D.; Messina, A. Syntheses,structures, and anion-binding properties of two novel calix[2]benzo[4]pyrroles, Chem.Eur. J. 2007,13, 649-656.
    
    [19] Hisaki, I. Sasaki, S.-L; Hirose, K.; Tobe, Y. Synthesis and anion-selective complexation of homobenzylic tripodal thiourea derivatives, Eur. J. Org. Chem. 2007,607-615.
    
    [20] Dahan, A.; Ashkenazi, T.; Kuznetsov, V.; Makievski, S.; Drug, E.; Fadeev, L.;Bramson, M.; Schokoroy, S.; Rozenshine-Kemelmakher, E.; Gozin, M. Synthesis and evaluation of a pseudocyclic tristhiourea-based anion host, J. Org. Chem. 2007, 72,2289-2296.
    
    [21] Schmuck, C; Heller, M. Solid phase synthesis of a prototype of a new class of biomimetic receptors for anionic carbohydrates, Org. Biomol Chem. 2007, 5,787-791.
    
    [22] Lowe, A. J.; Dyson, G. A.; Pfeffer, F. M. Steric and electronic factors influencing recognition by a simple, charge neutral norbornene based anion receptor,Org. Biomol. Chem. 2007, 5, 1343-1346.
    
    [23] Tabakci, M.; Memon, S.; Yilmaz, M. Synthesis and extraction properties of new 'proton-switchable' tri- and tetra-substituted calix[4]arene derivatives bearing pyridinium units, Tetrahedron 2007, 63, 6861-6865.
    
    [24] Sun, X. H.; Li, W.; Xia, P. F.; Luo, H. B.; Wei, Y; Wong, M. S.; Cheng, Y.-K.;Shuang, S. Phenyl-calix[4]arene-based fluorescent sensors: cooperative binding for carboxylates,J. Org. Chem. 2007, 72, 2419-2426.
    
    [25] Winstanley, K. J.; Smith, D. K. Ortho-substituted catechol derivatives: the effect of intramolecular hydrogen-bonding pathways on chloride anion recognition, J.Org. Chem. 2007, 72, 2803-2815.
    
    [26] Plitt, P.; Gross, D. E.; Lynch, V. M.; Sessler, J. L. Dipyrrolyl-functionalized bipyridine-based anion receptors for emission-based selective detection of dihydrogen phosphate, Chem. Eur. J. 2007,13, 1374-1381.
    
    [27] Brooks, S. J.; Gale, P. A.; Light, M. E. Extending the hydrogen-bonding array in ortho-phenylenediamine based bis-ureas, Supramol. Chem. 2007,19, 9-15.
    
    [28] Gunnlaugsson, T.; Ali, H. D. P.; Glynn, M.; Kruger, P. E.; Hussey, G. M.;Pfeffer, F. M.; dos Santos, C. M. G.; Tierney, J. Fluorescent photoinduced electron transfer (PET) sensors for anions; from design to potential application, J. Fluoresc.2005,15, 287-299.
    
    [29] Kang, S. O.; Begum, R. A.; Bowman-James, K. Amide-based ligands for anion coordination, Angew. Chem. Int. Ed. 2006, 45, 7882-7894.
    
    [30] Kuswandi, B.; Nuriman, Verboom, W.; Reinhoudt, D. N. Tripodal receptors for cation and anion sensors, Sensors, 2006, 6, 978-1017.
    
    [31] Gamez, P.; Mooibroek, T. J.; Teat, S. J.; Reedijk, J. Anion binding involving π-acidic heteroaromatic rings, Acc. Chem. Res. 2007, 40, 435-444.
    
    [32] Blondeau, P.; Segura, M.; Perez-Fernandez R.; de Mendoza, J. Molecular recognition of oxoanions based on guanidinium receptors, Chem. Soc. Rev. 2007, 36,198-210.
    
    [33] Choi, K.; Hamilton, A. D. A dual channel fluorescence chemosensor for anions involving intermolecular excited state proton transfer, Angew. Chem. Int. Ed. 2001, 40,3912-3915.
    
    [34] Piatak, P.; Jurczak, J. A selective colorimetric anion sensor based on an amide group containing macrocycle, Chem. Commun. 2002, 2450-2451.
    
    [35] Hu, H. Y.; Chen, C. F. A new fluorescent chemosensor for anion based on an artificial cyclic tetrapeptide, Tetrahedron Lett. 2006, 47, 175-179.
    
    [36] Brooks, S. J.; Gale, P. A.; Light, M. E. Anion-binding modes in a macrocyclic amidourea, Chem. Commun. 2006, 4344-4346.
    
    [37] Lee C.; Lee D. H.; Hong, J. Colorimetric anion sensing by porphyrin-based anion receptors, Tetrahedron Lett. 2001, 42, 8665-8668.
    
    [38] Lee, D.-H.; Lee, H.-Y.; Lee, K.-H.; Hong, J. Selective anion sensing based on a dual-chromophore approach, Chem. Commun. 2001, 1188-1189.
    
    [39] Lee, D.-H.; Lee, H.-Y; Hong, J. Anion sensor based on the indoaniline-thiourea system, Tetrahedron Lett. 2002, 43, 7273-7276.
    
    [40] Liao, J. H.; Chen, C. T.; Fang, J. M. A novel phosphate chemosensor utilizing anion-induced fluorescence change, Org. Lett. 2002, 4, 561-564.
    
    [41] Kovalchuk, A.; Bricks, J. L.; Reck, G.; Rurack, K.; Schulz, B.; Szumna, A.;Weiβhoff, H. A charge transfer-type fluorescent molecular sensor that "lights up" in the visible upon hydrogen bond-assisted complexation of anions, Chem. Commun.2004, 1946-1947.
    
    [42] Cho, E. J.; Moon, J. W.; Ko, S. W.; Lee, J. Y; Kim, S. K.; Yoon, J.; Nam, K. C.A new fluoride selective fluorescent as well as chromogenic chemosensor containing a naphthalene urea derivative, J. Am. Chem. Soc. 2003,125, 12376-12377.
    
    [43] Kim, S. K.; Yoon, J. A new fluorescent PET chemosensor for fluoride ions,Chem. Commun. 2002, 770-771.
    
    [44] Kim, S. K.; Singh, N. J.; Kim, S. J.; Kim, H. G; Kim, J. K.; Lee, J. W.; Kim, K.S.; Yoon, J. New fluorescent photoinduced electron transfer chemosensor for the recognition of H_2PO_4~-, Org. Lett. 2003, 5, 2083-2086.
    
    [45] Chen, Q. Y.; Chen, C. F. A new fluorescent as well as chromogenic chemosensor for anions based on an anthracene carbamate derivative, Tetrahedron Lett. 2004, 45, 6493-6496.
    
    [46] Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M. Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors, Org. Lett. 2002, 4, 2449-2452.
    [47] Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M. Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate, Org. Biomol. Chem.2005,3, 48-56.
    [48] Zeng, Z. Y.; He, Y. B.; Wu, J. L.; Wei, L. H.; Liu, X.; Meng, L. Z.; Yang, X.Synthesis of two branched fluorescent receptors and their binding properties for dicarboxylate anions, Eur. J. Org. Chem. 2004, 2888-2893.
    [49] Mei, M. H.; Wu, S. K. Fluorescent sensor for α,(?)-dicarboxylate anions, New J.Chem. 2001,25,471-475.
    [50] Hennrich, G; Sonnenschein, H.; Genger, U. R. Fluorescent anion receptors with iminoylthiourea binding sites-selective hydrogen bond mediated recognition of CO_3~(2-),HCO_3~- and HPO_4~(2-),Tetrahedron Lett. 2001, 42, 2805-2808.
    [51] Liu, S. Y; He, Y. B.; Wu, J. L.; Wei, L. H.; Qin, H. J.; Meng, L. Z.; Hu, L.Calix[4]arenes containing thiourea and amide moieties: neutral receptors towards α,(?)-dicarboxylate anions, Org. Biomol. Chem. 2004,2, 1582-1586.
    [52] Kang, S.O.;Jeon, S.; Nam, K. C. Anion recognition by urea derivatives of anthraquinone: dihydrogen phosphate ion selective neutral receptors, Supramol.Chem.2002,74,405-410.
    [53] Jose, D. A.; Kumar, D. K.; Ganguly, B.; Das, A. Efficient and simple colorimetric fluoride ion sensor based on receptors having urea and thiourea binding sites, Org. Lett. 2004, 6, 3445-3448.
    [54] Yen, Y.-P; Ho, K.-W. Synthesis of colorimetric receptors for dicarboxylate anions: a unique color change for malonate, Tetrahedron Lett. 2006, 47, 1193-1196.
    [55] Jimenez, D.; Marténez-Mí(?)ez, R.;Sancenón, F.; Soto, J. Selective fluoride sensing using colorimetric reagents containing anthraquinone and urea or thiourea binding sites, Tetrahedron Lett. 2002, 43, 2823-2825.
    [56] Wu, J. L.; He, Y. B.; Zeng, Z. Y; Wei, L. H.; Meng, L. Z.; Yang, T. X.Synthesis of the anionic fluororeceptors based on thiourea and amide groups and recognition property for α,(?)-dicarboxylate, Tetrahedron 2004, 60, 4309-4314.
    [57] Wu, J. L.; He, Y B.; Wei, L. H.; Meng, L. Z.; Yang, T. X.; Liu, X. A new two-armed colorimetric chemosensor for fluoride, Aust. J. Chem. 2005, 58, 53-57.
    
    [58] Kuo, L. J.; Liao, J. H.; Chen, C. T.; Huang, C. H. Two-arm ferrocene amide compounds: synclinal conformations for selective sensing of dihydrogen phosphate ion, Org. Lett. 2003, 5, 1821-1824.
    
    [59] Zhang, B. G; Xu, J.; Zhao, Y. G..; Duan, C. Y.; Cao, X.; Meng, Q. J. Host-guest complexation of a fluorescent and electrochemical chemsensor for fluoride anion,Dalton Trans. 2006, 1271-1276.
    
    [60] Anzenbacher, P.; Jursikova, J. K.; Sessler, J. L. Second generation calixpyrrole anion sensors,J. Am. Chem. Soc. 2000,122, 9350-9351.
    
    [61] Pfeffer, F. M.; Gunnlaugsson, T.; Jensen, P.; Kruger, P. E. Anion recognition using preorganized thiourea functionalized [3]polynorbornane receptors, Org. Lett.2005, 7, 5357-5360.
    
    [62] Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Anion recognition and anion-mediated self-assembly with thiourea-functionalised fused [3]polynorbornyl frameworks. Org. Biomol. Chem. 2007, 5, 1894-1902.
    
    [63] Kyne, G. M; Light, M.E.; Hursthouse, M. B.; de Mendoza, J.; Kilburn, J. D.Enantioselective amino acid recognition using acyclic thiourea receptors, J. Chem.Soc, Perkin Trans. 1, 2001, 1258-1263.
    
    [64] Kondo, S.; Nagamine, M.; Yano, Y. Synthesis and anion recognition properties of 8,8'-dithioureido-2,2'-binaphthalene, Tetrahedron Lett. 2003, 44, 8801-8804.
    
    [65] Kondo, S.; Sato, M. UV-Vis and fluorescence spectroscopic detection of anions by the conformational restriction of 2,20-binaphthalene derivatives bearing thiourea groups through a methylene spacer, Tetrahedron 2006, 62, 4844-4850.
    
    [66] Lee, D.-H.; Im, J.-H.; Lee, J.; Hong, J. A new fluorescent fluoride chemosensor based on conformational restriction of a biaryl fluorophore, Tetrahedron Lett. 2002,43, 9637-9640.
    
    [67] Metzger, A.; Anslyn, E. V. A chemosensor for citrate in beverages, Angew.Chem. Int. Ed. 1998, 37, 649-652.
    
    [68] MeCleskey S. C; Metzger, A.; Simmons, C. S.; Anslyn, E. V. Competitive indicator methods for the analysis of citrate using colorimetric assays, Tetrahedron 2002, 55, 621-628.
    
    [69] Rekharsky, M.; Inoue, Y.; Tobey, S.; Metzger, A.; Anslyn, E. V. Ion-pairing molecular recognition in water: aggregation at low concentrations that is entropy-driven,J. Am. Chem. Soc. 2002,124, 14959-14967.
    
    [70] Niikura, K.; Metzger, A.; Anslyn, E. V. Chemosensor ensemble with selectivity for inositol-trisphosphate, J. Am. Chem. Soc. 1998,120, 8533-8534.
    
    [71] Niikura, K.; Anslyn, E. V. Triton X-100 enhances ion-pair-driven molecular recognition in aqueous media. Further work on a chemosensor for inositol trisphosphate,J. Org. Chem. 2003, 68, 10156-10157.
    
    [72] Sasaki, S.; Citterio, D.; Ozawa, S.; Suzuki, K. Design and synthesis of preorganized tripodal fluororeceptors based on hydrogen bonding of thiourea groups for optical phosphate ion sensing, J. Chem. Soc, Perkin Trans. 2, 2001, 2309-2313.
    
    [73] Xie, H. Z.; Yi, S.; Wu, S. K. Study on host-guest complexation of anions based on tri-podal naphthylthiourea derivatives, J. Chem. Soc, Perkin Trans. 2, 1999,2751-2754.
    
    [74] Fang, L.; Chan, W. H.; He, Y. B.; Kwong, D. W. J.; Lee, A. W. M. Fluorescent anion sensor derived from cholic acid: the use of flexible side chain, J. Org. Chem.2005, 70, 7640-7646.
    
    [75] Bian, L. Proton donor is more important than proton acceptor in hydrogen bond formation: a universal equation for calculation of hydrogen bond strength, J. Phys.Chem. A 2003, 107, 11517-11524.
    
    [76] Nishizawa, S.; Kato, R.; Hayashita, T.; Teramae, N. Anion sensing by thiourea based chromoionophore via hydrogen bonding, Anal. Sic. 1998,14, 595-597.
    
    [77] Hayashita, T.; Onodera, T.; Kato, R.; Teramae, N. Positioning dependent anion receognition by thiourea-based chromoionophores via hydrogen bonding in aqueous vesicle solutions, Chem. Commun. 2000, 755-756.
    
    [78] Kato, R.; Nishizawa, S.; Hayashita, T.; Teramae, N. A thiourea-based chromoionophore for selective binding and sensing of acetate, Tetrahedron Lett. 2001,42, 5053-5056.
    
    [79] Gunnlaugsson, T.; Davis, A. P.; Glynn, M. Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors, Chem. Commun.2001, 2556-2557.
    
    [80] Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez C.; Sessler, J. L.Dipyrrolylquinoxalines: efficient sensors for fluoride anion in organic solution, J. Am.Chem. Soc. 1999,121, 10438-10439.
    
    [81] Nishiyabu, R.; Jr. Anzenbacher, R 1,3-Indane-based chromogenic calixpyrroles with push-pull chromophores: synthesis and anion sensing, Org. Lett. 2006, 8,359-362.
    
    [82] Zhang, Y. M.; Qin, J. D.; Lin, Q.; Wei, T. B. Convenient synthesis and anion recognition properties of N-flurobenzoyl-N'-phenylthioureas in water-containing media, J Fluorine Chem. 2006,127, 1222-1227.
    
    [83] Gunnlaugsson, T.; Kruger, P. E.; Lee, T. C.; Parkesh, R.; Pfeffer, F. M.; Hussey,G. M. Dual responsive chemosensors for anions: the combination of fluorescent PET (photoinduced electron transfer) and colorimetric chemosensors in a single molecule,Tetrahedron Lett. 2003, 44, 6575-6578.
    
    [84] Pfeffer, F. M.; Buschgens, A. M.; Barnett, N. W.; Gunnlaugsson, T.; Kruger, P.E. 4-amino-1,8-naphthalimide-based anion receptors: employing the naphthalimide N-H moiety in the cooperative binding of dihydrogenphosphate, Tetrahedron Lett.2005, 46, 6579-6584.
    
    [85] Pfeffer, F. M.; Seter, M.; Lewcenko, N.; Barnett, N. W. Fluorescent anion sensors based on 4-amino-1,8-naphthalimide that employ the 4-amino N-H,Tetrahedron Lett. 2006, 47, 5241-5245.
    
    [86] Boiocchi, M.; Boca, L. D.; Gomez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani,E. Nature of urea-fluoride interaction: incipient and definitive proton transfer, J. Am.Chem. Soc. 2004,126, 16507-16514.
    
    [87] Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. Why, on interaction of urea-based receptors with fluoride, beautiful colors develop, J. Org. Chem. 2005, 70,5717-5720.
    
    [88] Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M.; Sacchi, D. A two-channel chemosensor for the optical detection of carboxylic acids, including cholic acid, J. Mater.Chem.2005, 75, 2670-2675.
    [89] Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Urea vs. thiourea in anion recognition, Org. Biomol Chem. 2005, 3, 1495-1500.
    [90] Boiocchi, M.; Boca, L. D.; Gómez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani,E.Anion-induced urea deprotonation, Chem. Eur. J. 2005,11,3097-3104.
    [91] Ros-Lis, J. V.; Martínez-Má(?)ez, R.; Sancenón, F.; Soto, J.; Rurack, K.;Weiβhoff,H. Signalling mechanisms in anion-responsive push-pull chromophores:the hydrogen-bonding, deprotonation and anion-exchange chemistry of functionalized azo dyes, Eur. Chem. J. 2007, 2449-2458.
    [92] Amendola, V.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M. What anions do to N-H-containing receptors, Acc.Chem. Res. 2006, 39, 343-353.
    [93] Amendola, V.; Bonizzoni, M.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M.;Sancenon, F.; Taglietti, A. Some guidelines for the design of anion receptors, Coord.Chem. Rev. 2006, 250, 1451-1470.
    [94] Evans, L. S.; Gale, P. A.; Light, M. E.; Quesada, R. Anion binding vs.deprotonation in colometric pyrrolyamidothiourea based anion sensors, Chem.Commun.2006, 965-967.
    [95] Evans, L. S.; Gale, P. A.; Light, M. E.; Quesada, R. Pyrrolylamidourea based anion receptors, New J. Chem. 2006,50,1019-1025.
    [96] Brooks, S. J.; Gale, P. A.; Light, M. E. Carboxylate complexation by 1,1'-(1,2-phenylene)bis(3-phenylurea) in solution and solid state, Chem. Commun. 2005,4696-4698.
    [97] Brooks, S. J.; Edwards, P. R.; Gale, P. A.; Light, M. E. Carboxylate complexation by a family of easy-to make ortho-phenylenediamine based bis-ureas:studies in solution and solid state, New J. Chem. 2006, 30, 65-70.
    [98] Gale, P. A. Structural and molecular recognition studies with acyclic anion receptors, Acc.Chem. Res. 2006, 39, 465-475.
    [99] Costero, A.; Gavi(?)a,P.;Rodriguez-Mu(?)iz,G.M.;Gil, S.N-Biphenyl thioureas as carboxylate receptors. Effect of the ligand substituents on the geometry of the complexes, Tetrahedron, 2006, 62, 8571-8577.
    
    [100] Costero, A.; Perans, S.; Gil, S. A selective colorimetric chemodosimeter for the naked eye detection of benzoate anion, Tetrahedron Lett. 2006, 47, 6561-6564.
    
    [101] Beer, P. D.; Hayes, E. J. Transition metal and organometallic anion complexation agents, Coord. Chem. Rev. 2003, 240, 167-189.
    
    [102] Ng, P. L.; Lee, C. S.; Kwong, H. L.; Chan, A. S. C. Zinc complex of bipyridine crown macrocycle: Luminescence sensing of anions in aqueous media via the cooperative action of metal-ligand and hydrophobic interactions, Inorg. Chem.Commun. 2005, 8, 769-772.
    
    [103] Lin, Z. H.; Zhao, Y. G.; Duan, C. Y; Zhang, B. G.; Bai, Z. P. A highly selective chromo- and fluorogenic dual responding fluoride sensor: naked-eye detection of F~- ion in natural water via a test paper, Dalton Trans. 2006, 3678-3684.
    
    [104] Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Imidazolium receptors for the recognition of anions, Chem. Soc. Rev. 2006, 35, 355-360.
    
    [105] Huston, M. E.; Akkaya, E. U.; Czarnik, A. W. Chelation enhanced fluorescence detection of non-metal ions, J. Am. Chem. Soc. 1989, 111, 8735-8737.
    
    [106] Vance, D. H.; Czarnik A. W. Real-time assay of inorganic pyrophosphatase using a high-affinity chelation-enhanced fluorescence chemosensor, J. Am. Chem. Soc.1994,116, 9397-9398.
    
    [107] Nishizawa, S.; Kato, Y.; Teramae, N. Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor, J. Am. Chem. Soc. 1999, 121,9463-9464.
    
    [108] Tobey, S. L.; Anslyn, E. V. Determination of inorganic phosphate in serum and saliva using a synthetic receptor, Org. Lett. 2003, 5, 2029-2031.
    
    [109] Tobey, S. L.; Jones, B. D.; Anslyn, E. V. C_(3v) symmetric receptors show high selectivity and high affinity for phosphate, J. Am. Chem. Soc. 2003,125, 4026-4027.
    
    [110] Schmuck, C. Carboxylate binding by 2-(guanidiniocarbonyl)pyrrole receptors in aqueous solvents: improving the binding properties of guanidinium cations through additional hydrogen bonds, Chem. Eur. J. 2000, 6, 709-718.
    [111] Schmuck, C; Machon, U. Amino acid binding by 2-(guanidiniocarbonyl) pyridines in aqueous solvents: a comparative binding study correlating complex stability with stereoelectronic factors, Chem. Eur. J. 2005,11, 1109-1118.
    
    [112] Kubo, Y.; Tsukahara, M.; Ishiharab, S.; Tokita, S. A simple anion chemosensor based on a naphthalene-thiouronium dyad, Chem. Commun. 2000, 653-654.
    
    [113] Kubo, Y.; Ishihara, S.; Tsukahara, M.; Tokita, S. Isothiouronium-derived simple fluorescent chemosensors of anions, J. Chem. Soc, Perkin Trans. 2, 2002,1455-1460.
    
    [114] Kubo, Y; Kato, M.; Misawa, Y; Tokita, S. A fluorescence-active 1,3-bis (isothiouronium)-derived naphthalene exhibiting versatile binding modes toward oxoanions in aqueous MeCN solution: new methodology for sensing oxoanions,Tetrahedron Lett. 2004, 45, 3769-3773.
    
    [115] Nishizawa, S.; Cui, Y.; Minagawa, M.; Morita, K.; Kato, Y.; Taniguchi, S.;Kato, R.; Teramae, N. Conversion of thioureas to fluorescent isothiouronium-based photoinduced electron transfer sensors for oxoanion sensing, J. Chem. Soc, Perkin Trans. 2, 2002, 866-870.
    
    [116] Kato, Y; Nishizawa, S.; Teramae, N. Template-assisted preferential formation of a syn photodimer in a pyrophosphate-induced self-assembly of a thymine-functionalized isothiouronium receptor, Org. Lett. 2002, 4, 4407-4410.
    
    [117] Rebek, J. Jr.; Wattley, R. V. Allosteric effects. Remote control of ion transport selectivity, J. Am. Chem. Soc. 1980,102, 4853-4854.
    
    [118] Shinkai, S.; Ikeda, M.; Sugasaki, A.; Takeuchi, M. Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity an selectivity, Acc. Chem. Res. 2001, 34, 494-503.
    
    [119] Rebek, JR. J. Binding forces, equilibria, and rates: new models for enzymic catalysis, Acc. Chem. Res. 1984, 77,258-264.
    
    [120] Kovbasyuk, L.; Kramer, R. Allosteric supramolecular receptors and catalysts,Chem. Rev. 2004,104, 3161-3187.
    
    [121] Takeuchi, M.; Ikeda, M.; Sugasaki, A.; Shinkai, S. Molecular design of artificial molecular and ion recognition systems with allosteric guest responses, Acc. Chem. Res. 2001, 34, 865-873.
    
    [122] Nabeshima, T.; Yoshihira, Y.; Saiki, T.; Akine, S.; Horn, E. Remarkably large positive and negative allosteric effects on ion recognition by the formation of a novel helical pseudocryptand, J. Am. Chem. Soc. 2003,125, 28-29.
    
    [123] Yam, V. W.-W.; Lu, X.-X.; Ko, C.-C. First observation of alkali metal ion induced trans-cis isomerization of palladium(II) phosphane complexes containing crown ether moieties, Angew. Chem. Int. Ed. 2003, 42, 3385-3388.
    
    [124] Deetz, M. J.; Smith, B. D. Heteroditopic ruthenium(II) bipyridyl receptor with adjacent saccharide and phosphate binding sites, Tetrahedron Lett. 1998, 39,6841-6844.
    
    [125] Kawai, H.; Katoono, R.; Nishimura, K.; Matsuda, S.; Fujiwara, K.; Tsuji, T.;Suzuki, T. Positive homotropic allosteric binding of benzenediols in a hydrindacene-based exoditopic receptor: cooperativity in amide hydrogen bonding, J.Am. Chem. Soc. 2004,126, 5034-5035.
    
    [126] Allevi, M.; Bonizzoni, M.; Fabbrizzi, L. Homo- and hetero-dinuclear anion complexes, Chem. Eur. J. 2007,13, 3787-3795.
    
    [127] Kubik, S.; Reyheller, C.; Stuwe, S. Recognition of anions by synthetic receptors in aqueous solution, J. Incl. Phenom. Macrocycl. Chem. 2005, 52, 137-187.
    
    [128] Gunnlaugsson, T.; Kruger, P. E.; Jensen, P.; Tierney, J.; Ali, H. D. P.; Hussey,G. M. Colorimetric "naked eye" sensing of anions in aqueous solution, J. Org. Chem.2005, 70, 10875-10878.
    
    [129] Liu, S. Y.; Fang, L.; He, Y. B.; Chan, W. H.; Yeung, K. T.; Cheng, Y. K.; Yang,R. H. Cholic-acid-based fluorescent sensor for dicarboxylates and acidic amino acids in aqueous solutions, Org. Lett. 2005, 7, 5825-5828.
    
    [130] Demas, J. N.; Crobys, G. A. Measurement of photoluminescence quantum yields, J. Phys. Chem. 1971, 75, 991-1024.
    
    [131] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;Cheeseman, J. R.; Zakrzewski, V. G; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant,J. C; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C; Farkas,O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;Nanavakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.;Pople, J. A. Gaussian 98, revision A.9; Gaussian, Inc.; Pittsburgh, PA, 1998.
    
    [132] Gale, P. A.; Quesada, R. Anion coordination and anion-templated assembly:highlights from 2002 to 2004, Coord. Chem. Rev. 2006, 250, 3219-3244.
    
    [133] Fan, E.; Arman, S. A. V.; Kincaid, S.; Hamilton, A. D. Molecular recognition:hydrogen-bonding receptors that function in highly competitive solvents, J. Am. Chem.Soc. 1993,115, 369-370.
    
    [134] Buhlmann, P.; Amemiya, S.; Nishizawa, S.; Xiao, K. P.; Umezawa, Y.Hydrogen-bonding ionophores for inorganic anions and nucleotides and their application in chemical sensors, J. Incl. Phenom. Mol. Recogn. Chem. 1998, 32,151-163.
    
    [135] Suksai, C.; Tuntulani, T. Chromogenic anion sensors, Chem. Soc. Rev. 2003,32, 192-202.
    
    [136] Wu, F. Y.; Li, Z.; Wen, Z. C.; Zhou, N.; Zhao, Y. F.; Jiang, Y. B. A novel thiourea-based dual fluorescent anion receptor with a rigid hydrazine spacer, Org. Lett.2002, 4, 3203-3205.
    
    [137] Nie, L.; Li, Z.; Han, J.; Zhang, X.; Yang, R.; Liu, W. X.; Wu, F. Y; Xie, J. W;Zhao, Y. F.; Jiang, Y. B. Development of N-benzamidothioureas as a new generation of thiourea-based receptors for anion recognition and sensing, J. Org. Chem. 2004, 69,6449-6454.
    
    [138] Wu, F. Y; Li, Z.; Guo, L.; Wang, X.; Lin, M. H.; Zhao, Y. F.; Jiang, Y. B. A unique NH-spacer for N-benzamidothiourea based anion sensors. Substituent effect on anion sensing of the ICT dual fluorescent N-(p-dimethylaminobenzamido)-N'-aryl thioureas, Org. Biomol. Chem. 2006, 4, 624-630.
    [139] 韩洁,黎朝,刘文侠,杨睿,江云宝,N-(二茂铁酰胺基)硫脲类阴离子受体,化学学报,2006,64,1716-1722.
    [140] Hansch, C; Leo, A.; Taft,R.W.A survey of Hammett substituent constants and resonance and field parameters, Chem.Rev.1991, 91,165-195.
    [141] de la Torre, M~a F.;González, S.; Campos, E. G; Mussons, M~a L.;Morán, J. R.;Caballero, M~a C. Receptors for carboxylates derived from 2-furoic and fusaric acids,Tetrahedron Lett. 1997,38, 8591-8594.
    [142] de la Torre, M~a F.; Campos, E. G.; González, S.; Morán, J. R.; Caballero, M~a C.Binding properties of an abiotic receptor for complexing carboxylates of α-heterocyclic and α-keto acids, Tetrahedron 2001, 57, 3945-3950.
    [143] Nelsen, S. R; Pladziewicz, J. R. Intermolecular electron transfer reactivity determined from cross-rate studies, Acc.Chem. Res. 2002, 55, 247-254.
    [144] Lewis, M.; Glaser, R. The azine bridge as a conjugation stopper: an NMR spectroscopic study of electron delocalization in acetophenone azines, J. Org. Chem.2002, 67, 1441-1447.
    [145] Lee, K. H.; Lee, H. Y.; Lee, D. H.; Hong, J. Fluoride-selective chromogenic sensors based on azophenol, Tetrahedron Lett. 2001, 42, 5447-5449.
    [146] Conners, K. A. Binding Constants, The Measurement of Molecular Complex Stability. New York, John Wiley & Sons, 1987, 147.
    [147] Bourson, J.; Pouget, J.; Valeur, B. Ion-responsive fluorescent compounds. 4.Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers, J. Phys. Chem. 1993, 97, 4552-4557.
    [148] Shoolery, J. N.; Huggins, C. M.; Pimental, G. C. Proton magnetic resonance studies of the hydrogen bonding of phenol, substituted phenols and acetic acid, J.Phys. Chem. 1956, 23,1311-1315.
    [149] 黄玉东 聚合物表面与界面技术.北京,化学工业出版社,2003.
    [150] Tadmor, R.Line energy and the relation between advancing, receding, and Young contact angles, Langmuir 2004, 20, 7659-7664.
    [151] Schulz, D. N.; Kaladas, J. J.; Maurer, J. J.; Pace, S. J.; Schulz, W. W.Copolymers of acrylamide and surfactant macromonomers: synthesis and solution properties, Polymer 1987, 25, 2110-2115.
    
    [152] Chang, Y. H.; McCormick, C. L. Water-soluble copolymers. 49. Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl) ammonium bromide on the solution behavior of associating acrylamide copolymers,Macromolecules 1993, 26, 6121-6126.
    
    [153] Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K. Super-water-repellent fractal surfaces, Langmuir 1996,12, 2125-2127.
    
    [154] McHale, G.; Shirtcliffe, N. J.; Newton, M. I. Contact-angle hysteresis on super-hydrophobic surfaces, Langmuir 2004,20, 10146-10149.
    
    [155] Wu, S. H. Polymer Interface and Adhesion. New York, Marcel Dekker Inc.,1982.
    
    [156] Pauling, L. A theory of the structure and process of formation of antibodies, J.Am. Chem. Soc. 1940, 62, 2643-2657.
    
    [157] Wulff, G.; Sharhan, A.; Zabrochi, K. Enzyme-analogue built polymers and their use for the resolution of racemates, Tetrahedron Lett. 1973,14, 4329-4332.
    
    [158] Vlatakis, G.; Andersson, L. I.; Muller, R.; Mosbach, K. Drug assay using antibodymimics made by molecular imprinting, Nature 1993, 361, 645-647.
    
    [159] Wulff, G.; Vesper, W.; Einsler, R. G. Enzyme-analogue built polymers. 4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates, Marcromol. Chem. 1977,178, 2799-2802.
    
    [160] Norrlow, O.; Glad, M.; Mosbach, K. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates, J. Chromatogr. A 1984, 299,29-41.
    
    [161] Blanco, J. L. J.; Benito, J. M.; Mellet, C. O.; Fernandez, J. M. G. Sugar thioureas as anion receptors. Effect of intramolecular hydrogen bonding in the carboxylate binding properties of symmetric sugar thioureas, Org. Lett. 1999, 1,1217-1220.
    
    [162] Blanco, J. L. J.; Bootello, P.; Benito, J. M.; Mellet, C. O.; Fernandez, J. M. G.Urea-, thiourea-, and guanidine-linked glycooligomers as phosphate binders in water,J. Org. Chem. 2006, 71, 5136-5143.
    [163] Rodriguez-Lucena, D.; Benito, J. M.; Mellet, C. O.; Fernandez, J. M. G.Promoting helicity in carbohydrate-containing foldamers through long-range hydrogen bonds, Chem. Comm. 2007, 831-833.
    
    [164] Chakrabarti, P.; Bhattacharyya, R. Geometry of nonbonded interactions involving planar groups in proteins, Prog. Biophys. Mol. Biol. 2007, 95, 83-137.
    
    [165] Rodriguez-Docampo, Z.; Pascu, S. I.; Kubik, S.; Otto, S. Noncovalent interactions within a synthetic receptor can reinforce guest binding, J. Am. Chem. Soc.2006,725,11206-11210.
    
    [166] Jorgensen, W. L. Interactions between amides in solution and the thermodynamics of weak binding, J. Am. Chem. Soc. 1989, 111, 3770-3771.
    
    [167] Hefter, G.; Marcus, Y.; Waghorne, W. E. Enthalpies and entropies of transfer of electrolytes and ions from water to mixed aqueous organic solvents, Chem. Rev.2002,102, 2773-2836.
    
    [168] Susumu, K.; Kunimoto, K.; Segawa, H.; Shimidzu, T. Relaxation process of the singlet excited state of "wheel-and-axle-type" phosphorus(V) porphyrin dimers, J.Phys. Chem. 1995, 99, 29-34.
    
    [169] Ghosh, S. K.; Balasubramanian, P. N.; Pillai, G. C.; Gould, E. S. Electron transfer. 104. Reductions of pyridinecarboxamides with vitamin B_(12s) (Cob(I)alamin),Inorg. Chem. 1991,50,487-491.
    
    [170] For comprehensive recent reviews on organocatalysis, see a special issue edited by List, B. Chem. Rev. 2007,107(12), 5413-5883.
    
    [171] Fuerst, D. E.; Jacobsen, E. N. Thiourea-catalyzed enantioselective cyanosilylation of ketones, J. Am. Chem. Soc. 2005,127, 8964-8965.
    
    [172] Lalonde, M. P.; Chen, Y. G.; Jacobsen, E. N. A chiral primary amine thiourea catalyst for the highly enantioselective direct conjugate addition of a,a-disubstituted aldehydes to nitroalkenes, Angew. Chem. Int. Ed. 2006, 45, 6366-6370.
    
    [173] Song, J.; Wang, Y.; Deng, L. The mannich reaction of malonates with simple imines catalyzed by bifunctional cinchona alkaloids: enantioselective synthesis of β-amino acids, J. Am. Chem. Soc. 2006,128, 6048-6049.
    
    [174] Cao, C. L.; Ye, M. C.; Sun, X. L.; Tang, Y. Pyrrolidine-thiourea as a bifunctional organocatalyst: hightly enantioselective michael addition of cyclohexanone to nitroolefins, Org. Lett. 2006, 5, 2901-2904.
    
    [175] Connon, S. J. Organocatalysis mediated by (thio)urea derivatives, Chem. Eur.J. 2006, 72,5418-5427.
    
    [176] Zhang, Z.; Schreiner, P. R. Thiourea-catalyzed transfer hydrogenation of aldimines, Synlett. 2007, 1455-1457.
    
    [177] Chen, W.; Du, W.; Duan, Y. Z.; Wu, Y.; Yang, S. Y.; Chen, Y. C.Enantioselective 1,3-dipolar cycloaddition of cyclic enones catalyzed by multifunctional primary amines: beneficial effects of hydrogen bonding, Angew.Chem. Int. Ed. 2007, 46, 7667-7670.
    
    [178] Zuend, S. J.; Jacobsen, E. N. Cooperative catalysis by tertiary amino-thioureas:mechanism and basis for enantioselectivity of ketone cyanosilylation, J. Am. Chem.Soc. 2007,129, 15872-15883.
    
    [179] Sibi, M. P.; Itoh, K. Organocatalysis in conjugate amine additions. Synthesis of β-amino acids derivatives, J. Am. Chem. Soc. 2007,129, 8064-8065.
    
    [180] Zhang, Z. G.; Schreiner, P. R. Thiourea-catalyzed transfer hydrogenation of aldimines, Synlett. 2007, 1455-1457.
    
    [181] Yamaoka, Y; Miyabe, H.; Takemoto, Y. Catalytic enantioselective petasis-type reaction of quinolines catalyzed by a newly designed thiourea catalyst, J.Am. Chem. Soc. 2007,129, 6686-6687.
    
    [182] Pan, S. C.; List, B. Catalytic one-pot, three-component acyl-strecker reaction,Synlett. 2007, 318-320.
    
    [183] Liu, K.; Cui, H. F.; Nie, J.; Dong, K. Y.; Li, X. J.; Ma, J. A. Highly enantioselective michael addition of aromatic ketones to nitroolefins promoted by chiral bifunctional primary amine-thiourea catalysts based on saccharides, Org. Lett.2007, 9, 923-925.
    
    [184] Liu, T. Y; Li, R.; Chai, Q.; Long, J.; Li, B. J.; Wu, Y; Ding, L. S.; Chen, Y.C. Enantioselective michael addition of a-substituted cyanoacetates to vinyl ketones catalyzed by bifunctional organocatalysts, Chem. Eur. J. 2007,13, 319-327.
    
    [185] Pan, S. C.; Zhou, J.; List, B. Catalytic asymmetric acylcyanation of imines, Angew.Chem.Int.Ed.2007, 46, 612-614.
    [186] Beer, P. D.; Gale, P. A. Anion recognition and sensing: the state of the art and future perspectives, Angew. Chem. Int. Ed. 2001, 40, 486-516.
    
    [187] McQuade, D. T.; Pullen, A. E.; Swager, T. M. Conjugated polymer-based chemical sensors, Chem. Rev. 2000,100, 2537-2574.
    
    [188] Bianchi, E.; Bowman-James, K.; Garcia-Espana, E. Supramolecular Chemistry of Anions, New York, Wiley-VCH, 1997.
    
    [189] Kirk, K. L. Biochemistry of the Halogens and Inorganic Halides, New York,Plenum Press, 1991.
    
    [190] Kissa, E. Determination of inorganic fluoride in blood with a fluoride ion-selective electrode, Clin. Chem. 1987, 33, 253-255.
    
    [191] Dreisbuch, R. H. Handbook of Poisoning; Lange Medical: Los Altos, CA,1980.
    
    [192] Sohn, H.; Letant, S.; Sailor, M. J.; Trogler, W. C. Detection of fluorophosphonate chemical warfare agents by catalytic hydrolysis with a porous silicon interferometer, J. Am. Chem. Soc. 2000,122, 5399-5400.
    [193] Zhang, S. W.; Swager, T. M. Fluorescent detection of chemical warfare agents:functional group specific ratiometric chemosensors, J. Am. Chem. Soc. 2003, 125,3420-3421.
    
    [194] Kim, K. S.; Kim, H. S. A hyodeoxycholic acid-based molecular tweezer: a highly selective fluoride anion receptor, Tetrahedron 2005, 61, 12366-12370.
    [195] Kim, H.; Kang, J. Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene, Tetrahedron Lett. 2005, 46,5443.5445.
    
    [196] Kang, J.; Kim, J. Bromide selective fluorescent anion receptor with glycoluril molecular scaffold, Tetrahedron Lett. 2005, 46, 1759-1762.
    
    [197] Cruz, C.; Delgado, Drew, R.; M. G. B.; Felix, V. Evaluation of the binding ability of a novel dioxatetraazamacrocyclic receptor that contains two phenanthroline units: selective uptake of carboxylate anions, J. Org. Chem. 2005, 72, 4023-4034.
    [198] Burns, D. H.; Calderon-Kawasaki, K.; Kularatne, S. Buried solvent determines both anion-binding selectivity and binding stoichiometry with hydrogen-bonding receptors, J. Org. Chem. 2005, 70, 2803-2807.
    
    [199] Cho, E. J.; Ryu, B. J.; Lee, Y. J.; Nam, K. C. Visible colorimetric fluoride ion sensors, Org. Lett. 2005, 7, 2607-2609.
    
    [200] Curiel, D.; Cowley, A.; Beer, P. D. Indolocarbazoles: a new family of anion sensors, Chem. Commun. 2005, 236-238.
    
    [201] Xu, S.; Chen, K. C.; Tian, H. A colorimetric and fluorescent chemodosimeter:fluoride ion sensing by an axial-substituted subphthalocyanine, J. Mater. Chem. 2005,2676-2680.
    
    [202] Liu, B.; Tian, H. A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism, J. Mater. Chem. 2005, 2681-2686.
    
    [203] Lin, Z. H.; Ou, S. J.; Duan, C. Y.; Zhang, B. G.; Bai, Z. P. Naked-eye detection of fluoride ion in water: a remarkably selective easy-to-prepare test paper, Chem.Commun. 2006, 624-626.
    
    [204] Zhang, T.; Anslyn, E. V. A Colorimetric boronic acid based sensing ensemble for carboxy and phospho sugars, Org. Lett. 2006, 8, 1649-1652.
    
    [205] Jun, E. J.; Swamy, M. K.; Bang, H.; Kim, S.; Yoon, J. Anthracene derivatives bearing thiourea group as fluoride selective fluorescent and colorimetric chemosensors, Tetrahedron Lett. 2006, 47, 3103-3106.
    
    [206] Lee, S. H.; Kim, H. J.; Lee, Y. O.; Vicens, J.; Kim, J. S. Fluoride sensing with a PCT-based calix[4]arene, Tetrahedron Lett. 2006, 47, 4373-4376.
    
    [207] Kwon, T. H.; Jeong, K.-S. A molecular receptor that selectively binds dihydrogen phosphate, Tetrahedron Lett. 2006, 47, 8539-8541.
    
    [208] Cormode, D. P.; Murray, S. S.; Cowley, A. R.; Beer, P. D. Sulfate selective anion recognition by a novel tetra-imidazolium zinc metalloporphyrin receptor,Dalton Trans. 2006, 5135-5140.
    
    [209] Xu, Z. C.; Kim, S.; Lee, K.-H.; Yoon, J. A highly selective fluorescent chemosensor for dihydrogen phosphate via unique excimer formation and PET mechanism, Tetrahedron Lett. 2007, 48, 3797-3800.
    
    [210] Luxami, V.; Kumar, S. Colorimetric and ratiometric fluorescence sensing of fluoride ions based on competitive intra- and intermolecular proton transfer,Tetrahedron Lett. 2007, 48, 3083-3087.
    
    [211] Singh, N.; Jang, D. O. Benzimidazole-based tripodal receptor: highly selective fluorescent chemosensor for iodide in aqueous solution, Org. Lett. 2007, 9,1991-1994.
    
    [212] Wu, Y. K.; Peng, X. J.; Fan, J. L.; Gao, S.; Tian, M. Z.; Zhao, J. Z.; Sun, S. G.Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer, J. Org. Chem. 2007, 72, 62-70.
    
    [213] Lin, C.; Simov, V.; Drueckhammer, D. G. Interaction of halide and carboxylate ions with 4,5-diacetamidoacridine-9(10H)-one: thermodynamics of association and deprotonation events, J. Org. Chem. 2007, 72, 1742-1746.
    
    [214] Devaraj, S.; Saravanakumar, D.; Kandaswamy, M. Dual chemosensing properties of new anthraquinone-based receptors toward fluoride ions, Tetrahedron Lett. 2007,45,3077-3081.
    
    [215] Shang, X. F.; Lin, H.; Lin, H. K. The synthesis and recognition properties of colorimetric fluoride receptors bearing sulfonamide, J. Fluorine Chem. 2007, 128,530-534.
    
    [216] Bates, G. W.; Gale, P. A.; Light, M. E. Isophthalamides and 2,6-dicarboxamidopyridines with pendant indole groups: a 'twisted' binding mode for selective fluoride recognition, Chem. Commun. 2007, 2121-2123.
    
    [217] Ghosh, S.; Choudhury, A. R.; Row, T. N. G.; Maitra, U. Selective and unusual fluoride ion complexation by a steroidal receptor using OH...F~- and CH...F~- interactions: a new motif for anion coordination?, Org. Lett. 2005, 7, 1441-1444.
    
    [218] Goritz, M.; Kramer, R. Allosteric control of oligonucleotide hybridization by metal-induced cyclization,J. Am. Chem. Soc. 2005,127, 18016-18017.
    
    [219] Darbost, U.; Seneque, O.; Li, Y.; Bertho, G.; Marrot, J.; Rager, M.-N.;Reinaud, O.; Jabin, I. Allosteric tuning of the intra-cavitybinding properties of a calix[6]arene through external binding to a Zn(II) center coordinated to amino side chains, Chem. Eur. J. 2007,13, 2078-2088.
    
    [220] Kovbasyuk, L.; Pritzkow, H.; Kramer, R.; Fritsky, I. O. On/off regulation of catalysis by allosteric control of metal complex nuclearity, Chem. Commun. 2004,880-881.
    
    [221] Sessler, J. L.; Tomat, E.; Lynch, V. M. Positive homotropic allosteric binding of silver(I) cations in a schiff base oligopyrrolic macrocycle, J. Am. Chem. Soc. 2006,725,4184-4185.
    
    [222] Basurto, S.; Riant, O.; Moreno, D.; Rojo, J.; Torroba, T. Colorimetric detection of Cu[II] cation and acetate, benzoate, and cyanide anions by cooperative receptor binding in new α,α-bis-substituted donor-acceptor ferrocene sensors, J. Org.Chem. 2007, 72, 4673-4688.
    
    [223] Ercolani, G. Assessment of cooperativity in self-assembly, J. Am. Chem. Soc.2003,125, 16097-16103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700