用户名: 密码: 验证码:
镁合金固相回收成型过程的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是最轻的金属结构材料,被誉为“21世纪绿色工程材料”,在汽车、航空航天以及电子行业中具有广阔的发展前景。随着镁及镁合金产业的快速发展,将产生大量的镁合金废料,因此解决镁合金废料的再生问题已经迫在眉睫,成为影响镁合金产业可持续发展的主要因素。
     本文首先综述了镁及镁合金的主要性能特点及其应用现状,镁合金废料的现状和废料的再生技术。然后通过塑性成型理论研究了镁合金固相成型过程中工艺参数的选择规律。
     利用Gleeble-1500D热/力模拟机对AZ91D镁合金进行等温压缩试验,通过分析AZ91D镁合金在高温变形下的流变应力,证明AZ91D镁合金的流变应力行为满足双曲正弦函数关系,得到AZ91D镁合金的热压缩流变应力方程: (ε|·)=3.21227×10~(14)[sinh(0.00866σ)]~(785)exp(-176010/RT)
     采用DEFORM-3D软件,研究了温度、速度和挤压比对镁合金固相成型过程的影响,得到AZ91D和AZ31镁合金棒材挤压过程中,坯料在径向、轴向、周向的温度,应变和应力分别存在分布不均,并且温度和应变在模口处达到最大值。挤压过程中,挤压力在坯料未充满凹模型腔时逐渐增大,当坯料流出凹模一段时挤压力达到最大值,在此后的稳态阶段时,挤压力缓慢减小,并且基本保持稳定。
     模拟结果表明:在其他参数不变的情况下,模口材料的温度和挤压机的载荷随着挤压速度增大而增大;在挤压速度和挤压比一定时,模口材料的温度随着坯料初始加热温度的升高而升高,挤压机的载荷随着坯料初始加热温度的升高而减小;在挤压速度和坯料初始加热温度一定时,模口材料的温度和挤压机的载荷随着挤压比的增大而增大。综合考虑应选择0.5mm/s的挤压速度,400℃(AZ91D)和350℃(AZ31)的坯料初始加热温度,25:1的挤压比。
As the lightest structural metal material, Magnesium alloys which are compared as the "21st Century Green Engineering Material" have broad development prospects in the automotive, aerospace and electronic industry. With the rapid development of magnesium and magnesium alloy industry, large amounts of magnesium alloy scrap will be produced, so to solving the problem of recycling of magnesium alloy scrap is imminent, which has become the major factor of the sustainable development of magnesium alloy industry.
     First, elementary performance, characteristics and applications of the magnesium alloy, present situation of magnesium alloy scrap and recycling technology of magnesium alloy scrap are summarized. The extrusion process of the magnesium alloy is studied according to the metal plastic theory, and finding the rule of extrusion parameter.
     In this study, Gleeble-1500D thermal simulator was used to the isothermal compression tests of the AZ91D magnesium alloy. It showns that the flow stress behavior of AZ91D magnesium alloy is content with Hyperbolic sine function. Through this analysis we can get the flow stress function of AZ91D magnesium alloy: (ε|·)=3.21227×10~(14)[sinh(0.00866σ)]~(785)exp(-176010/RT)
     The effects of the extrusion process parameters, such as deformation temperature, extrusion velocity and extrusion ratio on the extrusion process were studied by the DEFORM-3D software. These results of AZ91D and AZ31 magnesium alloy extrusion processing numerical simulation show that the temperature, strain and stress in the radial, axial were unevenly distributed and the maximum value of the temperature and strain appears at the die exit. In the extrusion process, the extrusion pressure increases fastly at the beginning period, when the semifinished product was extruded from the concave model, the extrusion pressure reaches maximum value. Then, the extrusion process becomes steady-state, the extrusion pressure is reduced slowly and remains stable basicly.
     The simulation results show that: the temperature of the material at mould mouth and extrusion pressure increase with the increasing of the extrusion speed. when the other parameters are invariable; When the extrusion speed and extrusion ratio are certain, the temperature of the material at mould mouth increases with the increasing of initial heating temperature, extrusion pressure decreases with the increasing of initial heating temperature; When the extrusion speed and initial heating temperature are certain, the temperature of the material at mould mouth and extrusion pressure along with the increasing of extrusion ratio. Under the comprehensive consideration, we should choose the extrusion speed of 0.5 mm/s, the semifinished product initial heating temperature of 400℃(AZ91D) and 350℃(AZ31), the extrusion ratio of 25:1.
引文
[1]柴跃生,孙钢,梁爱生.镁及镁合金生产知识问答[M].北京:冶金工业出版社, 2005.
    [2]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社, 2004.
    [3]陈振华,夏伟军,严红革,等.变形镁合金[M].北京:化学工业出版社,2005.
    [4]王宏良.镁合金的特点及加工要点[J].工艺与装备, 2009, 4: 63-65.
    [5]许振明,徐孝勉著.铝和镁的表面处理[M].上海科学技术文献出版社, 2005.
    [6]张津,章宗和,等.镁合金及应用[M].化学工业出版社, 2004.
    [7]褚丙武,梁冬梅,姚素娟,等.镁及镁合金的应用与研究[J].世界有色金属, 2005, 1:26-30.
    [8]丁文江等.镁合金科学与技术[M].北京:科学出版社, 2007.
    [9] B. L. Mordike, T. Ebert. Mgnesium Properties-applications-potential[J]. Material Science and Engineering A. 2001, 302: 37-45.
    [10] E. Aghion, B. Bronfin, D. Eliezer. The role of the magnesium industry in protecting the Environment[J]. JoumM of Materials Processing Technology. 2001, 17: 381-385.
    [11]张永君,严川伟,王福会,等.镁的应用及其腐蚀与防护[J].材料保护, 2002, 35(4): 4-6.
    [12]康义.中国有色金属工业“十五”发展概览[M].北京:冶金工业出版社, 2007.
    [13]蒋太富,刘静安.镁及镁合金材料的应用及市场开拓前景[J].铝加工. 2007, 174: 5-10.
    [14] D. S. Mehta, S. H. Masood, W. Q. Song. Investigation of weal properties of magnesium and aluminum alloys for automotive applications[J]. Journal of Materials Processing Technology. 2004, 155-156: 1526-1531.
    [15] Jindan Du, Weijian Hart, Yinghong Peng. Life cycle greenhouse gases, energy and Cost assessment of automobiles using magnesium from Chinese Pidgeon process[J]. Journal of Cleaner Production. 2010, 18: 112-119.
    [16] HANKO G, ANTREKOWITSCH H, EBNER P. Recycling Automotive Magnesium Scraps[J]. Journal of the Minerals, Metals and Materials Society, 2002, 54(2): 51-54.
    [17] JUNG H C, LEE Y C, SHIN K S. Fluxless Recycling of Die-cast AZ91 Magnesium Alloy Scraps[J]. Materials Science Forum, 475/479: 541-544.
    [18]陈刚,范培耕,彭晓东,等.镁合金废料回收与再生技术研究现状[J].兵器材料科学与工程, 2007, 30(5): 73-76.
    [19] TSENG K S, SHEU G L, HUANG S T. Management and Recycle of Magnesium Alloy Scraps in Die Casting Factory[J]. Materials Science Forum, 488/489: 49-52.
    [20]蒋忠城.镁合金报废产品回收处理技术的进展[J].铸造技术, 2005,26(6):478-485.
    [21] GAO H T, WU G H, DING W J, et a1. Purifying Effect of New Flux on Magnesium Alloy[J]. Trans. Nonferrous Met. Soc. China, 2004, 14(3): 530-536.
    [22]丛福官.镁合金的回收与再生[J].轻合金加工技术, 2006, 34(2): 1-5.
    [23]王晓强,李培杰,刘明星,等.镁合金再生技术综述[J] .铸造, 2001, 8: 446-449.
    [24]殷建华.一种回收镁合金废料的新工艺[J].世界有色金属, 2006, (12): 74-77.
    [25]凡海兵,樊自田.镁合金废料再生技术[J].铸造设备研究, 2005, (5): 50-54.
    [26]陈杰,王渠东,彭涛,等.有色金属固态回收技术的研究进展[J].材料导报, 2009, 23(6): 77-80.
    [27]陈晓瑜,吉泽升,胡茂良.镁合金固相合成和回收的研究进展[J].轻合金加工技术, 2007, 35(4): 10-13.
    [28]胡茂良.固相再生AZ91D镁合金组织结构及性能研究[D].哈尔滨:哈尔滨理工大学, 2008.
    [29] NAKANISHI M, MABUCHI M, SAITO N, et a1. Tensile Properties of the ZK60 Magnesium Alloy Produced by Hot Extrusion of Machined Chip[J]. Journal of Materials Science LeRers, 1 998, 1 7: 2003-2005.
    [30] LIU Ying, LI Yuan Yuan, ZHANG Da Tong, et a1. Microstructure and Properties of AZ80 Magnesium Alloy Prepared by Hot Extrusion from Recycled Machined Chips[J]. Trans. Nonfc: rrous Met. Soc: China, 2002, 12(5): 882-885.
    [31] JI Ze Sheng, HU Mao Liang, CHEN Xiao Yu. Fracture Analysis and Mechanical Property of AZ9 1D Magnesium Alloy Chips Prepared by Solid State Recycling[C]. Proceedings of the 5th International Conference on Fracture and Damage Mechanics, Harbin, 2006: 499-502.
    [32] MABUCHI M, KUBOTA K, HIGASHI K. New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bars[J]. Materials Transactions, JIM, 1995, 36(10): 1249-1254.
    [33] YASUMASA C, TETSUJI H, MAMORU M. Mechanical and Corrosion Properties of AZ31 Magnesium Alloy Repemedly Recycled by Hot Extrusion[J]. MaterialsTransactions, 2006, 47(4): l040-1046.
    [34] Doege E, Draker K. Sheet metal forming of magnesium wrought alloy formability and process technology[J]. Journal of Material Process Technology, 2001, 115(1): 14-18.
    [35] Wantanabe H, Tsutsui H, Wukai T, et a1. Deformation mechanism in a coarse-grainedMg-A1-Zn alloy at elevated temperature[J]. Internation Journal of Plasticity, 2001, 17(3): 387-397.
    [36]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2002.
    [37] Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy[J]. Materials Transactions, 2003, 44(4): 426-435.
    [38] Koike J. New deformation mechanisms in fine-grain Mg alloy[J]. Materials Science Forum, 2003, 419-422: 189
    [39]赵国丹. AZ31镁合金热变形力学行为和动态再结晶的研究[D].重庆:重庆大学, 2005.
    [40]岳陆游,陈炜.板料冲压成形有限元模拟分析.电加工与模具[J], 2003, (1): 40-44.
    [41]乔端,钱银根.非线性有限元及其在塑性加工中的应用[M].北京:冶金工业出版社, 1990.
    [42]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社, 1999.
    [43]史学彬. AZ91D镁合金热压缩变形行为研究[D].太原:太原理工大学, 2008.
    [44]郭会光,刘建生.金属塑性加工模拟与控制[J].太原重型机械学报, 1997, 18(3): 195-200.
    [45]王祖唐,关延栋,雷沛,等.金属塑性成型理论[M].机械工业出版社, 1989.
    [46]丁汉林. AZ91镁合金高温变形行为的实验研究与数值模拟[D].上海:上海交通大学, 2007.
    [47]郭强,严红革,陈振华,等. AZ31镁合金高温热压缩变形特性[J].中国有色金属学报, 2005, l 5(6): 900-906.
    [48] Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-A1-Zn alloys at elevated temperatures[J]. Journal of Materials Processing Technology, 1998, 80-81: 513-516.
    [49] Galiyev A, Kaibyshev R, Sakai T. Continuous dynamic recrystallization in magnesiumalloy[J]. Materials Science Forum, 2003, 419-422: 509-514.
    [50] SeHars C M, Tegart W J. Physical Metallurgy of Thermo-mechanical Processing of Steels and Other Metals[J]. Science Review Methods, 1966, 63: 731-735.
    [51] Zener C, Hollomon J H. Effect of Strain. Rate upon the Plastic Flow of Steel[J]. Journal of Applied Physics,1944, 15(1): 22-28.
    [52] Takuda H, Fujimoto H, Hatta N. Modeling on flow stress of Mg-A1-Zn alloys at elevated temperature[J]. Material Process Technology, 1998, 80-8l: 513-516.
    [53] S R Agnew, C N Tom, D W Brown, et a1. Study of slip mechanisms in a magnesium alloy by neutron diraction and modeling [J]. Scripta Materialia , 2003, 48: 1003–1008.
    [54] K Máthis, Z Trojanová, P Lukác. Hardening and softening in deformed magnesium alloys [J]. Materials Science and Engineering, 2005, A324: 141-144.
    [55] M H Yoo, S R Agnew, J R Morris, et a1. Non-basal slip systems in HCP metals andalloys: source mechanisms [J]. Materials Science and Engineering, 2001, A319-321: 87-92.
    [56]谢建新,刘静安.金属挤压理论与技术[M].北京:冶金工业出版社, 2001, 10-45.
    [57]彭大暑.金属塑性加工原理[M].长沙:中南大学出版社, 2004.
    [58]程俊伟,夏巨谌,王新云,等. AZ31变形镁合金挤压成形工艺的研究[J].金属成形工艺, 2004, (3): 4-10.
    [59]刘静安.轻合金挤压工具与模具[M].北京:冶金工业出版社, 1990.
    [60]杨平,胡轶嵩,等.镁合金AZ31高温变形机制的织构分析[J].材料研究学报, 2004, (1): 52-59.
    [61]段新峰,梁岩峰,汪指南.基于有限元分析的铝合金等温挤压工艺设计[J].安徽工程科技学院学报, 2003, 18(3): 57-60.
    [62] J Zhou, L Li, et a1. 3D FEM simulation of the whole cycle of aluminum extrusion throughout the transient state and the steady state using the updated Lagrangian approach[J]. Journal ofmaterials processing technology, 2003, (134): 384-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700