用户名: 密码: 验证码:
高柔结构AMD振动控制系统实施的相关方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国民经济的发展促使我国高柔结构的蓬勃发展。为使强风作用下高柔结构的加速度和层间位移满足相关规范要求,一般需要提高结构的刚度,较大幅度地增加结构的造价。主动质量阻尼器(Active Mass Damper/Driver, AMD)是一种通过增加结构阻尼来满足规范要求的有效途径,其控制效果好、控制频带宽,且性价比相比较高。目前,有关AMD控制系统的研究较多,但实际工程应用却并不多见,这主要是由于工程应用仍有较多问题,如被控结构数值模型的建立、全状态反馈控制系统基于部分楼层加速度的状态观测器设计、系统时滞的影响情况及有效补偿控制器设计等。本文针对上述问题主要开展了如下研究工作:
     基于几种常用模型减维方法的对比分析,结合高柔结构的特点选择其中较适用的减维方法进行改进,并将从结构时域响应、频率响应和系统极点分布等方面对比分析改进方法获得的低维模型与原模型,最后基于上述低维模型设计低维AMD控制器,并以某实际高柔结构AMD控制系统数值模型和四层框架实验模型为例进行验证。
     针对全状态反馈AMD控制系统,基于系统状态方程及模糊神经网络分别设计以部分楼层加速度为输入的系统全状态观测器,同样以实际AMD控制系统数值模型及实验模型进行验证。最后以基于状态方程的观测器误差为指标,通过数值模拟确定了某实际高柔结构中加速度传感器的布置方案。
     为减小反馈信号中噪声对控制系统的影响及满足AMD控制的实时性要求,基于Kalman滤波原理及线性矩阵不等式(LMI)理论设计基于LMI的Kalman实时滤波器,最后将以实际高柔结构数值模型及四层框架AMD实验模型为例验证该滤波器的有效性。
     理论分析时滞对单自由度控制系统和多自由度控制系统极点位置、稳定性的影响,并给出保证系统稳定的最大时滞计算公式,基于该公式分析控制增益和被控结构参数对系统稳定性的影响。基于AMD控制时滞对系统极点位置的影响情况及极点配置算法设计时滞补偿控制器,并以某实际高柔结构AMD控制系统的数值模型及实验系统为例进行验证。
     基于伺服电机输入输出关系式,建立AMD控制系统不计CSI效应、计低阶CSI效应和计高阶CSI效应时的数学模型,分析了CSI效应的影响机理及受结构参数的影响情况。针对CSI效应导致的系统时变时滞,设计H∞控制器以减小该效应对控制系统的影响。
     基于期望惯性质量相对速度与行程间的函数关系式,推导由AMD行程实时计算反馈增益的公式,并以实际工程为例分析反馈增益离散时变或连续时变时AMD行程的受控情况。另外,以某四层框架AMD控制系统为例,简要介绍实际AMD控制系统设计与实施的步骤与方法。
Flexible buildings are developing rapidly with the development of the national economy. However, the structural responses under strong wind, such as accelerations of high-rise buildings and inter-story displacement angle, are too large to meet comfort requirements in relevant codes, so stiffness of the structure need to be increased generally, which results in a substantial increase in the cost. Active Mass Damper (or Active Mass Driver, AMD) is a potential solution to the above questions because of its good control effect, great control bandwidth in frequency and high performance-to-price ratio. Although AMD control system has been widely studied, while its applications in civil engineering are fewer than the other control devices, such as Tuned Mass Damper (TMD). There are still many questions should be solved in engineering applications, including establishment of accurate numerical model to the structure, observer design of full state feedback control system based on partial floor’s accelerations, influence of time delays of AMD control system on the system performances, effective compensator design to compensate time delays and other issues. In response to those problems, the following work has been done.
     The order of a control system is reduced based on comparative analysis of several commonly used methods. The optimal method will be improved combined with characteristics of high-rise buildings. Comparative analysis of original model and reduced model are obtained using the improved method, which includes structural responses in time domain and frequency domain, pole distribution of the two systems, etc. A reduced-order controller is designed based on the low-order model. Lastly, numerical analysis of a high-rise building with an AMD control system and experimental analysis of a four-layer frame with an AMD control system are carried out to verify the accuracy and validity of low-order model and controller.
     For an AMD control system with full state feedback, two observers with partial floor’s accelerations as input are designed, where the system state equations and fuzzy neural network are used for two observers separately. To proof the accuracy and validity of the proposed method, numerical analysis of a high-rise building with an AMD control system and experimental analysis of a four-layer frame with an AMD control system are both given. Finally, to take the average observation error as objectives, the locations of accelerometers in high-rise buildings are determined by the minimum value of average observation error.
     To reduce the influence of noise in feedback signal in control system and to meet the requirements of real-time control of AMD control system, a LMI-Kalman filter is designed based on Kalman filtering theory and linear inequalities (LMI) theory. Furthermore, the effectiveness of the filter is certified based on a numerical model of a high-rise building and experimental four-layer frame model with an AMD control system.
     Influence of time delay on pole position and stability for AMD control systems with single degree or multi-degree of freedom is analyzed in theory. According to the analysis results, the maximum time delay to ensure stability of the system is calculated, as following, the influence of control gain and structural parameters on system stability is analyzed. Then a time-delay compensation controller is designed based on the pole assignment algorithm to an actual high-rise building with an AMD system.
     Based on the input-output formula of servo motor, numerical model of an AMD control system is established, which includes the model without CSI effect, the model with low-order CSI effect and the model with high-order CSI effect, respectively. Based on these three models, mechanism of CSI effect and the influence of structural parameters on CSI effect are analyzed, while the result shows that essence of CSI is equal to a time-varying time lag. To reduce the influence of this effect on the control system, a H∞controller is designed. At last, effectiveness of compensator is verified.
     Based on the relationship between auxiliary mass stroke and its relative speed, a calculation formula of feedback gain based on auxiliary mass stroke is established to achieve computing time-varying feedback gain step by step or continuously. Analysis on how AMD strokes change with gains step by step or continuously is carried out using an actual project. In addition, procedures and methods of design and implementation of AMD control systems is introduced briefly based on a four-layer frame with an AMD control system.
引文
[1]滕军.结构振动控制的理论、技术和方法[M].北京:科学出版社,2009
    [2] Yao J T P. Concept of Structure Control [J]. Journal of the StructuralDivision, ASCE,1972,98(ST7):1567-1574.
    [3]欧进萍.结构振动控制-主动,半主动和智能控制[M].北京:科学出版社.2003:58-61.
    [4] Xu Y L. Parametric Study of Active Mass Dampers for Wind-Excited TallBuildings [J]. Engineering Structures,1996,18(1):64-76.
    [5]张春巍.结构振动的电磁驱动AMD控制系统及其相关理论与实验研究[D].哈尔滨:哈尔滨工业大学学位论文,2005:131-146.
    [6]张春巍,欧进萍.结构振动的电磁驱动AMD系统控制策略与试验[J].噪声与振动控制,2006,5:9-13.
    [7]张春巍,欧进萍.结构振动AMD控制系统主动控制力特征指标与分析[J].工程力学,2007,24(5):1-9.
    [8]张春巍,欧进萍.结构AMD系统的控制力特征[J].振动工程学报,2010,23(1):1-6.
    [9] Ji C Y, Li H J, Meng Q M. Active Control Strategy for Offshore StructuresAccounting for AMD Constraints [J]. High Technology Letters,2004,10(4):63-68.
    [10] Cao H, Reinhorn A M, Soong T T. Design of an Active Mass Damper for aTall TV Tower in Nanjing, China [J]. Engineering Structures,1998,20(3):134-143.
    [11] Aizawa S, Fukao Y, Minewaki S, et al. An Experimental Study on theActive Mass Damper [C]. Proceedings of9th World Conference onEarthquake Engineering, Tokyo-Kyoto, Japan,1988,5:871-876.
    [12] Yamamoto M, Aizawa S, Higashino M, et al. Practical Applications ofActive Mass Dampers with Hydraulic Actuator [J]. Earthquake Engineeringand Structural Dynamics,2001,30:1697-1717(DOI:10.1002/eqe.88).
    [13] Ricciardelli F, Pizzimenti A D, Mattei M. Passive and Active Mass DamperControl of the Response of Tall Buildings to Wind Gustiness [J].Engineering Structures,2003,25:1199-1209.
    [14] Ikeda Y, Sasaki K, Sakamoto M, et al. Active Mass Driver System as theFirst Application of Active Structural Control [J]. Earthquake Engineeringand Structureal Dynamics,2001,30:1575-1595(DOI:10.1002/eqe.82).
    [15] Nishitani A. Application of Active Structural Control in Japan [J]. Progressin Structural Engineering and Materials,1998,3:301-307.
    [16] Nishitani A, Inoue Y. Overview of the Application of Active/SemiactiveControl to Building Structures in Japan [J]. Earthquake Engineering andStructural Dynamics,2001,30:1565-1574(DOI:10.1002/eqe.81).
    [17] Ikeda Y. Active and Semi-active Vibration Control of Buildings inJapan——Practical Applications and Verification [J]. Structural Controland Health Monitoring,2009,16:703-723.
    [18]朱耀麟,杨志海,陈西豪.模型降阶方法研究[J].微计算机信息,2011,27(5):22-25.
    [19] Gugercin S, Athanasios C A. A Survey of Model Reduction by BalancedTruncation and Some New Results [J]. International Journal of Control,2004,77(8):748-766.
    [20] Sandberg H. A Case Study in Model Reduction of Linear Time-VaryingSystems [J]. Automatica,2006,42:467-472.
    [21] Qu Z Q, Yinming Shi, et al. A Reduced-Order Modeling Technique for TallBuildings with Active Tuned Mass Damper [J]. Earthquake Engineeringand Dynamics,2001,30:349-362.
    [22] LI Q S. Reduced Order Control for Wind-Induced Vibrations of TallBuildings [J]. The Structural Design of Tall and Special Buildings,2003,12:177-190.
    [23] Joshi A, Kim W J. Modeling and6-DOF Vibration Reduction for aSpacecraft with Precision Sensors [C]. Proceeding of the American ControlConference Deriver,Colorado,2003:1122-1127.
    [24] Wang Q, Lam J. Optimal H2Model Reduction for Mechanical Systems [J].International Journal of Innovative Computing Information and Control,2010,6(5):2045-2054.
    [25] Zhang Z, Lee Y H. An Automatic Model Order Reduction of an UWBAntenna System [C]. Progress in Electromagentics Research,2010,PIER104:267-282.
    [26] Heinkenschloss M, Reis T. Balanced Truncation Model Reduction forSystems with Inhomogeneous Initial Conditions [J]. Automatica,2011,47:559-564.
    [27] Seto K, Mitsuta S. A New Method for Making a Reduced-order Model ofFlexible Structures Using Unobservability an Uncontrollability and ItsApplication in Vibration Control [J]. The Japan Society of MechanicalEngineers,1994,37(3):444-449.
    [28] Gildin E. Model and Controller Reduction of Large-Scale Structures Basedon Projection Methods [D]. Austin: Ph.D Dissertation of the University of Texas at Austin,2006:101-196.
    [29]李惠,彭君义.结构模型与控制器降阶的主动控制试验研究[J].振动工程学报,2006,19(1):17-23.
    [30]李雪峰,王建国.内平衡系统多目标最优模型降阶研究[J].系统仿真学报,2009,21(8):2135-2138.
    [31] Du H P, Boffa J, Zhang N. Active Seismic Response Control of TallBuildings Based on Reduced Order Model [C]. Proceedings of the2006American Control Conference. Minneapolis, Minnesota, USA,2006:14-16.[32] Jeon S, Tomizuka M. Benefits of acceleration measurement in velocityestimation and motion control [J]. Control Engineering Practice.2007,15:325–332
    [33] Farza M, M S M, Maatoug T, et al. Adaptive Observers for NonlinearlyParameterized Class of Nonlinear Systems [J]. Automatica,2009,45:2292-2299.
    [34] Krokavec D A, Filasova A. A Reduced-Order TS Fuzzy Observer Schemewith Application to Actuator Faults Reconstruction [J]. Hindawi PublishingCorporation Mathematical Problems in Engineering,2012,10.1155:1-25.
    [35] Karimi H R, Chadli M. Robust Observer Design for Takagi-Sugeno FuzzySystems with Mixed Neutral and Discrete Delays and Unknown Inputs [J].Mathematical Problems in Engineering,2012:1-13.
    [36] Saoudi D, Chadli M. Unknown Input Observer Design for Fuzzy BilinearSystem: An LMI Approach [J]. Mathematical Problems in Engineering,2012:1-22.
    [37] Kheloufi H, Zemouche A, Bedouhene F, et al. A New Observer-BasedStabilization Method for Linear Systems with Uncertain Parameters [C],2013European Control Conference (ECC), Zürich, Switzerland,2013:17-19.
    [38] Golabi A, Beheshti M T H, Asemani M H. Dynamic Observer-BasedControllers for Linear Uncertain Systems [J]. Journal Control TheoryApplication,2013,11(2):193–199.
    [39] Efimova D, Perruquettia W, Richard J P. Interval Estimation for UncertainSystems with Time-Varying Delays [J]. International Journal of Control,2013,86(10):1777-1787.
    [40] Bouguila N, Jamel W, Khedher A, et al. Multiple Observer Design for aNon-Linear Takagi–Sugeno System Submitted to Unknown Inputs andOutputs [J]. IET Signal Processing,2013,7(8):635-645.
    [41] Liu D R, Huang Y Z, Wang D, et al. Neural-Network-Observer-BasedOptimal Control for Unknown Nonlinear Systems Using Adaptive DynamicProgramming [J]. International Journal of Control,2013,86(9):1554-1566.
    [42] Nozaki T, Mizoguchi T. Decoupling Strategy for Position and Force ControlBased on Modal Space Disturbance Observer [J]. IEEE Transactions onIndustrial Electronics,2014,61(2):1022-1032.
    [43] Guo H Y, Chen H, Cao D P, et al. Design of a Reduced-Order Non-LinearObserver for Vehicle Velocities Estimation [J]. IET Control Theory Appl,2013,7(17):2056–2068.
    [44] Xiang M, Xiang Z R. Observer Design of Switched Positive Systems withTime-Varying Delays [J]. Circuits System Signal Process,2013,32:2171–2184.
    [45] Wang B, Shi P, Karimi H R, et al. Observer-Based Sliding Mode Control forStabilization of a Dynamic System with Delayed Output Feedback [J].Mathematical Problems in Engineering,2013,2013:1-6.
    [46] Dong Y L, Yang F W. Stability Analysis and Observer Design for a Class ofNonlinear Systems with Multiple Time-Delays [J]. Advances in DifferenceEquations,2013,2013:1-16.
    [47] Alessandri A, Baglietto M, Battistelli G. A Maximum-Likelihood KalmanFilter for Switching Discrete-time Linear Systems [J]. Automatica,2010,46:1870-1876.
    [48] Boizot N, Busvelle E, Gauthier J P. An Adaptive High-Gain Observer forNonlinear Systems [J]. Automatica,2010,46:1483-1488.
    [49] Karasalo M, Hu X M. An Optimization Approach to Adaptive KalmanFiltering [J]. Automatica,2011,7:1785-1793.
    [50] Peesapati R, Sabat S L, Karthik K P, et al. Efficient Hybrid Kalman Filterfor Denoising Fiber Optic Gyroscope Signal [J]. Optik,2013,124:4549-4556.
    [51] Erazo K, Hernandez E M. A Model-Based Observer for State and StressEstimation in Structural and Mechanical Systems: Experimental Validation[J]. Mechanical System and Signal Processing,2014,43:141-152.
    [52] Liu Z G, Wang J K, Xue Y B. Interacting Multiple Sensor Filter [J]. SignalProcessing,2012,92:2180-2186.
    [53] Yu Y H. Conbining H∞Filter and Cost-Reference Particle Filter forConditionally Linear Dynamic Systems in Unknown Non-Gsussian Noises[J]. Signal Processing,2013,93:1871-1878.
    [54] Qin F, Dai X W, Mitchell J.E. Effective-SNR Estimation for WirelessSensor Network Using Kalman Filter [J]. Ad Hoc Networks,2013,11:944-958.
    [55] Qi W B, Zhang P, Cheng Y. Robust Weighted Fusion Kalman Filters forMultisensory Time-Varying Systems with Uncertain Noise Variances [J].Signal Processing,2014.(DOI: http://dx.doi.org/10.1016/j.sigpro.2013.12.013)
    [56]王颖,金志军.常用数字滤波算法[J].中国计量,2012,3:99-100.
    [57]张宗平,刘贵忠,董恩清.基于二进小波变化的信号去噪[J].电子与信息学报,2011,23(11):1083-1090.
    [58]陶红艳,秦华峰,余成波.基于改进阈值函数的小波域去噪算法的研究[J].压电与声光,2008,30(1):93-95.
    [59] Gu K, Kharitonov V L, Chen J. Stability of Time Delay Systems [M]. NewYork, Springer-Verlag,2003:117-228
    [60]戴护军,徐鉴.时滞对于参数激励系统周期运动的影响[J].力学学报,2004,25(3):69-76.
    [61] Liu T, Cai Y Z, Gu D Y, et al. New Modified Smith Predictor Scheme forIntegrating and Unstable Processs with Time Delay [J]. IEEE Proc. ControlTheory Application,2005,152(2):238-246.
    [62] Zhou W N, Tong D B, Lu H Q, et al. Time-Delay Dependent H∞ModelReduction for Uncertain Stochastic Systems: Continuous-Time Case [J].Circuits Syst Signal Process,2011,30:941–961.
    [63] Xu S Y, Lam J, Yang C W, et al. An LMI Approach to Guaranteed CostControl for Uncertain Linear Neutral Delay Systems [J]. InternationalJournal of Robust and Nonlinear Control,2003,13(1):35-53.
    [64] Hu G D, Liu M. Stability Criteria of Linear Neutral Systems with MultipleDelays [J]. IEEE, Trans. Autom. Control,2007,52(3):720-724.
    [65] Hu G Da, Hu G Di, Zou X. Stability of Linear Neutral Systems withMultiple Delays: Boundary Criteria [J]. Applied Mathematics andComputation,2004,148(3):707-715.
    [66] Phohomsiri P, Udwadia F E, Bremen H F. Time-Delayed Positive VelocityFeedback Control Design for Active Control of Structures [J]. Journal ofEngineering Mechanics,2006,132(6):690-703.
    [67] Kwon O M, Park J H, Lee S M. On Delay-Dependent Robust Stability ofUncertain Neutral Systems with Interval Time-Varying Delays [J]. AppliedMathematics and Computation,2008,203:843–853.
    [68] Udwadia F E, Phohomsiri P. Active Control of Structures Using TimeDelayed Positive Feedback Proportional Control Designs [J]. Structuralontrol and Health Monitoring,2006,13:536–552.
    [69] Mohamed A R, Mariam J J. Compensation of Time Delay Effect inSemi-Active Controlled Suspension Bridges [J]. Journal of Vibration andControl,2010,16(10):1527–1558.
    [70] Agrawal A K, Yang J N Compensation of Time-Delay for Control of CivilEngineering Structures [J]. Earthquake Engineering and Structral Dynamics,2000,29:37-62.
    [71] Chu S Y, Soong T T, Lin C C, et al. Time-delay Effect and Compensation onDirect Output Feedback Controlled Mass Damper Systems [J]. EarthquakeEngineering and Structural Dynamics,2002,31:121-137.
    [72]金峤,周晶.考虑控制延时的AMD对偏心结构离散变结构控制[J].哈尔滨工业大学学报,2005,37(6):790-794.
    [73]陈龙祥,蔡国平.地震作用下建筑结构的多时滞最优控制[J].振动与冲击,2008,27(4):63-65.
    [74] Cai G P, Huang J Z. Optimal Control Method for Seismically ExcitedBuilding Structures with Time-delay in Control [J]. Journal of EngineeringMechanics,2002,128(6):602-612.
    [75] Cai G P, Huang J Z. Discrete-Time Variable Structure Control Method forSeismic-Excited Building Structures with Time Delay in Control [J].Earthquake Engineering and Structural Dynamics,2002,31:1347–1359.
    [76]陈龙祥.结构振动的时滞反馈控制及其实验研究[D].上海:上海交通大学工程力学学科博士学位论文,2009:1-46.
    [77] Du H P, Zhang N. H∞Control for Buildings with Time Delay in Control ViaLinear Matrix Inequalities and Genetic Algorithms [J]. EngineeringStructures,2008,30:81-92.
    [78] CHEN C W. Application of Fuzzy-Model-Based Control to NonlinearStructural Systems with Time Delay: an LMI Method [J]. Journal ofVibration and Control,2010,16(11):1651–1672.
    [79] Zhang K Y, Cao D Q. Further Results on Asymptotic Stability ofLinearneutral Systems with Multiple Delays [J]. Journal of the FranklinInstitute,2007,344:858–866.
    [80] Hu H Y. Using Delayed State Feedback to Stabilize Periodic Motions [J].Journal of Sound and Vibration,2004,275:1009-1025.
    [81]周岱,郭军慧,周岚等.空间结构风振控制系统时滞的神经网络补偿方法[J].工程力学,2009,26(5):183-188.
    [82]周岱,黄真,邓麟勇等.含时滞空间网格结构振动的动态矩阵预测控[J].工程力学,2010,27(1):116-122.
    [83] Dyke S J, Spencer Jr B F, Quast P, et al. Role of Control-StructureInteraction in Protective System Design [J]. ASCE Journal of EngineeringMechanics,1995,121(2):322-338.
    [84] Dyke S J, Jansen L M. Implications of Control–Structure Interaction inScaled Structural Control System Testing [C]. Internationl Conference onControl Applications. Kohala Coast-Island of Hawai’I, Hawai’I USA,1999:339-344.
    [85] Battaini M, Yang G, Spencer Jr B F. Bench-Scale Experiment for StructureControl [J]. Journal of Engineering Mechanics,2000,126(2):140-148.
    [86] Fonsecaa I M. da, Bainumb P M, Silva A R.da. Structural ControlInteraction for an LSS Attitude Control System Using Thrusters andReaction Wheels [J]. Acta Astronautica,2007,60:865–872.
    [87] Stewart G M, Lackner M A. The Effect of Actuator Dynamics on ActiveStructural Control of Offshore Wind Turbines [J]. Engineering Structures,2011,33:1807-1816.
    [88] Wu J C. Modeling of an Actively Braced Full-Scale Building ConsideringControl Structure Interaction [J]. Earthquake Engineering and StructuralDynamics,2000,29:1325-1342.
    [89]张春巍,欧进萍.电磁式惯性型作动器与结构耦合系统建模与试验研究[J].振动工程学报,2006,19(3):289-295.
    [90] Zhang C W, Ou J P. Control Structure Interaction of Electromagnetic MassDamper System for Structural Vibration Control [J]. Journal of EngineeringMechanics,2008,134(5):428-437.
    [91] Liu H J, Liu J, Teng J. Control-Structure Interaction in Structural VibrationControl [J]. Earth&Space,2008:1-8.
    [92] Xing J T, Xiong Y P, Price W G. A Generalized Mathematical Model andAnalysis for Integrated Multi-Channel Vibration Structure-ControlInteraction System [J]. Journal of Sound and Vibration,2009,320:584-616.
    [93] Yoshida K, Nishimura Y, Yonezawa Y. Variable Gain Feedback Control forLinear Sampled-Data Systems with Bounded Control [J]. Control TheoryAdv. Technology,1986,2:313-323
    [94] Fujita T, Kamada T, Masaki N. Fundamental Study of Active Mass DamperUsing Multistage Rubber Bearing and Hydraulic Actuator for VibrationControl of Tall Buildings: Part1Study on Control Law for the Active MassDamper [J]. Trans JSME,1992,58:87-91
    [95] Suzuki T, Kageyama M. Active Vibration Control System for High-RiseBuildings. Part14: Vibration Test on Variable Feedback Gain Control [J].Trans. AIJ Annual Meeting,1993: pp.735-754(in Japanese).
    [96] Kawai N, Ohtsuka M. A Development of Active Response Control System.Part3: Shaking Table Test Results on Variable Gain Control Method [J].Trans. AIJ Annual Meeting,1994: pp.895-896.(in Japanese).
    [97] Nishitani A, Nitta Y, Yamada N. Variable Gain-Based Structural ControlConsidering the Limit of AMD Movement [C]. Proceedings of the35th Conferenceon Decision and Control, Kobe, Japan,1996:185-190.
    [98] Nagashima I, Shinozaki Y. Variable Gain Feedback Control Technology ofActive Mass Damper and Its Application to Hybrid Structural Control [J].Earthquake Engineering and Structural Dynamics,1997,26:815-838.
    [99] Yoshida K, Matsumoto I. Vibration Suppression Control for a StructuralSystem using an AMD with Restricted Stroke [C]. American ControlConference, Hyatt Regency Riverfront, St. Louis, MO, USA.2009:1237-1243.
    [100] Yoshida K, Matsumoto I. Vibration Suppression Control for aMulti-Degree-of-Freedom Structural System Using an AMD with RestrictedStroke [C]. Proceedings of the2009IEEE International Conference onNetworking, Sensing and Control, Okayama, Japan,2009:912-917
    [101]张继刚,吴斌,欧进萍.海洋平台隔震结构限位器设计[J].哈尔滨工业大学学报,2009,41(10):174-176.
    [102]韩淼,杜红凯,李仙华.基础隔震层软碰撞限位试验研究[J].工程力学,2008,6(增刊I):124-128.
    [103]滕军,鲁志雄,肖仪清等.高耸结构TMD非线性阻尼振动控制研究[J].振动与冲击,2009,28(3):90-97.
    [104]俞一梅,吴淇泰,徐博侯.弹性结构控制中的减维方法[J].力学进展,1993,4(23):540-545
    [105] Laub A J, Heath M T, Paige C C, et al. Computation of System BalancingTransformations and Other Applications of Simultaneous DiagonalizationAlgorithms [J]. IEEE Transactions on Automatic Control,1987, AC-32(2):115-122.
    [106]王峰,唐国金,李道奎.基于模态价值分析的结构动力学模型降阶[J].振动与冲击,2006,25(3):35-39.
    [107]曹清,章辉,孙优贤.改进的用于模型降阶的最小信息损失方法[J].信息与控制,2005,34(4):423-428.
    [108]李爱群,丁幼亮.工程结构抗震分析[M].北京:高等教育出版社,2010:29-30.
    [109]张金成,彭华,赵国庆.信噪比估计算法研究[J].信息工程大学学报,2011,12(5):535-543.
    [110]付梦印,邓志红,张继伟. Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003:20-25.
    [111]俞立.鲁棒控制-线性矩阵不等式处理方法[M].清华大学出版社,2002:7-9,27-28,158-163.
    [112]宁响亮.结构振动控制的多目标优化和智能模糊控制[D].哈尔滨工业大学博士学位论文,2010:19-21.
    [113] Phohomsiri P, Udwadia F E, Bremen H F. Time-Delayed Positive VelocityFeedback Control Design for Active Control of Structures [J]. Journal ofEngineering Mechanics ASCE/JUNE,2006:690-703.
    [114]胡海岩.振动主动控制的时滞动力学问题[J].振动工程学报,1997,10(3):273-278.
    [115] Lin C C, Sheu J F, Chu S Y. Time-Delay Effect and Its Solution forOptimal Output Feedback Control of Structures [J]. EarthquakeEngineering and Structural Dynamics,1996,25:547-559.
    [116] Fridman E, Shaked U. An Improved Stabilization Method for LinearTime-Delay Systems [J]. IEEE Transactons on Automatic Control,2002,47(11):1931-1937.
    [117]田石柱,李暄,欧进萍.结构主动控制系统时间滞后测量与补偿方法[J].地震工程与工程振动,2000,20(4):101-105.
    [118]孙增圻.计算机控制理论及应用(第2版)[M].北京:清华大学出版社,2007:15-16.
    [119]苏宏业,王景成,周凯等.时变时滞不确定系统的鲁棒输出反馈控制[J].自动化学报,1999,25(4):513-517.
    [120] Spencer B F, Sain M K. Controlling Buildings: a New Frontier inFeedback [J]. Shock Vib Dig,1997,30(4):267–81.
    [121] Spencer B F, Nagarajaiah S. State of the Art of Structural Control [J].Journal Structural Engineering,2003,129(7):845–56.
    [122] Soong T T, Spencer B F. Supplemental Energy Dissipation:State-of-the-Art and State-of-the Practice [J]. Engineering Structures,2002,24:243–59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700