用户名: 密码: 验证码:
水听器线列阵的数据采集与传输关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水听器线列阵是海洋探测领域具有广泛应用前景的一种声学传感阵列,可以实现水下声信息的时域与空域等间隔采集,是一种重要的军民两用技术。本文主要研究主动式和被动式水声探测环境的线列阵共性关键技术,包括多通道压电型水听器的信号调理与数据采集、压电型与光纤干涉型水听器的级联型数字基带信道数据传输、船载主控工作站的数据序列文件实时存储与波形回显等技术,设计了专用的主从式全阵列数据采集时钟同步系统,探索应用于级联信道的Turbo编解码技术,并实现了两条不同功能的实用化线列阵拖缆。
     主要内容和完成的工作如下:
     1.设计并实现了一种通用型的水听器线列阵数据采集与传输系统,可以同时支持主动式和被动式声学探测。该系统主要包括针对压电型水听器的多通道可变增益信号调理与多通道同步式高分辨率模数转换,水下电路节点的本地数据编帧与级联上传,水下缆内分布式供电网络,基于PCI接口的船载主控工作站数据接口以及主控软件等组成部分。
     2.提出并实现了一种在IEEE1588精确时钟同步协议基础上简化和改进的主从式数据采集时钟同步方法,建立了全阵列数据采集同步时钟传递模型,通过实验确定了时钟传递误差与补偿方法,实现了全阵列亚微秒级的数据采集时钟同步。
     3.提出以水听器线列阵的级联型信道为应用目标,研究如何引入Turbo信道编解码体系的问题。通过仿真的方法分析了Turbo码性能,特别是针对水听器线列阵传输信道的特点,研究了Turbo译码端的多级量化,进行了实际的程序设计。
     4.研究并实现了适用于海洋环境的线列阵命令、数据和同步信号传输的完整协议栈,包括船海通信、包间通信和包内通信三个部分。设计了分层的开放型命令和数据传输协议,以及兼容SEG Y行业标准的存储文件格式。在此基础上,将相关协议栈用于实际的水听器线列阵系统,形成了完整的传输体系。
     5.针对不同的工作场合,本文先后设计了多款主控软件;实现了基于双层乒乓结构内存映射的长时间不间断实时数据接收与数据文件存储,以及基于MATCOM的波形实时显示等功能。
     6.先后在不同地区进行了两次外场水域数据获取实验,取得了大量实际数据资料,验证了线列阵数据采集与传输的可靠性。
Hydrophone linear array is a type of acoustic sensing array which has a broadapplication prospects in the field of ocean exploration, and can be used to achieve thetime and space domain equally acoustic information acquisition underwater, as animportant dual-use technology in marine areas. This paper focused on the commonkey technologies for active and passive underwater acoustic detection modes,including multi-channel piezoelectric hydrophones signal conditioning and dataacquisition, cascaded digital base-band channel data transmission of fiber-opticinterferometric and piezoelectric hydrophones, the real-time data-sequence-filestorage and waveform echo technology in shipboard master workstation. Meanwhile,we designed dedicated distributed array data acquisition clock synchronization system,explored Turbo coding technology used in cascade channel, and two different type ofpractical linear array streamer for really explorations.
     The main content and completion of the work as follows:
     1. Designed and implemented a common type hydrophone line array dataacquisition and transmission system, which can support both active and passiveacoustic detection, The system includes variable-gain signal conditioning formulti-channel piezoelectric hydrophones and multi-channel synchronoushigh-resolution analog-to-digital conversions, underwater circuit node's local dataframing and cascaded uploading, underwater distributed power supply network, theshipboard master workstation data interface based on the PCI interface and mastersoftware component.
     2. Proposed and implemented a master-slave data acquisition clocksynchronization method based on the simplification and improvement of IEEE1588precision clock synchronization protocol. Established a data acquisitionsynchronization clock transfer model for full array, determined the clock transmissionerror compensation method by experiments, and achieved a full-arraysub-microsecond-level data acquisition clock synchronization.
     3. Studied the Turbo channel coding and decoding system for the applicationtarget of hydrophone line array cascade channel, analyzed Turbo codes performancethrough computer-aided simulation. Studied multistage quantization problem in the Turbo decoding section, especially for the characteristics of transmission channel inlinear hydrophone array. Designed the real program in underwater circuit nodes.
     4. Studied and implemented complete protocol stack of linear arraycommands, data and synchronization signals transmission in marine environments,including the ship-sea communications, inter-packet communications andcommunications in packages. Designed a layered open command and data transferprotocol, and a storage file format compatible with the SEG Y industry standardformat. Put the protocol stack in the actual hydrophone linear array, formed a reliabletransmission system.
     5. For different occasions, this paper designed a variety of master software.Achieved long-term uninterrupted data receiving based on double ping-pong structurememory-mapped data files, the SEG Y underwater acoustic detection standard formatdata file storage, and the real-time displaying based on waveform of the MATCOMand other functions.
     6. Obtained the real data sets through data acquisition experiments held intwo different regions of outfields. Verified the reliability of the linear array dataacquisition and transmission system.
引文
[1]吕庆华,物理海洋学基础,北京:海洋出版社,2012:27-46
    [2]陈克棠,胡嘉忠,声纳和水下观测,上海:上海科学技术出版社,1981:1-12
    [3]张小飞,汪飞,徐大专,阵列信号处理的理论和应用,北京:国防工业出版社,2010:1-12
    [4] J Rice, Seaweb Acoustic Communication and Navigation NevigationNetworks, Proceedings of the International Conference on Underwater AcousticMeasurements: Technologies and Results,2005
    [5] J Heidemann, M Stojanovic, M Zorzi, Underwater sensor networks:applications, advances and challenges, Philosophical Transactions of the RoyalSociety A: Mathematical, Physical and Engineering Sciences,2012,370(1958):158-175
    [6] Z Peng, JH Cui, B Wang, et al, An underwater network testbed: design,implementation and measurement, Proceedings of the second workshop onUnderwater networks. ACM,2007:65-72
    [7] JJ McGrire, MS Boettcher, TH Jordan, Foreshock sequences and short-termearthquake predictability on East Pacific Rise transform faults, Nature,2005,434:457-461
    [8] NC Makris, P Ratilal, DT Symonds, S Jagannathan, SW Lee, RW Nero, Fishpopulation and behavior revealed by instantaneous continental shelf-scale imaging,Science,2006,311:660-663
    [9] NC Makris, P Ratilal, S Jagannathan, Z Gong, M Andrews, I Bertsatos, ORGod, RW Nero, JM Jech, Critical population density triggers rapid formation of vastoceanic fish shoals, Science,2009,323:1734-1737
    [10]王子秋,唐进,海上勘探固体拖缆技术的研究与应用,物探装备,2012,22(1):1-5
    [11]宋海斌,董崇志,陈林,等,用反射地震方法研究物理海洋—地震海洋学简介,地球物理学进展,2008,23(4):1156-1164
    [12]陆敬安,伍忠良,曾宪军,海洋地震勘探中地震波,鬼波综合效应分析与应用,海洋技术,2006,25(4):76-78
    [13]江怀友,赵文智,闫存章,等,世界海洋油气资源与勘探模式概述,海相油气地质,2008,13(3):5-10
    [14]谭菊甫,流体中声速的计算方法,物理与工程,1992,(3):18-20
    [15]刘伯胜,雷家煜,水声学原理,哈尔滨:哈尔滨工程大学出版社,2010:23–59
    [16]温周斌,冯海泓,一种新的水声通信体制,声学学报,1993,18(5):345-351
    [17]艾宇慧,周瑜丽,岳沛,等, m序列扩频谱水声通信研究,哈尔滨工程大学学报,2000,21(2):15-18
    [18]朱彤,基于正交频分复用的水声通信技术研究:[博士学位论文],哈尔滨工程大学,2004
    [19]殷敬伟,惠娟,惠俊英,等,无源时间反转镜在水声通信中的应用,声学学报,2007,32(4):362-368
    [20]杨士莪,水声传播原理,哈尔滨:哈尔滨工程大学出版社,2007:1–7
    [21]马大猷,沈 ,声学手册(修订版),北京:科学出版社,2004:467–490
    [22]惠俊英,生雪莉,水下声信道,北京:国防工业出版社,2007:18-40
    [23]李贵斌,声呐基阵设计原理,北京:海洋出版社,1993:1-50
    [24]罗深荣,侧扫声纳和多波束测深系统在海洋调查中的综合应用,海洋测绘,2003,23(1):22-24
    [25]刘经南,赵建虎,多波束测深系统的现状和发展趋势,海洋测绘,2002,22(5):3-6
    [26]齐娜,多波束测深仪方案论证及测深侧扫成像研究:[硕士学位论文],哈尔滨工程大学,2002
    [27]张毅乐,多波束相干测深技术研究及其算法DSP实现:[硕士学位论文],哈尔滨工程大学,2010
    [28]3D-Forward-Looking-Sonar, www.echopilot.com,2012
    [29] FarSounder-1000Navigation Sonar, http://www.farsounder.com,2012
    [30]江怀友,赵文智,闫存章,等,世界海洋油气资源与勘探模式概述,海相油气地质,2008,13(3):5-10
    [31]潘继平,张大伟,岳来群,等,全球海洋油气勘探开发状况与发展趋势,中国矿业,2006,15(11):1-4
    [32]赵政璋,赵贤正,李景明,等,国外海洋深水油气勘探发展趋势及启示,中国石油勘探,2005,10(6):71-76
    [33]李清平,我国海洋深水油气开发面临的挑战,中国海上油气,2006,18(2):130-133
    [34]张功成,米立军,吴时国,等,深水区-南海北部大陆边缘盆地油气勘探新领域,石油学报,2007,28(2):15-21
    [35]阮福明,宋克柱,曹平,海上时延地震勘探记录系统的设计与研究,电子测量与仪器学报,2006,20(4):37-41
    [36] CHENG Jingyuan, SONG Kezhu, WANG Yanfang, YANG Junfeng, LUZengyuan, Data Gathering and Transferring Sub-system Designing of Time-lapseMarine Seismic Data Acquisition and Recording System, Journal of Basic Scienceand Engineering,2006,14(2):181-193
    [37] M Landro, L K Str nen, P Digranes, et al, Time-lapse seismic as acomplementary tool for in-fill drilling, Journal of Petroleum Science and Engineering,2001,31:81-92
    [38] A M Swanston, P B Flemings, J T Comisky, et al, Time-lapse imaging atBullwinkle Field, Green Canyon65, offshore Gulf of Mexico, Geophysics,2003,68(5):1470-1484
    [39]吴志强,文丽,童思友,等,海域天然气水合物的地震研究进展,地球物理学进展,2007,22(1):218-227
    [40]张明,伍忠良,天然气水合物BSR的识别与地震勘探频率,海洋学报,2004,26(4):80-88
    [41] M Landro, Discrimination between pressure and fluid saturation changesfrom time-lapse seismic data, Geophysics-Wisconsin Then Tulsa-Society ofExploration Geophysicists,2001,66(3):836-844
    [42] D E Lumley, Time-lapse seismic reservoir monitoring, Geophysics,2001,66(1):50-53
    [43] J E Rickett, D E Lumley, Cross-equalization data processing for time-lapseseismic reservoir monitoring: A case study from the Gulf of Mexico, Geophysics,2001,66(4):1015-1025
    [44] K Koster, P Gabriels, M Hartung, et al, Time-lapse seismic surveys in theNorth Sea and their business impact, The Leading Edge,2000,19(3):286-293
    [45] D H Johnston, R S McKenny, J Verbeek, et al, Time-lapse seismic analysisof Fulmar Field, The Leading Edge,1998,17(10):1420-1428
    [46] NC Makris, S Jagannathan, and I. Anamaria, Ocean acoustic waveguideremote sensing:visualizing life around seamounts, Oceanography,2010,23:204-205
    [47] R A Chadwick, D Noy, R Arts, et al, Latest time-lapse seismic data fromSleipner yield new insights into CO2plume development, Energy Procedia,2009,1(1):2103-2110
    [48] E Lindeberg, P Zweigel, P Bergmo, et al, Prediction of CO2distributionpattern improved by geology and reservoir simulation and verified by time lapseseismic, Proceedings of5thInternational Conference on Greenhouse Gas ControlTechnologies (GHGT-5), Collingwood, VIC, AU,2001:299-304
    [49] R Arts, O Eiken, A Chadwick, et al, Monitoring of CO2injected at Sleipnerusing time-lapse seismic data, Energy,2004,29:1383–1392
    [50] A Ivanova, A Kashubin, N Juhojuntti, et al, Monitoring and volumetricestimation of injected CO2using4D seismic, petrophysical data, core measurementsand well logging: a case study at Ketzin, Germany, Geophysical Prospecting,2012,60(5):957-973
    [51] M Ivandic, C Yang, S Lüth, et al, Time-lapse analysis of sparse3D seismicdata from the CO2storage pilot site at Ketzin, Germany, Journal of AppliedGeophysics,2012,84:14-28
    [52]孙宏纲,陈印杰,槐万景,美海军“宙斯盾”级舰艇反潜装备性能分析,现代防御技术,2005,33(5):11-15
    [53]张敏,赖淑蓉,廖延彪,光纤传感技术在石油勘探与生产领域的应用,中国传感器产业发展论坛暨东北MEMS研发联合体研讨会论文集,2004,23(110):108-110
    [54]殷锴,张敏,丁天怀,等,芯轴型光纤水听器声压相移灵敏度响应分析,光子学报,2009,38(7):1641-1646
    [55]王利威,刘阳,张敏,等,干涉型光纤传感器相位生成载波技术研究与改进,光子学报,2009,38(4):766-769
    [56]郭克,王泽涵,廖延彪,等,光纤水听器灵敏度的提高,光电技术与系统文选——第十一届全国光电技术与系统学术会议论文集.2005:715-719
    [57]荆振国,殷锴,张敏,等,干涉型光纤传感器的消偏振衰落技术研究,光子学报,2009,38(8):2024-2028
    [58]吕文磊,庞盟,王利威,等,基于顺变柱体和膜片复合结构的压差式光纤矢量水听器研究,光学学报,2010,30(2):340-346
    [59]周炜,周宏朴,张敏,等,芯轴干涉型光纤水听器的声压灵敏度研究,激光与光电子学进展,2010(7):69-74
    [60]王凯,施清平,蒋佳佳,等,参数估计误差对光纤水听器PGC反正切解调性能的影响,光电子激光,2012,23(10):1856-1862
    [61]胡永明,孟洲,熊水东,干涉型全保偏光纤水听器阵列研制,声学学报,2003,28(2):155-158
    [62]曹春燕,吴艳群,熊水东,等,光纤水听器系统光纤传输噪声的自适应消除,光电工程,2012,39(10):83-88
    [63]运朝青,胡正良,胡永明,细线拖曳声纳研究进展,半导体光电,2012,33(5):618
    [64]曹春燕,胡正良,熊水东,等,光纤水听器远程传输中相干瑞利噪声的抑制,中国激光,2012,39(10):100-105
    [65]运朝青,罗洪,胡正良,等,应用于拖曳细线阵的光纤水听器研究,光学学报,2012,32(12):77-81
    [66]孟洲,胡永明,熊水东,等,全保偏光纤水听器阵列,中国激光,2002,29(5):415-417
    [67]倪明,张仁和,胡永明,关于光纤水听器灵敏度的讨论,应用声学,2002,21(6):18-21
    [68]王科研,孟洲,光纤拉曼放大在远程光纤水听器阵列应用中关键技术的研究进展,电光与控制,2010,17(7):51-57
    [69]周效东,周文,干涉型光纤传感器及阵列的分集检测消偏振衰落技术的研究,光学学报,1998,18(6):773-778
    [70]陈丽洁,微型矢量水听器研究:[博士学位论文],哈尔滨:哈尔滨工程大学,2006
    [71]时洁,杨德森,矢量阵相干宽带MVDR聚焦波束形成,系统仿真学报,2010,22(2):473-477
    [72]时洁,基于矢量阵的水下噪声源近场高分辨定位识别方法研究:[博士学位论文],哈尔滨工程大学,2009
    [73]贾志富,三维同振球型矢量水听器的特性及其结构设计,应用声学,2001,20(4):15-20
    [74]孙贵青,杨德森,基于矢量水听器的水下目标低频辐射噪声测量方法研究,声学学报,2002,27(5):429-434
    [75]孙贵青,矢量水听器检测技术研究:[博士学位论文],哈尔滨工程大学,2001
    [76]姚直象,惠俊英,殷敬伟,等,基于单矢量水听器四种方位估计方法,海洋工程,2006,24(1):122-127
    [77]孙贵青,杨德森,张揽月,等,基于矢量水听器的最大似然比检测和最大似然方位估计,声学学报,2003,28(1):66-72
    [78]陆增援,地震采集中高速传输与实时处理系统的研究:[博士学位论文],合肥:中国科技大学,2004
    [79]阮福明,时移地震中高精度数据采集和大容量记录系统的研究:[博士学位论文],合肥:中国科技大学,2005
    [80]吴义华,利用ADC测量时钟技术的研究:[博士学位论文],合肥:中国科技大学,2007
    [81]曹平,勘探地震数据获取系统设计:[博士学位论文],合肥:中国科技大学,2007
    [82]王兵,高分辨地震勘探仪器设计研究:[博士学位论文],合肥:中国科技大学,2008
    [83]杜学峰,长电缆传输研究:[博士学位论文],合肥:中国科技大学,2006
    [84]何正淼,宋克柱,汤家骏,等,24位ADC在地震数据采集中的应用,数据采集与处理,2005,20(2):244-248
    [85]唐世悦,宋克柱,何正淼,长距离高精度采集系统的研究,电路与系统学报,2008,13(4):120-123
    [86]张嗣锋,曹平,张可立,等,基于分布式架构的高精度海上工程地震勘探数据获取系统设计与实现,中国科学技术大学学报,2011,41(1):76-81
    [87]程宏才,宋克柱,杨俊峰,等,大型地震数据采集系统中的实时监视系统设计,核电子学与探测技术,2012,32(7):814-819
    [88]陈金鹰,地震勘探数据采集与传输体系研究:[博士学位论文],成都:成都理工大学,2006
    [89]李媛,冯师军,李启虎,水下数据采集及传输系统在海洋石油勘探中的应用,微计算机应用,2008,29(9):100-103
    [90] GA Cranch, PJ Nash, PB, CK Kirkendall, Large-Scale RemotelyInterrogated Arrays of Fiber-Optic Interferometric Sensors for Underwater AcousticApplications, IEEE Sensors Journal,2003,3(1):19-30
    [91] GA Cranch, PJ Nash, Large-Scale Multiplexing of InterferometricFiber-Optic Sensors Using TDM and DWDM, Journal of Ligntwave Technology,2001,19(5):687-699
    [92]施清平,王凯,王利威,等,基于参数估计的光纤水听器解调系统研究,仪器仪表学报,2011,32(8):1864-1870
    [93]韩泽,陈哲,胡永明,光纤水听器阵列的多路复用技术,半导体光电,1999,20(4):231-234
    [94]李舰艇,光纤水听器多路复用技术及其串扰与噪声分析:[博士学位论文],长沙:国防科技大学,2005
    [95]张蕉蕉,孙家根,杨小强,等,基于NTP的装备管理信息系统时钟同步技术研究,机械制造与自动化,2011,40(3):127-129
    [96]王波,吕俊伟,于振涛,基于NS理论的网络时钟同步算法,吉林大学学报(信息科学版),2011,29(3):186-190
    [97]游雪峰,文玉梅,李平,以太网分布式数据采集同步和实时传输研究,仪器仪表学报,2006,27(4):384-388
    [98]张向利,唐小琦,陈吉红,基于以太网的数控系统实时通信和时间同步,计算机集成制造系统,2008,6
    [99]林涛,张浩,孙鹤旭,基于精密时间协议的时钟同步技术,计算机应用,2007,27(08):1828-1830
    [100]胡永春,张雪松,许伟国,等, IEEE1588时钟同步系统误差分析及其检测方法,电力系统自动化,2010,34(21):107-111
    [101]张信权,梁德胜,赵希才,时钟同步技术及其在变电站中的应用,继电器,2008,36(9):69-72
    [102]赵上林,胡敏强,窦晓波,基于IEEE1588的数字化变电站时钟同步技术研究,电网技术,2008,32(21):97-102
    [103]桂本垣,冯冬芹,褚健,等, IEEE1588的高精度时间同步算法的分析与实现,工业仪表与自动化装置,2006(4):20-23
    [104]刘鲁源,王晓欣,刘昆,等,分布式系统高精度时钟同步算法及其实现,天津大学学报,2006,39(8):923-927
    [105]于鹏飞,喻强,邓辉,等, IEEE1588精确时间同步协议的应用方案,电力系统自动化,2009,33(13):99-103
    [106]汪祺航,黄伟,吴在军,等,基于IEEE1588标准的变电站同步网络的研究,江苏电机工程,2010,29(1):51-54
    [107]史先好,高厚磊,向珉江,等, IEEE1588时钟同步协议在数字化变电站中的应用探讨,电力自动化设备,2011,31(4):132-135
    [108]曾祥君,黎锐烽,李泽文,等,基于IEEE1588的智能变电站时钟同步网络,电力科学与技术学报,2011,26(3):3-8
    [109]庾智兰,李智, IEEE1588精密时钟同步协议的分析与实现,电子测量技术,2009,32(4):62-64
    [110]同江,蔡远文,解维奇,等, IEEE1588精确时钟同步技术,导弹与航天运载技术,2010,(4):37-40
    [111]何一航, IEEE1588高精度网络时钟同步研究与实现:[硕士学位论文],华中科技大学,2011
    [112]黄健,刘鹏,杨瑞民, IEEE1588精确时钟同步协议从时钟设计,电子技术应用,2010,(7):94-97,108
    [113]李晓珍,苏建峰,基于IEEE1588高精度网络时钟同步的研究,通信技术,2011,44(3):105-107,110
    [114]黄健,刘鹏,杨瑞民, IEEE1588精确时钟同步协议从时钟设计,电子技术应用,2010,(7):94-97,108
    [115]王冠,肖萍萍, IEEE1588v2高精度时钟同步协议的总体设计与实现,价值工程,2012,31(15):198-199
    [116]李本亮,王厚军,师奕兵,等,基于PTP的无线分布式测试系统时钟同步研究,电子科技大学学报,2010,39(4):556-559
    [117]陈世强,周旭,王俊峰,等,基于网络驱动接口规范的网络时延测量位置误差消除方法,计算机应用,2012,32(7):1787-1790,1795
    [118]何伟,林英撑,张玲,基于NIOSⅡ的时钟同步数据采集系统,计算机工程,2009,35(9):243-245
    [119]马龙华,陈孝良,程晓斌,等,分布式声学测量设备中精确时钟同步研究,计算机工程与设计,2011,32(1):351-353,365
    [120]陶志勇,胡明,无线传感器网络中基于层次结构的时间同步算法,计算机应用,2012,32(06):1513-1515
    [121]漆璐,陈旿, Ad hoc网络时钟同步研究,计算机应用研究,2011,28(12):4702-4704
    [122]王秉钧,现代通信原理,北京:人民邮电出版社,2006:334-367
    [123]达新宇,陈树新,王瑜,等,通信原理教程,北京:北京邮电大学出版社,2005:265-289
    [124]黄载禄,殷蔚华,通信原理,北京:科学出版社,2005:388-501
    [125]崔琳莉,杨帆,彭启琮, Turbo码的并行算法研究,电子测量与仪器学报,2010,24(7):638-642
    [126]邱传飞,刘元华,张昆, Turbo编码器的FPGA实现,兵工自动化,2008,27(1):74-76
    [127]詹明,周亮,一种基于对称性的双向双二进制卷积Turbo码译码结构研究,电子测量与仪器学报,2012,34(5):1179-1184
    [128]王钢,高宏亮,杨文超, IEEE802.16e中的卷积Turbo码编译码算法研究,哈尔滨工业大学学报,2010,24(1):51-54
    [129]汪汉新,朱翠涛,非对称Turbo码的设计,计算机工程与应用,2011,46(22):65-67
    [130]薛礼妮,刘展威,基于FPGA的Turbo码译码器设计与实现,太原理工大学学报,2010,41(3):260-264
    [131]虞湘宾,张胜男,毕光国,级联信道编码的多幅值差分空时分组码方案及性能,通信学报,2007,28(4):1-8
    [132]彭涛,益晓新,李辉,等, LDPC码在正交频分复用-交织多址系统中的应用,重庆理工大学学报:自然科学,2012,26(11):80-82
    [133]彭立,朱光喜,基于Q矩阵的LDPC码编码器设计,电子学报,2005,33(10):1734-1740
    [134]吴康,段发阶,陈劲,等,海上地震探测传输系统的设计,电子技术应用,2010,36(9):101-103,107
    [135]何智刚,段发阶,陈劲,等,多阵元拖缆勘探系统传输方案的设计,电子技术应用,2012,38(2):73-76
    [136] JJ Jiang,FJ Duan,J Chen,Three-dimensional localization algorithm formixed near-field and far-field sources based on ESPRIT and MUSIC method,Progress In Electromagnetics Research,2013,136:435-456
    [137] JJ Jiang, FJ Duan, J Chen, et al, Two new estimation algorithms for sensorgain and phase errors based on different data models, IEEE Sensors Journal,2013,13(5):1921-1930
    [138] JJ Jiang, FJ Duan, J Chen, et al, Calibration method of the timesynchronization error of many data acquisition nodes in the chained system, Journalof Geophysics and Engineering,2012,(9):413-422
    [139]常宗杰,段发阶,蒋佳佳,等,基于锁相环的水听器阵列多传感器高精度同步技术,计算机应用研究,2013,30(4):1140-1142
    [140] J Chen, FJ Duan, JJ Jiang, et. al, Self-similarity property of acoustic dataacquired in shallow water environment, Eurasip Journal on Wireless Communicaitonand Networks,2013,(4):91
    [141] J Chen, FJ Duan, JJ Jiang, et. al, Offshore towed hydrophone linear array:principle, application, and data acquisition results, Eurasip Journal on WirelessCommunicaiton and Networks,2013,(2):35
    [142]蒋佳佳,段发阶,陈劲,等,链式系统中信号远距离传输延时的在线测量方法,吉林大学学报(工学版),2013,43(02):520-525
    [143]高晋占,微弱信号检测,北京:清华大学出版社,2011:1-39
    [144] Linear Technology Inc, LTM8031数据手册, www.linear.com,2012
    [145] Linear Technology Inc, LT3682数据手册, www.linear.com,2011
    [146]高晋占,微弱信号检测(第2版),北京:清华大学出版社,2011:40-99
    [147]王辰,王宏强,陈明华,等,成像器噪声对星敏感器星等灵敏度的影响,红外与激光工程,2008,37(5):858-862
    [148]时景峰,游宁,李鹏,无线电近炸引信高频电路噪声特性分析,探测与控制学报,2005,27(004):33-36
    [149]张辉,钟建勇,袁家虎,等,电路噪声对星敏感器星点定位精度的影响,光学精密工程,2006,14(6):1052-1056
    [150]占建明,汶德胜,王宏,等,基于光电二极管的前置放大电路噪声分析,半导体技术,2011,36(4):304-306
    [151] Howard Johnson, Martin Graham,高速数字设计(沈立,朱来文,陈宏伟,等译),北京:电子工业出版社,2010:106-151
    [152]吴延海,陈光军,富璇,等,数据通信技术教程,北京:北京大学出版社,2006:25-30
    [153]陈光军,数据通信技术与应用,北京:北京邮电大学出版社,2005:43-48
    [154]国林,杨武,王巍,等,数据通信基础,北京:清华大学出版社,2006:36-40
    [155]毕卫红,张燕君,齐跃峰,等,光纤通信与传感技术,北京:电子工业出版社,2008:14-34
    [156] National Semiconductor Inc., LVDS Owner’s Manual-IncludingHigh-Speed CML and Signal Conditioning (Fourth Edition), www.ti.com/LVDS,2013
    [157]陈劲,段发阶,蒋佳佳,等,用于水听器线列阵的精密时钟同步方法,计算机应用,2013,33(2):600-602
    [158] Ramon Pallas-Areng, John G. Webster,传感器与信号调节(第2版)(张伦译),北京:清华大学出版社,2003:377-382
    [159] TaiTian Electronics Co.,Ltd. High Precision Voltage ControlledTemperature Compensated Crystal Oscillator,http://www.taitian.com,2011
    [160]许永和, EZ-USB FX系列单片机USB外围设备设计与应用,北京:北京航空航天大学出版社,2002:1-46
    [161]王成儒,李英伟, USB2.0原理与工程开发,北京:国防工业出版社,2004:1-17
    [162]萧世文,宋延清, USB2.0硬件设计,北京:清华大学出版社,2006:1-22
    [163] Microprocessor and Microcomputer Standards Committee of the IEEEComputer Society, IEEE Standard for a High Performance Serial Bus,1996:1-16
    [164]张大朴,王晓,张大为,等, IEEE1394协议及接口设计,西安:西安电子科技大学出版社,2004:1-48
    [165] Microprocessor and Microcomputer Standards Committee of the IEEEComputer Society, IEEE Standard for a High-Performance Serial Bus-Amendment2,2002:1-22
    [166]王廷尧,以太网技术与应用,北京:人民邮电出版社,2005:3-14
    [167] A Bormann, I Hilgenkamp,工业以太网的原理与应用(杜品圣,张龙,马玉敏译),北京:国防工业出版社,2011:37-40
    [168]尹勇,李宇, PCI总线设备开发宝典,北京:北京航空航天大学出版社,2005:1-26
    [169]马鸣锦,朱剑冰,何红旗,等, PCI、PCI-X和PCI Express的原理及体系结构,北京:清华大学出版社,2007:1-53
    [170]方志强,涡轮机叶片振动非接触检测原理及应用技术研究:[博士学位论文],天津:天津大学,2007
    [171]王齐, PCI Express体系结构导读,北京:机械工业出版社,2010:101-139
    [172] R Budruk, D Anderson, T Shanley, PCI Express系统体系结构标准教材(田玉敏,王崧,张波译),北京:电子工业出版社,2005:2-59
    [173] Peripheral Component Interconnect Special Interest Group, PCI ExpressBase Specification Revision0.9,2006:31-46
    [174] Sercel Inc, SEAL V5.2User’s Manual Vol.2,www.sercel.com
    [175] SEG Technical Standards Committee, SEG Y rev1Data Exchange format,2002
    [176]刘东华, Turbo码关键技术及Turbo原理的应用研究:[博士学位论文],长沙:国防科技大学,2003
    [177]樊昌信,曹丽娜,通信原理,北京:国防工业出版社,2012:65-85,327-373
    [178] CE Shannon, A matheoarical theory of communication, USA BellSystematic Technical Journal,1948,(27):379-423,623-656
    [179]王新梅,肖国镇,纠错码-原理与方法,西安:西安电子科技大学出版社,2001:1-534
    [180] E Prange, Cyclic error-correcting codes in two symbol, Air ForceCambridge Research Center, Cambridge,MA,USA,1957, Tech.ReP.TN-57-103
    [181] P Elias, Coding for noisy channels, IEEE Convention Record,1955,(4):37-47
    [182] M Blaum, A class of burst error correcting array codes, IEEE Transactionson Information Theory,1986,32(6):836-839
    [183] JH Vanlin, Algebraic geometric codes, coding theory and design theory,IEEE Transactions on Information Theory,1990,36(1):137-162
    [184] RG Gallager, Low density parity check node, IRE Transactions onInformation Theory,1962,8(1):21-28
    [185] GD Jr Fomey, Concatenated codes, Cambridge: Mass,1966
    [186] JM Wdzeneraft, B Reiffen, Sequential decoding, Cambridge: Mass,1961
    [187] LR Bahl, J Cocke, E Jelinek, et al, Optimum decoding of linear codes forminimizing symbol error rate, IEEE Transactions on Information Theory,1974,20(2):284-287
    [188]SG Wilson, Digital Modulation and Coding, Englewood Cliffs, NJ:Prentice-Hall, Inc.,1995
    [189]G Ungerboeck, Channel coding with multilevel/phase signals, IEEETransactions on Information Theory,1982,28(1):55-67
    [190] S Benedetto, G Montorsi, Design of Parallel concatenated convolutionalcodes, IEEE Transactions on Communications,1996,44(5):591-600
    [191] MS C HO, Serial and Parallel Concatenated Turbo Codes:[PhD Thesis],School of Physics and Electronic Systems Engineering, The University of SouthAustralia,2000
    [192] S Benedetto, R Garello, G Montorsi, A search for good convolutionalcodes to be used in the construction of turbo codes, IEEE Transactions onCommunications,1998,46(9):1101-1105
    [193] D Divsalar, E Pollara, Low-rate turbo codes for deep-space communica-tions, Proceedings of1995IEEE International Symposium on Information Theory,Pasadena, USA,1995:35
    [194] AS Barbulescu, SS Pietrobon, Terminating the trellis of turbo codes in thesame state, Electronics Letters,1995,32(1):22-23
    [195] OY Takeshita, DJ Costello Jr, New classes of algebraic interleavers forturbo-codes, Proceedings of1998IEEE International Symposium on InformationTheory, MA,USA,1998:419
    [196] J Hokfelt, On the design of turbo codes:[PhD Thesis], Lund University,Lund, Sweden,2000
    [197] M Breiling, S Peeters, J Huber, Class of double terminating turbo codeinterleavers, Electronics Letters,1999,35(5):389-391
    [198] SS Pietrobon, AS Barbulescu, A simplification of the modifed Bahldecoding algorithm for systematic convolutional codes, National ConforencePublication-Institution of Engineers Australia NCP,1994:1073-1077
    [199] P Robertson, E Villebrum, P Huber, A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain, Proceedings of1995IEEE International Conference on Communications, Seattle, USA,1995:1009-1013
    [200] V Franz, JB Anderson, Concatenated decoding with a reduced-searchBCJR algorithm, IEEE Journal on Selected Areas in Communications,1998,16(2):186-195
    [201] GD Jr Forney, The Viterbi algorithm, Proceedings of the IEEE,1973,61(3):268-278
    [202] J Hagenauer, P Hoeher, A Viterbi algorithm with soft-decision outputs andits applications, Proceedings of1989Global Telecommunications Conference,1989:1680-1686
    [203] C Nill, CE W Sundberg, List and soft symbol output Viterbi algorithms:Extensions and comparisons, IEEE Transactions on Communications,1995,43(234):277-287
    [204] W Willinger, MS Taqqu, WE Leland, et al, Self-Similarity in High-SpeedPacket Traffic: Analysis and Modeling of Ethernet Traffic Measurements, StatisticalScience,1995,10(1):67-85
    [205] HE Hurst, Long-term storage capacity of reservoirs, Transactions of theAmerican Society of Civil Engineers,1951,116:770-799
    [206] HE Hurst, Methods of using long-term storage in reservoirs, Proceedings ofthe Institution of Civil Engineers, Part I,1956,5:519-590
    [207] J Harte, A Kinzig, J Green, Self-Similarity in the Distribution andAbundance of Species, Science,1999,284:334-336
    [208] ME Crovella, A Bestavros, Self-Similarity in World Wide Web Traffic:Evidence and Possible Causes, IEEE/ACM Transactions on Networking,1997,5(6):835-846
    [209] VI Kruglov, BC Thomsen, JM Dudley, JD Harvey, Self-SimilarityPropagation and Amplification of Parabolic Pulses in Optical Fibers, Physical ReviewLetters,2000,84(26):6010-6013
    [210] Q Liang, Ad Hoc Wireless Network Traffic-Self-Similarity andForecasting, IEEE Communications Letters,2002,6(7):297-299
    [211] S Song, JKY Ng, B Tang, Some Results on the Self-Similarity Property inCommunication Networks, IEEE Transactions on Communications,2004,52(10):1636-1642

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700