用户名: 密码: 验证码:
含NH_3、CO_2工业废气捕集工艺的模拟优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业废气排入大气,会污染空气,这些废气还会通过不同的途径呼吸进入人体内,危害人的健康,但是如果对这些工业废气进行捕集利用则能带来一定的经济和环境效益。因此,从环保角度和经济角度两方面来看,工业生产都需对工业废气进行捕集回收。本文以合成氨放空气和烟道气两种工业废气为研究对象,利用模拟软件Aspen Plus分别对离子液体捕集合成氨放空气中氨的工艺和醇胺捕集烟道气中二氧化碳的工艺进行了模拟优化研究,以期达到工艺最优和能耗最低。
     针对合成氨生产过程中产生的合成氨放空气排放量大、污染重、难处理等特点,基于国内外现有技术基础,本文提出了以离子液体1-丁基-3-甲基咪唑四氟硼酸盐[C4mim][BF4]为吸收剂捕集放空气中氨的新工艺,采用吸收与多级闪蒸再生的方式,进行了工艺模拟计算和理论分析。首先采用NRTL活度系数模型对NH3和CH4在[C4mim][BF4]中的溶解度数据进行参数拟合,并应用Aspen Plus软件灵敏度分析模块,对吸收剂流量、温度进行了分析和优化,得出增大流量和降低温度有利于C4mim][BF4]对氨的吸收,优化操作条件为流量2000kg/h、温度30℃。该回收工艺净化气和再生气中氨摩尔浓度分别为32.4ppm和95.2%,满足工艺要求。
     对于醇胺捕集烟道气中二氧化碳的工艺,本文采用乙醇胺(MEA)和空间位阻胺2-氨基-2-甲基-1-丙醇(AMP)的混合体系进行二氧化碳的捕集。首先应用Aspen Plus模拟了实验室小试规模烟道气捕集工艺,经过模拟优化得到适宜的吸收、解吸操作工艺条件,根据优化后的工艺参数,在实验室小试装置上进行实验验证,发现实验结果和模拟结果偏差小于4%,表明模拟的可靠性和热力学模型选择的正确性;然后模拟了混合醇胺捕集烟道气的CO2完整工艺,模拟分析了MEA吸收剂以及混合醇胺吸收剂捕集烟道气中CO2的吸收效果、解吸效果。并对吸收、解吸特性进行了灵敏度分析,选取25wt%MEA为基准吸收剂,对比分析了进料温度、解吸塔再沸器热负荷和解吸塔压力对吸收解吸效果的影响,对比结果表明混合胺的吸收、解吸效果均优于单一25wt%MEA吸收剂。
Industrial exhaust gas pollute the air when discharged into the atmosphere, some exhaust gas harm the human health when breathed into human body in different ways. However, if they are captured and used, it will bring bring some economic and environmental benefits. Therefore, both from the environmental point and economic point, exhaust gas should be captured in the industial production. In this work, purge gas in ammonia synthesis plant and flue gas in chemical plants were studied. Aspen Plus software was used to stimulate and optimize the process of ammonia recovery with ionic liquid from purge gas and CO2capture from flue gas with MEA-AMP mixed amines in order to achieve the optimized process and the lowest energy cost.
     For the ammonia production in ammonia synthesis plant, there are serious problems such as large emission, heavy pollution and difficulty in dealing with the ammonia. Based on the existing technology both at home and abroad, a new ammonia recovery process of absorption and multi-stage flash distillation with ionic liquid [C4mim][BF4] as absorbent was designed, simulated and optimized. NRTL activity coefficient model was adopted, solubility data of ammonia and methane in the ionic liquid [C4mim][BF4] were regressed. Sensitivity analysis with Aspen Plus software was used to optimize the process; the effects of flow rate and temperature of absorbent on the molar concentration of ammonia in the purified gas were analyzed. The results showed that increasing the flow rate and reducing the temperature were conducive to the absorption of ammonia by [C4mim][BF4], the optimized operating conditions were mass flow rate2000kg/h and30℃. The molar concentration of ammonia in purified gas and the regenerated gas was32.4×10-6and95.2%, meeting the design requirements.
     For the process of CO2capture from flue gas with MEA-AMP mixed amines, MEA-AMP mixed amines are adopted, simulation Aspen Plus firstly used to simulate a laboratory pilot scale of flue gas capture process, the suitable absorption and desorption operating conditions were achieved through simulation optimization, and laboratory pilot plant experiments were set up, the deviation between the calculated data and the experimental data was less than4%, which indicate the reliability of the simulation and correctness of the choice of thermodynamic model. Process simulation software was used to simulate and analyze the absorption effect and desorption effect of MEA absorbent and mixed amines of MEA and sterically hindered amines AMP on the CO2from flue gas. The results showed that the mixed amine (molar ratio of MEA: AMP=1:1) had better absorption efficiency, in order to further examine absorption and desorption effect of mixed amines, sensitivity analysis was used to investigate the influence of some key process operating variables on capture performance,25wt%MEA was selected as base case, comparative analysis of the temperature of the absorbent, heat duty of the reboiler, pressure of the stripper of the25wt%MEA and MEA-AMP blends was performed, the comparative results showed that the absorption effect and desorption effect of the mixed amines was better than single25wt%MEA.
引文
[1]黄毅.生物法净化工业废气的研究进展[J].重庆文理学院学报(自然科学版),2009,28(1):77-78
    [2]张永增.合成氨放空气及弛放气中氨的回收[J].河北化工,1999,4(1):44-47
    [3]田青,候立刚,吴延河.再生气及弛放气氨回收技改小节[J].小氮肥设计技术,2006,27(1):46-51
    [4]刘燕敦,刘造堂,张松平等.氨水精馏法制液氨工艺及其在污水气提装置的应用[J].石油化工环境保护,1999,3(1):21-25
    [5]李广庆,柴春泽.氨水精馏装置的应用[J].化肥工业,2005,33(6):29-30
    [6]Bruno Delfort, Pierre-Louis Carrette, Leslie Bonnard. MEA 40% with Improved Oxidative Stability for CO2 Capture in Post-Combustion [J]. Energy Procedia,2011, 4(1):9-14
    [7]Jorge M Plaza, David Van Wagener, Gary T. Rochelle. Modeling CO2 capture with aqueous monoethanolamine. [J]. Energy Procedia,2009,1 (1):1171~1178
    [8]B.P. Mandal, S.S. Bandyopadhyay. Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-l-propanol and monoethanolamine [J]. Chemical Engineering Science,2006,61 (16):5440~5447
    [9]Roongrat Sakwattanapong, Adisorn Aroonwilas, Amornvadee Veawab. Reaction rate of CO2 in aqueous MEA-AMP solution:experiment and modeling [J]. Energy Procedia, 2009,1 (1):217-224
    [10]Anindo Dey, Adisorn Aroonwilas. CO2 absorption into MEA-AMP blend:mass transfer and absorber height index [J]. Energy Procedia,2009,1(1):211~215
    [11]胥家瑞.化工模拟系统[J].天津化工,2002,1(1):42-43
    [12]雷昭.甲醇制备汽油工艺模拟[D].[硕士学位论文].西安:西安科技大学,2009,37-38
    [13]Aspen physical property system, v7.2. Aspen Technology, Inc:Burlington, MA,2010
    [14]Rahimpour M R, Asgari A. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor [J]. Journal of Hazardous Materials,2008,153 (1/2):557-565
    [15]张琴芳,许文松,徐东海.高压吸收法回收放空气中的氢、氮[J].技术进展,1985,3:16
    [16]周绪美,姚飞,黄大坚.合成氨仿真实习教材[M].北京:化学工业出版社,2001
    [17]王树仁.合成氨生产工[M].北京:化学工业出版社,2005
    [18]钱伯章.2006年8月统计的世界合成氨产能[J].大氮肥,2006,29(1):418
    [19]陈集河,杨史峰.合成氨碳化尾气中氨的回收[J].广州化工,1998,26(1):50-51
    [20]曹凤文.低温法回收合成氨弛放气中的应用[J].氮肥技术,2006,27(5):27-28
    [21]刘军.等压氨回收塔的设计与应用[J].小氮肥设计技术,2006,27(2):33-35
    [22]仁小坤,张武.无动力氨回收技术的新进展及应用[J].化肥设计,2007,45(2):49- 51
    [23]沈沛,雷学山,续德华.无动力氨回收技术应用总结[J].石油化工应用,2007,26(3):70-71
    [24]Chen Y H, Zhang S J, Yuan X L, et al. Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids [J]. ThermochimicaActa,2006,441 (1):42~44
    [25]Jacquemin J, Margarida F, Pascale H, et al. Solubility of carbon dioxide, ethane, methane,oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-Butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric [J]. The Journal of Chemical Thermodynamics, 2006,38(4);490~502
    [26]Li G H, Zhou Q, Zhang X P, et al. Solubilities of Ammonia in Basic Imidazolium Ionic Liquids[J]. Fluid Phase Equilibria,2010,297 (1):34-39
    [27]史奇冰,郑逢春,李春喜等.用NRTL方程计算含离子液体体系的汽液平衡[J].化工学报,2005,56(5):752-755
    [28]陈敏恒,丛德滋,方图南等.化工原理,第3版[M].北京:化学工业出版社,2006.1-104
    [29]安晓晓,王海彦,商育伟等.应用Wilson, Nrtl和Uniquac模型计算三元体系气液平衡[J].化工工程师,2010,180(9):21-25
    [30]陈晏杰,姚月华,张香平等.基于离子液体的合成氨弛放气中氨回收工艺模拟计算.[J].过程工程学报,2011,11(4):86-93
    [31]田肖,张香平,成为国等.乙二醇/碳酸二甲酯联产工艺的多目标优化研究[J].计算机与应用化学,2010,27(8):1059-1062
    [32]于戈文,李永旺,徐元源等.不同工艺路线FT合成油-电多联产模拟计算[J].过程工程学报,2010,10(5):965-969
    [33]郭新连,张静雅,叶丽萍,等.反应精馏合成亚硝酸甲酯的工艺模拟与优化[J].计算机与应用化学,2010,27(11):1486-1488
    [34]杨德明,高晓新.热集成变压精馏分离水-异丙醇-二异丙胺的工艺模拟[J].过程工程学报,2010,10(2):327-331
    [35]陈茂兵,孙克勤Aspen Plus在氨法烟道气脱硫中的应用[J].电力环境保护,2009,25(4):30-32
    [36]李小华,杨富明,周清等.磁性离子液体1-甲基-3-烷基咪唑四卤化铁盐的合成及其物性表征[J].过程工程学报,2010,10(4):88-793
    [37]曹仑,张卫峰,高力等.中国合成氨生产能源消耗状况及其节能潜力[J].化肥工业,2008,35(2):20-24
    [38]http://ec.europa.eu/research/energy/nn/nn_rt/nn_rt_co/article_l 150_en.htm
    [39]Intergovermental Panel on Climate Change (IPCC),2005.Carbon dioxide capture and Storage.Cambridge University press.
    [40]Abanades J C, Rubin E S, Anthony E J. Sorbent cost and performance in CO2 capture systems [J]. Industrial & Engineering Chemistry Research,2004,43:3462-3466
    [41]Davison J. Performance and costs of power plants with capture and storage of CO2[J]. Energy Procedia,2007,32:163~1176
    [42]Kuramochi T, Faaij A, Ramirez A,Turkenburg W. Prospects for cost-effective post-combustion CO2 capture from industrial CHPs[J]. International Journal of Greenhouse Gas Control,2010,4:511-524
    [43]李天成,冯霞,李鑫钢.二氧化碳处理技术现状及其发展趋势[J].化学工业与工程,2002,19(2):191-215
    [44]Abu-Zahra M R M, Feron P H M, Jansens P J, Goetheer ELY New process concepts for CO2 post-combustion capture process integrated with co-production of hydrogen [J]. International Journal of Hydrogen Energy,2009,34:3992~4004
    [45]黄斌,刘练波,许世森.二氧化碳的捕获和封存技术进展[J].中国电力,2007,40(3):279-283
    [46]Idem R, Wilson M, Tontiwachwuthikul P, Chakma A, Veawab A, Aroonwilas A, Gelowitz D. Pilot plant studies of the CO2 capture performance of aqueous mea and mixed mea/mdea solvents at the university of regina[J]. Industrial & Engineering Chemistry Research,2005,45:2414~2420
    [47]孙欣.燃煤电厂二氧化碳捕集与储存技术[J].中国煤炭,2008,34(4):96-99
    [48]Hongqun Yang.Progress in carbon dioxide separation and capture:A review [J]. Journal of Environmental Sciences.2008,20:14~27
    [49]Ali S M.CO2-flue gas separation for a conventional coal-fired power plant(first apporach).Master thesis, University of Boras, BORAS,2007
    [50]姜鹏.醇胺法脱碳工艺模拟与装置运行研究[D].[硕士学位论文].大连:大连理工大学,2009,2-5
    [51]李太兴.醇胺法捕集CO2流程模拟与工艺改进[D].[硕士学位论文].青岛:青岛科技大学,2010,6-10
    [52]李德凯.烟道气CO2捕集纯化过程模拟与参数优化技术[D].[硕士学位论文].青岛:中国石油大学,2010,5-17
    [53]高洁,郭斌.温室气体二氧化碳的回收与资源化[J].污染防治技术,2007,20(1):56-59
    [54]彭淑婧,任爱玲.烟气中二氧化碳资源化技术及应用前景[J].河北化工,2006,29(8):30-32
    [55]刘炳成,吴海超,张煜等.AMP吸收电厂烟道气CO2性能的实验[J].化工进展,2010,29:439-441
    [56]卢敏,武斌,朱家文.胺法脱碳技术研究进展[J].上海化工,2005,30(11):25-28.
    [57]陈晏杰,姚月华,江振西等MEA-AMP混合醇胺捕集烟道气二氧化碳过程分析[J].计算机与应用化学,2009,29(1):113-116
    [58]B. P. Mandal, M. Guha, A. K. Biswas., et al. Removal of carbon dioxide by absorption in mixed amines:Modeling of absorption in aqueous MDEA/MEA and AMP/MEA Solutions [J]. Chemical Engineering Science,2001,56:6217~6224
    [59]Yicheng Zheng, Dongfang Guo, Lihu Dong et al. Simulation and pilot plant measurement for CO2 absorption with mixed amines [J]. Energy Procedia,2011,4(1): 299-306
    [60]Xiao J, Li, C. W, Li M. H. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-Amino-2-methyl-l-Propanol+Monoethanolamine[J]. Chemical Engineering Science,2000,55:161~175
    [61]孙恒,舒丹,马文华.混合胺法深度脱碳的工艺参数模拟优化[J].石油与天然气化工,2010,39(4):297-299
    [62]Ying Zhang. Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution [J]. Industrial & Engineering Chemistry Research. 2009,48:9233-9246
    [63]郑碏,董立户,陈健等.CO2捕集的吸收溶解度计算和过程模拟[J].化工学报,2010,61(7):1741-1742
    [64]Fang-Yuan Jou, Frederick D. Otto, Alan E. Mather.Vapor-liquid equilibrium of carbon dioxide in aqueous mixtures ofmonoethanolamine and methyldiethanolamine [J]. Industrial & Engineering Chemistry Research.1994,33:2002~2005
    [65]Keh-Perng Shen, Meng-Hul Li. Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine [J]. The Journal of Chemical Engineering Data.1992,37:96~100
    [66]Yi-Gui Lit, Alan E. Mather.Correlation and prediction of the solubility of carbon dioxide in a mixed alkanolamine solution [J]. Industrial & Engineering Chemistry Research.1994,33:2006~2015
    [67]Sang Hyun Park, Ki Bong Lee, Jae Chun Hyun.Correlation and Prediction of the Solubility of carbon dioxide in aqueous alkanolamine and mixed alkanolamine solutions mixed alkanolamine solution [J]. Industrial & Engineering Chemistry Research.2002, 41:1658~1665
    [68]MengHui Li, Bei-Chia Chang. Solubilities of carbon dioxide in water+ monoethanolamine+2-amino-2-methyl-l-propanol [J]. The Journal of Chemical Engineering Data.1994,39:448~452
    [69]Yunda Liu. Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model [J]. Industrial & Engineering Chemistry Research.1999,38:2080~2090
    [70]David M. Austgen,Gary T. Rochelle. Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation [J]. Industrial & Engineering Chemistry Research.1989,28:1060~1073
    [71]田肖.离子液体工艺的系统集成研究[D].[博士学位论文].北京:中国科学院研究生院,2011:93-95
    [72]Abu Zahra, M.R.M. Carbon dioxide capture from flue gas:development and evaluation of existing and novel process concepts. Docter dissertation, Technische Universiteit Delft, Delft,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700