用户名: 密码: 验证码:
纳米流体热质传递机理及光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1995年,美国Argonne国家实验室的Choi在国际上首次提出了纳米流体的概念:即以一定的方式和比例在液体中添加纳米级的金属或非金属氧化物粒子,形成一类新的传热冷却工质。纳米流体的概念一经提出,立即引起了国内外研究者的关注。作为一种新型的功能流体,纳米流体拥有一些特殊的性质。纳米流体的传热特性、传质特性以及光学特性是其三个重要的物性,已有的实验研究已经表明纳米流体在传热、传质以及光学领域有很好的应用前景。目前,人们对于纳米流体的研究还不够深入,纳米流体各种特性的机理尚不清楚。进一步开展纳米流体各种特性的机理研究,有助于加深人们对纳米流体的认知,能够促进纳米流体的工程应用,是非常有意义的工作。本文围绕纳米流体的传热、传质以及光学特性开展了研究工作,探索了纳米流体的导热机理、传质机理以及光吸收特性机理,为纳米流体的应用提供了理论指导。本文的主要工作包括以下几个方面:
     1.纳米流体导热机理的研究
     自纳米流体的概念被提出以来,人们就一直关注纳米流体的传热特性。研究者们对纳米流体的导热系数进行了大量的实验及理论研究。实验结果表明纳米流体的导热系数比基液的导热系数有了很可观的提高。人们考虑各种因素,提出了很多理论模型来解释纳米流体的导热机理,但目前还没有一种完善的理论。纳米流体内部的能量传递是一个非常复杂的过程,传统的导热模型不能解释纳米流体中的传热过程。要搞清楚纳米流体的导热机理,还需要进一步更深入的研究。
     本文首先对已经报道的关于纳米流体导热系数的研究结果进行了分析总结,搞清楚了影响纳米流体导热系数的各种因素。纳米流体的导热系数可以看作静态导热系数与动态导热系数之和。本文综合考虑影响纳米流体导热系数的各种因素,分别建立了纳米流体的静态导热系数模型和动态导热系数模型。利用本文建立的理论模型,结合实验结果对纳米流体的导热机理进行了研究,搞清楚了影响纳米流体导热系数的主要因素。对于纳米粒子具有磁性的纳米磁流体,其导热系数在外加磁场作用下是各向异性的。目前关于这方面的理论研究很少,本文结合了纳米磁流体微结构的动力学模拟以及纳米流体的静态导热系数模型,对纳米磁流体的各向异性导热机理进行了研究。首先详细分析了纳米磁流体中磁性粒子受到的各种作用力,建立了磁粒子受力模型及运动方程。在此基础上,运用动力学方法模拟了在有、无外加磁场作用两种情况下纳米磁流体的微观聚集结构。然后利用纳米流体的静态导热模型计算了不同结构的纳米磁流体的各向异性导热系数。研究结果表明,外加磁场作用下磁性粒子沿着磁场方向形成了链状结构,这种链状结构为流体内部的传热提供了有效的通路,使得纳米磁流体在沿着链方向的导热系数大于垂直于链方向的导热系数,纳米磁流体导热系数的各向异性特征会随着外加磁场强度的增大而变得更加明显。
     2.纳米流体强化传质研究
     关于纳米流体强化传质的研究处于起步阶段,研究结果比较少。本文从理论和实验两个方面对纳米流体的传质过程进行了探索,较为完整地研究了纳米流体的强化传质机理。
     (1)理论研究方面
     分析了悬浮纳米粒子的布朗运动对于纳米流体内部传质过程的影响,并根据热质比拟理论,得到了纳米流体有效传质扩散系数的准则方程。通过对纳米流体传质过程的理论分析,搞清楚了影响纳米流体传质扩散系数的主要因素。
     (2)实验研究方面
     根据Taylor分散法的思路,设计出了能够定量测量纳米流体传质扩散系数的实验系统。测量了不同温度(15℃、20℃、25℃)条件下罗丹明B在不同粒子体积份额(0.1%~0.5%)的Cu-水以及Cu-乙二醇纳米流体中的扩散系数,研究了纳米流体中粒子体积份额、温度以及基液属性等因素对传质的影响。结果表明悬浮纳米粒子的不规则运动强化了基液内的传质过程。罗丹明B在纳米流体中的扩散系数要大于其在基液中的扩散系数,且扩散系数随着粒子体积份额的增大而增大。当粒子体积份额相同时,扩散系数随着温度的升高而增大。罗丹明B在Cu-水纳米流体中的扩散系数要大于其在Cu-乙二醇纳米流体中的扩散系数。
     本文对纳米流体强化传质所做的理论和实验上的探索性工作,帮助我们搞清楚了影响纳米流体传质的一些主要因素,对于促进纳米流体在工程中的应用起到了指导作用。
     3.纳米流体光学特性研究
     影响纳米流体光学特性的重要参数是纳米流体的消光系数。本文从实验和理论两个方面对纳米流体的消光系数进行了研究。由于纳米磁流体有特殊的磁光效应,其在光学领域的应用前景比普通的纳米流体更加广泛。本文用新建的理论模型重点研究了纳米磁流体在外加磁场作用下的光学各向异性机理。
     (1)实验研究方面
     根据薄膜透射原理,建立了可以测量纳米流体消光系数的实验方法。首先用该方法测量了水在不同波长下的消光系数,并与文献值进行了对比。分析表明该实验方法适合测量纳米流体的消光系数,有较高的精度。然后用该方法测量了不同粒子体积份额的Fe304-水纳米流体的消光系数,为接下来的理论研究提供了实验数据。
     (2)理论研究方面
     建立理论模型,引入了T矩阵算法,考虑纳米流体中粒子的聚集结构特性以及粒子之间的多次散射,建立了一种可以精确计算纳米流体消光系数的理论方法。用该方法对不同体积份额的Fe3O4-水纳米流体的消光系数进行了计算,并与本文的实验结果进行了对比。计算结果与实验结果符合的很好。为了研究纳米磁流体的光学各向异性机理,首先利用本文所建立的动力学方法模拟得到了纳米磁流体在外加磁场作用下的微观结构,然后用本文的理论方法计算得到了纳米磁流体各向异性的消光系数。利用该方法分析了粒子粒径、体积份额、外加磁场等因素对纳米磁流体消光系数的影响。研究结果表明:在外加磁场作用下,磁性纳米粒子会沿着磁场方向形成链状聚集结构,正是这种各向异性的聚集结构导致了纳米磁流体的消光系数出现了各向异性特征。在平行于磁场方向,纳米磁流体的消光系数小于不加磁场时的值,且消光系数随着磁场强度的增大而减小,直到达到恒定值;在垂直于磁场方向,若入射光的偏振方向与磁场方向平行,纳米磁流体的消光系数大于不加磁场时的值,且消光系数随着磁场强度的增大而增大;若入射光的偏振方向与磁场方向垂直,纳米磁流体的消光系数小于不加磁场时的值,且消光系数随着磁场强度的增大而减小。
In1995, the concept of nanofluids was first proposed by Choi who was worked at Argonne National Laboratory of the United States. Nanofluids refer to a new class of heat transfer fluids by suspending nanoscaled metallic or nonmetallic particles in base fluids. Since the born of nanofluids, it had attracted the attention of researchers. As a new type of functional fluids, nanofluids have some special characters. The heat and mass transfer characters and the optical character are three of the most important characters of nanofluids. Reported experimental studies have shown that nanofluids have a good prospect of application in heat and mass transfer and optical engineering. So far, our knowledge about nanofluids is not deep enough to explain the special characters of nanofluids. Further studies about the characters of nanofluids are necessary. The research work of this paper focuses on the heat and mass transfer characters and the optical character of nanofluids. The mechanisms of heat conduction, mass transfer and the optical absorption of nanofluids are investigated to provide theoretical guidance for the application of nanofluids. The main research work of this paper includes the following aspects.
     1Research on the mechanism of heat conduction of nanofluids
     Since the concept of nanofluids have been proposed, many attentions have been paid to the heat transfer character of nanofluids. A lot of experimental researches about the thermal conductivity of nanofluids have been reported. Experimental results showed that the thermal conductivity of nanofluids is remarkably higher than that of base fluid. Considering various factors, researchers had proposed many theoretic models to explain the mechanism of the thermal conductivity of nanofluids. But there is not a perfect model, the mechanism is still unclear. In order to make the heat conduction mechanism of nanofluids clear, further research is needed.
     Based on analyzing the reported researches about the thermal conductivity of nanofluids, the factors which affect the thermal conductivity of nanofluids were summarized. The thermal conductivity of the nanofluids can be regarded as the sum of the static thermal conductivity and the dynamic thermal conductivity. In this paper, by considering the various factors which affect the thermal conductivity of nanofluids, the static thermal conductivity model and the dynamic thermal conductivity model of nanofluids are proposed. The heat conduction mechanism of nanofluids is studied by the proposed thermal conductivity model and the main factors which affect the thermal conductivity of nanofluids are found. The thermal conductivity of magnetic nanofluids is anisotropic in the presence of an external magnetic field because of the magnetic nanoparticles. At present, few theoretical studies about this have been reported. In this paper, combining the dynamics simulation of magnetic nanofluids' microstructure and the static thermal conductivity model of nanofluids, the anisotropic heat conduction mechanism of magnetic nanofluids is studied. First, the force models and motion equations of magnetic particles are established by considering the various forces acting on the magnetic particles. On this basis, the microstructures of magnetic nanofluids in the presence of different magnetic field are obtained by dynamics simulations. Then, the anisotropic thermal conductivity of magnetic nanofluids is calculated by the static thermal conductivity of nanofluids. The results show that in the presence of an external magnetic field, the magnetic particles form chain-like structures along the direction of the magnetic field. The chain-like structures provide an effective heat transfer pathway in the fluid so that the thermal conductivity of magnetic nanofluids along the chain direction is bigger than that perpendicular to the chain direction. The anisotropic feature of the thermal conductivity becomes more evident with increasing the external magnetic field strength.
     2Research on the enhanced mass transfer of nanofluids
     The study of mass transfer of nanofluids is in the initial stage, few researches about this have been reported. This paper studies the mechanism of mass transfer of nanofluids from both theoretical and experimental aspects.
     (1) Theoretical research
     The effect of Brownian motion of the suspended nanoparticles on the mass transfer of nanofluids is analyzed. Based on the similarity theory of heat and mass transfer, the criterion equation of effective mass diffusivity of nanofluids is proposed. By the theoretical analysis of mass transfer in nanofluids, the main factors which affect the mass diffusivity of nanofluids are found.
     (2) Experimental research
     According to the idea of the Taylor dispersion method, an experimental system for measuring the mass diffusivity of nanofluids is devised. In order to investigate the effect of particle volume fraction, temperature and the base fluid properties on the mass diffusivity of nanofluids, we measured the mass diffusivities of Rhodamine B in both Cu-water and Cu-ethylene glycol nanofluids at different temperatures (15℃,20℃,25℃). The particle volume fraction of the nanofluids is from0.1%to0.5%. The experimental results show that the mass transfer in fluid is strengthened by the suspended nanoparticles. The mass diffusivity of Rhodamine B in nanofluids is larger than that in base fluid and the mass diffusivity increases with increasing the particle volume fraction. For a given particle volume fraction, the mass diffusivity increases with the increasing the temperature. The mass diffusivity of Rhodamine B in Cu-water nanofluids is greater than that in Cu-glycol nanofluids.
     The exploratory work in this paper on the mass transfer of nanofluids has figured out the key factors that affect the mass transfer of nanofluids. This work plays a guiding role in promoting the application of nanofluids in engineering.
     3Research on the optical character of nanofluids
     The extinction coefficient of nanofluids is an important parameter which affects the optical character of nanofluids. In this paper, the extinction coefficient of nanofluids is studied from both experimental and theoretical aspects. Because of the special magneto-optical effects, the magnetic nanofluids are more applicable in optical engineering than the ordinary nanofluids. In this paper, the optical anisotropy mechanism of magnetic nanofluids is researched by the new theoretical model.
     (1) Experimental research
     Based on the film transmission principle, the experimental method for measuring the extinction coefficient of nanofluids is established. The extinction coefficients of the water at different wavelengths are measured and compared to the literature value. The results indicate that the present method is suitable for measuring the extinction coefficient of the nanofluids and has high accuracy. Then the extinction coefficients of Fe3O4-water nanofluid with different particle volume fractions are measured for providing experimental data for the next theoretical research.
     (2) Theoretical research
     Based on T-matrix method and considering the particle aggregation microstructure and the multiple scattering between nanoparticles, a theoretical method for the extinction coefficient of magnetic nanofluids is proposed. By using the proposed method, the influence of particle diameter, particle volume fraction and external magnetic field on the extinction coefficient of magnetic fluid is studied and the mechanism of the anisotropic optical character of magnetic fluid is explored. The results show that the extinction coefficients of magnetic fluid increase linearly with the increase of particle volume fraction. For a given particle volume fraction, the lager the particle diameter, the bigger the extinction coefficient is. In the presence of an external magnetic field, the microstructure of magnetic fluid presents anisotropic feature which causes the optical property of magnetic fluid presents anisotropic feature. The extinction coefficient of magnetic fluid along the magnetic field direction is smaller than that without external magnetic field and the extinction coefficient decreases with the increase of the magnetic field strength. For the extinction coefficient of magnetic fluid perpendicular to the magnetic field direction, there are two different results. When the polarization direction of the incident light is parallel to the magnetic field, the extinction coefficient of magnetic fluid is bigger than that without external magnetic field and the extinction coefficients increase with the increase of the magnetic field strength. But when the polarization direction of the incident light is perpendicular to the magnetic field, the extinction coefficient of magnetic fluid is smaller than that without external magnetic field and the extinction coefficients decrease with the increase of the magnetic field strength.
引文
1 Choi S U S. Enhancing Thermal conductivity of fluids with nanoparticles, in:Siginer D A, Wang H P, eds., Developments and Applications of Non-Newtonian Flows, ASME,1995: 99-103
    2 Nethe A, Schoppe T, Stahlmann H. Ferrofluid driven actuator for a left ventricular assist device. Journal of Magnetism and Magnetic Materials,1999,201:423-426
    3 Raj K, Moskowitz B, Casciari R. Advances in ferrofluid technology. Journal of Magnetism and Magnetic Materials,1995,149:174-180
    4 Litte R, Beltracchi L. Viscous damper using magnetic ferrofluid. United States Patent 3538469,1970.
    5 温利,周仁魁,罗长洲.磁流体密封技术的发展及应用综述.润滑与密封.2002,6:86-89
    6 郑士杰,周福洪.铁磁流体的特性及其应用.功能材料.1993,3:261-268
    7 Jordan A, Scholz R, Maier-Hauff K, et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials,2001,225:118-126
    8 Bienkowski A, Szewczyk R. The possibility of utilizing the high permeability magnetic materials in construction of magnetoelastic stress and force sensors. Sensors and Actuators A,2004,113:270-276
    9 Fukunaga H, Ichiki Y, Ikezoe H, et al. New nanostructured magnetic material for choke coils. Journal of Magnetism and Magnetic Materials,1999,196:177-178
    10 Muraok H, Shoji T, Watanabe I, et al. Recording characteristics of perpendicular media deposited on a ferrite disk substrate. Journal of Magnetism and Magnetic Materials,1999, 193:55-58
    11 Rosensweig R E. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials,2002,252:370-374
    12 Tangthieng C, Finlayson B A, Maulbetsch J, et al. Heat transfer enhancement in ferrofluids subjected to steady magnetic fields. Journal of Magnetism and Magnetic Materials,1999,201:252-255
    13 Chen Y C, Ma C F, Yuan Z X, et al. Heat transfer enhancement with impinging free surface liquid jets flowing over heated wall coated by a ferrofluid. International Journal of Heat and Mass Transfer.2001,44:499-502
    14 Nakatsuka K, Jeyadevan B, Neveu S, et al. The magnetic fluid for heat transfer applications. Journal of Magnetism and Magnetic Materials,2002,252:360-362
    15 Yamaguchi H, Suzuki Y, Shuchi S. Application of Magnetic Fluid Membrane for Flow Control. Journal of Thermophysics and Heat Transfer,2003,17 (1):89-94
    16 Krishnamurthy S, Bhattacharya P, Phelan P E, et al. Enhanced mass transport in nanofluids. Nano Letters,2006,6:419-423
    17 Li J, Liang D, Guo K, et al. Formation and dissociation of HFC 134a gas hydrate in nano-copper suspension. Energy Conversion and Management,2006,47:201-210
    18盛伟,武卫东,张华,等.Al203纳米颗粒对氨水鼓泡吸收过程的强化影响.化工学报,2008,11(59):2762-2767
    19 Masuda H, Ebata A, Teramae K, et al. Alternation of thermal conductivity and viscocity of liquid by dispersion ultra-fine particles (dispersion of γ-Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei (Japan),1993,4:227-233
    20 Hu Z S, Dong J X. Study on antiwear and reducing friction additive of nanometer titanium oxide. Wear,1998,216:92-96
    21 Xuan Y M, Li Q. Heat transfer enhancement of nanofluids. International Journal of Heat and Mass Transfer,2000,21:58-64
    22 Hong T K, Yang H S, Choi C J. Study of the enhanced thermal Conductivity of Fe nanofluids. Journal of Applied Physics,2005,97:064311
    23 Murshed S M S, Leong K C, Yang C. Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Science,2005,44:367-373
    24谢华清,王锦昌,程署霞,等.热针法测量导热系数研究.应用科学学报,2002,20(1):6-9
    25徐敏,张军,吴石山,等.丁三烯-苯乙烯共聚物溶液导热系数的测定与研究.高分子材料科学与工程,2002,18(5):159-162
    26周乐平,王补宣.准稳态法测量纳米颗粒悬浮液的热物性.工程热物理学报,2003,24(6):1037-1039
    27 Lee S, Choi S U S, Li S, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME Journal of Heat Transfer,1999,121:280-289
    28 Das S K, Putra N, Thiesen P, et al. Temperature dependence of thermal conductivity enhancement of nanofluids. ASME Journal of Heat Transfer,2003,125:567-574
    29 Choi S U S, Zhang Z G, Yu W, et al. Anomalously thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters,2001,79:2252-2254
    30 Murshed S M S, Leong K C, Yang C. Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Science,2005,44:367-373
    31 Xie H, Wang J, Xi T, et al. Thermal conductivity of suspensions containing nanosized alumina particles. Journal of Applied Physics,2002,91:4568-4572
    32李强.纳米流体强化传热机理研究.南京理工大学博士学位论文,2003
    33 Wang X W, Xu X F, Choi S U S. Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermophysics and Heat Transfer,1999,13(4):474-480
    34 Xie H, Wang J, Xi T, et al. Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid. Journal of Materials Science Letters,2002,21:1469-1471
    35 Chopkar M, Sudarshan S, Das P K, et al. Effect of particle size on thermal conductivity of nanofluid. Metallurgical and Materials Transactions A,2008,39(7):1535-1542
    36 Liu M, Lin M, Tsai C Y, et al. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. International Journal of Heat and Mass Transfer,2006,49:3028-3033
    37 Xie H, Wang J, Xi T, et al. Thermal conductivity of suspensions containing nanosized SiC particles. International Journal of Thermophysics,2002,23:571-580
    38 Wen D, Ding Y. Experimental investigation into connective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer,2004,47:5181-5188
    39 Ding Y, Alias H, Wen D, et al. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer,2006,49:240-250
    40 Hong K S, Hong T K, Yang H S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Applied Physics Letters,2006,88:031901
    41 Zhu H, Zhang C, Liu S, et al. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Applied Physics Letters,2006,89(2):1-3
    42 Wang X, Zhu D, Yang S. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chemical Physics Letters,2009,470(1-3):107-111
    43 Satoh A, Chantrell R W, Kamiyama S I, et al. Two-Dimension Monte Carlo Simulations to Capture Thick Chainlike Clusters of Ferromagnetic particles in Colloidal Dispersions. Journal of Colloid and Interface Science,1996,178:620-627
    44 Satoh A, Chantrell R W, Kamiyama S I, et al. Three Dimension Monte Carlo Simulations of Thick Chainlike Clusters Composed of Ferromagnetic Fine Particles. Journal of Colloid and Interface Science,1996,181(2):422-428
    45 Aoshima M, Satoh A. Two-Dimension Monte Carlo Simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field. Journal of Colloid and Interface Science,2005,288:475-488
    46 Satoh A, Coverdale G N, Chantrell R W. Brownian dynamics Simulations of ferromagnetic Colloidal Dispersions in a Simple Shear Flow. Journal of Colloid and Interface Science,1999,209:44-59
    47 Enomoto Y, Oba K, Okada M. Simulation study on microstructure formations in magnetic fluids. Physica A,2003,330:496-506
    48 Li Q, Xuan Y M, Li B. Simulation and control scheme of microstructure in magnetic fluids. Science in China D,2007,50:3371-3379
    49 Li Q, Xuan Y M, Wang J. Experimental investigations on transport properties of magnetic fluids. Experimental Thermal and Fluid Science,2005,30:109-116
    50 Philip J, Shima P D, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures, Applied Physics Letters,2007,91:203108(1-3)
    51 Maxwell J C. A treatis on electricity and magnetism.2nd ed. London:Clarendon Press, 1881
    52 Jeffrey D J. Conduction through a random suspension of spheres. Proceedings of the Royal Society of London, Series A,1973,335(1602):355-367
    53 Davis R H. The effective thermal conductivity of a composite material with spherical inclusions. International Journal of Thermophysics,1986,7(3):609-620
    54 Lu S, Lin H. Effective conductivity of composite containing aligned spherical inclusions of finite conductivity. Journal of Applied Physics,1996,79(9):6761-6769
    55 Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamental,1962,1(3):182-191
    56 Jang S P, and Choi S U S. Role of Brownian motion in the Enhanced Thermal Conductivity of Nanofluids. Applied Physics Letters,2004,84(21):4316-4318
    57 Prasher R S, Bhattacharya P and Phelan P E.2005, Thermal Conductivity of Nanoscale Colloidal Solutions Nanofluids, Physics Review Letters,2005,94(2):025901
    58 Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research,2004,6(6):577-588
    59 Xu J, Yu B, Zou M, Xu P. A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. Journal of Physics D:Applied Physics,2006,39(20): 4486-4490
    60 Wang B X, Zhou L P, Peng X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and Mass Transfer,2003,46:2665-2672
    61王补宣,周乐平,彭晓峰.纳米颗粒悬浮液有效导热系数的分形模型.自然科学进展,2003,13(9):838-842
    62 Xuan Y M, Li Q, Hu W D. Aggregation structure and thermal conductivity of nanofluids. AIChE Journal,2003,49(4):1038-1043
    63 Prasher R, Phelan P E, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Letters,2006,6(7): 1529-1534
    64 Keblinski P, Prasher R, Eapen J. Thermal conductance of nanofluids:is the controversy over? Journal of Nanoparticle Research,2008,10(7):1089-1097
    65 Yu C J, Richter A G, Datta A, et al. Observation of molecular layering in thin liquid films using X-ray reflectivity. Physical Review Letters,1999,82(2-11):2326-2329
    66 Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids:a renovated Maxwell model. Journal of Nanoparticle Research,2003,5(1-2): 167-171
    67 Xie H, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. International Journal of Heat Mass Transfer, 2005,48(14):2926-2932
    68 Xue Q, Xu W M. A model of thermal conductivity of nanofluids with interfacial shells. Materials Chemistry and Physics,2005,90(2-3):298-301
    69 Leong KC, Yang C, Murshed S M S. A model for the thermal conductivity of nanofluids-the effect of interfacial layer. Journal of Nanoparticle Research,2006,8(2): 245-254
    70 Sitprasert C, Dechaumphai P, Juntasaro V. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer. Journal of Nanoparticle Research,2009,11(6):1465-1476
    71 Tillman P, Hill J M. Determination of nanolayer thickness for a nanofluid. International Communications in Heat and Mass Transfer,2007,34(4):399-407
    72 Keblinski P, Phillpot S R, Choi S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer,2002, 45(4):855-863
    73 Nie C, Marlow W H, Hassan Y A. Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids. International Journal of Heat and Mass Transfer, 2008,51(5-6):1342-1348
    74 Domingues G, Volz S, Joulain K, et al. Heat transfer between two nanoparticles through near field interaction. Physical Review Letters,2005,94(8):085901
    75 Philippe Ben-Abdallah. Heat transfer through near-field interactions in nanofluids. Applied Physics Letters,2006,89(11):113117
    76 Olle B, Bucak S, Holmes T C, et al. Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Industrial and Engineering Chemistry Research, 2006,45:4355-4363
    77苏风民,马学虎,陈嘉宾,等.双组份纳米流体强化泡状吸收过程的实验研究.制冷学报,2008,1(29):8-12
    78 Kim Jin-Kyeong, Jung Jun Young, Kang Yong Tae. Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids, International Journal of Refrigeration,2007,30:50-57
    79 Kang Yong Tae, Kim Hyun June, Lee Kang II. Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process, International Journal of Refrigeration,2008,31:850-856
    80 Prasher R, Bhattacharya P, Phelan, P E. Brownian-Motion-Based Convective-Model for the effective thermal conductivity of nanofluids, Journal of Heat Transfer,2006,128: 588-595
    81 Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena. New York:Wiley,1960: 56-60
    82 Scaffardi L B and Tocho J O. Size dependence of refractive index of gold nanoparticles, Nanotechnology,2006,17:1309-1315
    83 Scaffardi L B, Pellegri N, Sanctis O. Sizing gold nanoparticles by optical extinction spectroscopy, Nanotechnology,2005,16:158-163
    84 Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment, Journal of Physic Chemistry B,2003, 107:668-677
    85赵佳飞.纳米流体辐射特性机理研究及其在太阳能电热联用系统中的应用研究.浙江大学博士学位论文,2009
    86蔡洁聪.纳米流体对太阳能辐射选择吸收特性的研究.浙江大学硕士学位论文,2008
    87王辉,骆仲泱,蔡洁聪,等.Si02纳米流体透射率影响因素实验研究.浙江大学学报,2010,44(6):1143-1148
    88寿春晖,骆仲泱,王涛,等.纳米流体在太阳能光电利用中应用的研究.上海电力,2009,1:8-12
    89 Otanicar T P, Phelan P E, Prasher R S, et al. Nanofluid-based direct absorption solar collector. Journal of Renewable and Sustainable Energy,2010,2(3):033102
    90 Otanicar T P, Phelan P E, Taylor R A, et al. Spatially varying extinction coefficient for direct absorption solar thermal collector optimization. Journal of Solar Energy Engineering,2011,133:024501
    91 Taylor R A, Phelan P E, Otanicar T P, et al. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Research Letters,2011,6: 225
    92 Tyagi H, Phelan P E and Prasher R. Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector. Journal of Solar Energy Engineering, 2009,131:041004
    93 Davies H W, Llewellyn J P, Magnetic birefringence of ferrofluids. Ⅱ. Pulsed field measurements. Journal of Physics D:Applied Physics,1979,12 (8):1357-1363
    94 Skibin Y N, Chekanov V V, Raikher Y L. Birefringence in a ferromagnetic liquid. Journal of Experimental and Theoretical Physics,1977,45:496-499
    95 Taketomi S, Ukita M, Mizukami M, et al. Magneto-optical effects of magnetic fluid. Journal of the Physical Society of Japan,1987,56:3362-3374.
    96 Horng H E, Hong C Y, Yang H C, et al. Magnetic field dependence of Cotton-Mouton rotation for magnetic fluid films. Journal of Magnetism and Magnetic Materials,1999, 201:215-217
    97 Horng H E, Hong C Y, Yeung W B, et al. Magnetochromatic Effects in Magnetic Fluid Thin Films. Applied Optics,1998,37:2674-2680
    98 Horng H E, Yang S Y, Lee S L, et al. Magnetochromatics of the magnetic fluid film under a dynamic magnetic field. Applied Physics Letters,2001,79:350-352.
    99 Horng H E, Chen C S and Fang K L, et al. Tunable optical switch using magnetic fluids, 2004, Applied Physic Letters,85:5592-5594
    100 Liao W J, Chen X F and Chen Y P, et al. Tunable optical fiber filters with magnetic fluids, Applied Physic Letters,2005,87:15122
    101 Du T, Yuan S and Luo W, Thermal lens coupled magneto-optical effect in a ferrofluid, Applied Physic Letters,1994,65:1844-1846
    102 Viznyuk S A, Pashinin P P and Sukhodolskii A T. Recording dynamic diffraction gratings and optical phase conjugation by light-capillary profiling of thin liquid films. Optics Communications,1991,85,254-260
    103 Horng H E, Hong C Y, Lee S L, et al. Magnetochromatics resulted from optical gratings of magnetic fluid films subjected to perpendicular magnetic fields. Journal of Applied Physics,2000,88:5904-5908
    104 Yang S Y, Chen Y F, Horng H E, et al. Magnetically-modulated refractive index of magnetic fluid films. Applied Physic Letters,2002,81:4931-4933
    105 Pu S L, Chen X F, Chen Y P, et al. Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face. Applied Physics Letters,2005,86: 171904-171906
    106 Wu K T, Yao Y D and Huang H K. Magnetic and optical studies of magnetic colloidal particles in water and oleic acid. Journal of Applied Physics,2000,87(9):6932-6934
    107 James E M, Kimberly M H and Chris P T. Magnetic-field-induced optical transmittance in colloidal suspensions. Physical Review E,1999,59(5):5676-5691
    108 Fosa G, Badescu R, Calugaru G, et al. Measuring the transmittivity of light:A tool for testing the quality of magnetic liquids. Optical Materials,2006,28:461-465
    109 Rao G N, Yao Y D, Chen Y L and Wu K T, et al. Particle size and magnetic field-induced optical properties of magnetic fluid nanoparticles. Physical Review E,2005,72 (031408): 1-6
    110 Zou Y, Di Z Y, and Chen X F. Agglomeration response of nanoparticles in magnetic fluid via monitoring of light transmission. Applied Optics,2011,50 (8):1087-1090
    111 Waterman P C. Matrix formulation of electromagnetic scattering. Proceedings of the IEEE, 1965,53:805-812
    112 Modinos A. Scattering of electromagnetic waves by a plane of spheres-formalism. Physica A,1987;141:575-588
    113 Peterson B. Multiple scattering of waves by an arbitrary lattice. Physical Review A 1977,16:1363-1370
    114 Varadan V K. Multiple scattering of acoustic, electromagnetic and elastic waves. In:Varadan V K,VaradanV V, editors. Acoustic, electromagnetic and elastic wave scattering-focus on the T matrix approach. NewYork:Pergamon Press,1980, p:103-134
    115 Waterman P C, Pedersen N E. Electromagnetic scattering by periodic arrays of particles. Journal of Applied Physics,1986,59:2609-2618
    116 Aydin K, Daisley S E A. Relationships between rainfall rate and 35-GHz attenuation and differential attenuation:modeling the effects of raindrop size distribution, canting, and oscillation. IEEE Transactions on Geoscience and Remote Sensing,2002,40:2343-2352
    117 Barber P W. Scattering and absorption efficiencies for nonspherical dielectric objects-biological models. IEEE Transactions on Biomedical Engineering,1978,25: 155-159
    118 Aydin K, Park S H, Walsh T M. Bistatic dual-polarization scattering from rain and hail at S- and C-band frequencies. Journal of Atmospheric and Oceanic Technology 1998,15: 1110-1121
    119 Lakhtakia A, Iskander M F, Durney C H. An iterative extended boundary condition method for solving the absorption characteristics of lossy dielectric objects of large aspect ratios. IEEE Transactions on Microwave Theory and Techniques,1983,31:640-647
    120 Paramonov L E, Lopatin V N. Angular dependence of the matrix of light scattering by a suspension of soft spheroidal particles. Optics and Spectroscopy,1989,66:94-96
    121 Quirantes A, Delgado A. Experimental size determination of spheroidal particles via the T-matrix method. Journal of Quantitative Spectroscopy & Radiative Transfer,1998,60: 463-474
    122 Schuh R, Wriedt T. Light scattering by bent cylindrical fibers for fiber length and diameter characterization. Particle & Particle Systems Characterization,2003,20:243-249
    123 Bringi V N, Seliga T A. Scattering from non-spherical hydrometers. Annals of Telecommunications,1977,32:392-397
    124 Waterman P C. Symmetry, unitarity, and geometry in electromagnetic scattering. Physics Review D,1971,3:825-839
    125 Lakhtakia A, Iskander M F. Theoretical and experimental evaluation of power absorption in elongated biological objects at and beyond resonance. IEEE Transactions on Electromagnetic Compatibility,1983,25:448-453
    126 Mishchenko M I, Videen G.. Single-expansion EBCM computations for osculating spheres. Journal of Quantitative Spectroscopy & Radiative Transfer,1999,63:231-236
    127 Baran A J, Francis P N. On the radiative properties of cirrus cloud at solar and thermal wavelengths:a test of model consistency using high-resolution airborne radiance measurements. Quarterly Journal of the Royal Meteorological Society,2004,130: 763-778
    128 Baran A J, Francis P N, Havemann S, et al. A study of the absorption and extinction properties of hexagonal ice columns and plates in random and preferred orientations using exact T-matrix theory and aircraft observations of cirrus. Journal of Quantitative Spectroscopy & Radiative Transfer,2001,70:505-518
    129 Laitinen H, Lumme K. T-matrix method for general star-shaped particles:first results. Journal of Quantitative Spectroscopy & Radiative Transfer,1998,60:325-334
    130 Schneider J, Brew J, Peden I C. Electromagnetic detection of buried dielectric targets. IEEE Transactions on Geoscience and Remote Sensing,1991,29:555-562
    131 Borghese F, Denti P, Saija R, et al. Macroscopic optical constants of a cloud of randomly oriented nonspherical scatterers. I1 Nuovo Cimento della Societa Italiana di Fisica-B: General Physics,1984,81:29-50
    132 Borghese F, Denti P, Saija R, et al. Reliability of the theoretical description of electromagnetic scattering from nonspherical particles. Journal of Aerosol Science,1989, 20:1079-1081
    133 Fuller K A, Kattawar G W. Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I:Linear chains. Optics Letters, 1988,13:90-92
    134 Hamid A K, Ciric I R, Hamid M. Iterative solution of the scattering by an arbitrary configuration of conducting or dielectric spheres. IEE Proceedings, part H,1991,138: 565-572
    135 Stout B, Auger J C, Lafait J. Individual and aggregate scattering matrices and cross-sections:conservation laws and reciprocity. Journal of Modern Optics,2001,48: 2105-228
    136白璐.群聚球粒子光散射特性研究.西安电子科技大学硕士论文,2002
    137 Cruz L, Fonseca L F, Gomez M. T-matrix approach for the calculation of local fields in the neighborhood of small clusters in the electrodynamic regime. Physical Review B, 1989,40:7491-7500
    138 Sahin A, Miller E L. Recursive T-matrix methods for scattering from multiple dielectric and metallic objects. IEEE Transactions on Antennas and Propagation,1998,46:672-678
    139 Vargas W, Cruz L, Fonseca L F, Gomez M. T-matrix approach for calculating local fields around clusters of rotated spheroids. Applied Optics,1993,32:2164-2170
    140 Xu Y. Scattering Mueller matrix of an ensemble of variously shaped small particles. Journal of the Optical Society of America A:Optics,2003,20:2093-2105
    141 Mackowski D W. Calculation of total cross sections of multiple-sphere clusters. Journal of the Optical Society of America A:Optics,1994,11:2851-2861
    142 Mackowski D W, Mishchenko M I. Calculation of the T matrix and the scattering matrix for ensembles of sphere. Journal of the Optical Society of America A:Optics,1996,13: 2266-2278
    143 Bruggeman D A. Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen. Annalen der Physik. Leipzig,1935,24:636-679
    144 Einstein A. Investigation on the theory of Brownian movement. Dover, New York,1956
    145张纪中.分形.北京:清华大学出版社,1995
    146 Patel H E, Das S K, Sundararajian T, et al. Thermal conductivity of naked and monolayer protected metal nanoparticle base nanofluids:Manifestation of anomalous enhancement and chemical effects. Applied Physics Letters,2003,83:2931-2933
    147 Lee D, Kim J W, Kim B G. A New Parameter to Control Heat Transport in Nanofluids: Surface Charge State of the Particle in Suspension. Journal of Physical Chemistry B, 2006,110:4323-4328
    148刘俊红,顾建明.磁流体的热力学特性和应用.功能材料与器件学报.2002,8(3):314-318
    149杨凤昌.磁偶极子在外磁场中受的力.纺织基础科学学报.1989,2:108-110
    150何济洲,缪贵玲.两个偶极子间的相互作用.南昌大学学报(工科版).1996,3:96-98
    151董启宏.磁偶极子在外磁场中的相互作用能和势能.洛阳师范学院学报.2003,2:35-36
    152杨正东.基于格子Boltzmann方法的磁流体特性研究.南京理工大学硕士论文,2004
    153侯万国,孙德军,张春光.应用胶体化学.北京:科学出版社,1998
    154 Morimoto H, Maekawa T, Matsumoto Y. Nonequilibrium Brownian dynamics analysis of negative viscosity induced in a magnetic field subjected to both ac magnetic and shear flow fields. Physical Review E,2002,65:061508
    155李学慧,安宏.磁流体及其应用.大连大学学报.1996,6(2):8-10
    156李德才.磁性液体理论及应用.北京:科学出版社,2003
    157叶萌.磁流体流动与能量传递的格子Boltzmann方法.南京理工大学硕士论文,2005
    158 Chantrell R W, Coverdale G N, El Hilo M, et al. Modelling of interaction effects in fine particle systems. Journal of Magnetism and Magnetic Materials.1996,157:250-255
    159 Kim M M, Zydney A L. Effect of electrostatic, hydrodynamic, and Brownian forces on particle trajectories and sieving in normal flow filtration. Journal of Colloid Interface Science,2004,269:425-431
    160张齐,王建华.磁性液体三维蒙特卡洛模拟.自然科学进展.1995,5(1):105-113
    161 Slawska-Waniewska A, Roig A, Gich M, et al. Effect of surface modifications on magnetic coupling in Fe nanoparticle systems. Physical Review B,2004,70:054412
    162 Xuan Y M, Roetzel W. Conceptions for heat transfer correlation of nanofluids. International Journal of Heat and Mass Transfer,2000,43:3701-3707
    163 Acrivos A, Taylor D T. Heat and Mass Transfer from Single Spheres in Stokes Flows. Physics of Fluids,1962,5:387-394
    164王宇新,姜忠义.扩散:流体系统中的传质.北京:化学工业出版社,2002
    165连文磊.磁性液体热磁对流与传热机理—能量自主传递方法研究.南京理工大学博士论文,2010
    166 Culberson C T, Jacobson S C, Ramsey J M, Diffusion coefficient measurements in microfluidic devices. Talanta,2002,56:365-373
    167唐晋发,顾培夫,刘旭,等.现代光学薄膜技术.浙江大学出版社,2006
    168 Hale G M, Querry M R. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Applied Optics,1973,12:555-563.
    169 Tanaka T. Optical constants of polycrystalline 3d transition metal oxides in the wavelength region 350 to 1200nm. Japanese Journal of Applied Physics,1979,18(6): 1043-1047
    170 Wiscombe W J. Improved Mie scattering algorithms. Applied Optics,1980,19: 1505-1509
    171 Bohren C F, Huffman D R. Absorption and scattering of light by small particles. New York:Wiley-Interscience Press,1983
    172 Mackowski D W. Analysis of radiative scattering for multiple sphere configurations. Proceedings of The Royal Society of London Series A,1991,433:599-614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700