用户名: 密码: 验证码:
基于分形理论花岗石异型面高效磨削关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花岗石异型制品以其精美的外形、华贵典雅的色调以及耐磨损、耐腐蚀等稳定的物理化学性能,使其在建筑装修、工艺艺术、生活器具、精密机床等领域得到了广泛应用,并向着高档化、艺术化、精密化方向发展。新兴的花岗石装饰产品创意设计产业更是以花岗石异型制品加工为基础,因此,花岗石异型制品的社会需求量越来越大,对花岗石异型制品的加工质量和产品附加值的要求越来越高。针对我国花岗石异型制品生产加工现状和国内外研究热点,提出了基于分形理论研究花岗石异型面高效磨削关键技术的研究方向。本文从实现高效加工的设备、刀具、材料、工艺等基础手段入手,建立了花岗石异型面高效磨削加工关键技术体系,完善了高效加工的定义和理论判据,用分形几何的观点对花岗石异型面的磨削加工机理作了理论分析,研究了加工过程的分形特征,建立了相关分形模型,并通过实验研究了这些分形特征与加工工艺、效率之间的关系。
     通过分析金刚石单磨粒磨痕、花岗石材料的裂纹扩展和矿物晶体断裂的分形特征,研究了花岗石异型面的分形断裂去除机理。花岗石异型面一般采用结块式金刚石成型刀具加工,通过分析花岗石异型面的磨削过程和金刚石成型刀具特点,建立了金刚石单磨粒磨痕曲线模型,分析了其几何角度和去除材料体积的变化,研究了其分形特性,理论推导了磨痕分形曲线弧长和分形维数。通过对花岗石材料断裂去除过程的分析,分别建立了花岗石材料的裂纹扩展和矿物晶体断裂的分形模型,对花岗石材料的去除机理进行了分形研究。
     通过实验研究建立了磨削力分形维数与工艺参数之间的数学模型。花岗石异型面的加工属于断续磨削加工,其磨削力大小变化很大,其动态特性具有分形规律。通过建立金刚石单磨粒受力模型,推导了切向力、法向力和轴向力的关系式,分析了其大小和方向的变化规律,以此为基础建立了金刚石成型结块的受力模型,分析了结块受力的分形特征,确定了磨削力分形维数的计算方法。基于正交实验设计法对磨削加工五莲红花岗石1/4圆弧异型面的磨削力及其分形维数的规律进行了实验研究。分别选择切削速度、进给速度和背吃刀量为三个因素,每个因素各取四个水平,建立了三因素四水平正交表,对其沿三个坐标轴方向的磨削力进行测量。对磨削力测量结果分别进行极差分析、方差分析和多元回归分析,建立了磨削力与工艺参数的数学模型。对磨削力的动态变化特性用磨削力分形维数评价,分别计算出不同工艺参数下的磨削力分维,建立磨削力分维与工艺参数之间的数学模型,并对磨削力与磨削力分维之间的关系进行了分析研究,确定了两者之间的线性函数关系,即磨削力越大,磨削力分维也越大,磨削力动态变化愈大;磨削力越小,磨削力分维也越小,磨削力动态变化小。
     建立了以材料去除率和磨削力分形维数为评价指标的高效工艺参数优化模型。采用田口方法,以材料去除率为望大特性,磨削力分维为望小特性,分别计算出不同工艺参数下材料去除率和磨削力分维的信噪比S/N,作出信噪比和均值的主效应图,优化得出最佳工艺参数组合,并对优化结果进行了实验验证。
     建立了磨屑块度分形模型,并基于磨屑块度分形维数对花岗石异型面可磨削加工性进行了评价和分级预测研究。通过分析花岗石异型面的材料断裂破碎成屑的过程,建立了平面和三维空间破碎模型,分析其分形破碎特性。通过二次响应面法实验,研究了磨屑块度分形维数与工艺参数的关系,对影响磨屑块度分维因素的金刚石成型刀具、夹具、工艺参数、冷却液、花岗石材料等进行了分析。选择Si02、石英、肖氏硬度、密度、抗压强度、抗弯强度和耐磨率等七个对花岗石可磨削加工性有影响的指标,采用三角模糊数TOPSIS分析方法对十种典型花岗石材料的可磨削加工性进行了分级研究,然后通过磨削加工1/4圆弧异型面进行实验分析和验证,选择Y方向磨削力和磨屑块度分形维数为评价指标。对实验结果分别进行单因素分析和多因素综合分析,采用线性函数、指数函数、对数函数建立磨屑块度分维与花岗石性能指标之间的评价模型,基于磨屑块度分维建立了花岗石可磨削加工性的分级标准,并对实验的十种花岗石材料进行了可磨削加工性分级,实验结果与FAHP-TOPSIS的分析结论基本一致。
     本文研究旨在提高花岗石异型制品的加工效率,降低生产成本,其研究成果对生产加工具有理论和实践指导意义,对推动花岗石异型制品加工走标准化、低成本、高效率、高附加值加工之路有着现实意义,对花岗石加工技术的学科建设也有指导意义;同时,课题的研究思路和研究方法对石材加工技术的理论研究也将产生推动作用。
The granite special-shaped products have been widely used for its exquisite appearance, luxurious and elegant tones and wear resistance, corrosion resistance and other stable physical and chemical properties in the fields of architectural decoration, craft and art, life appliances, precision machine and development toward high-level, art and precision. The creative design industry of decorative granite products is based on special-shaped granite products, therefore, the social demanding, the quality and value-added for granite special-shaped products are increasing. Considering of the products processing status and foreign research focus, the study of high-efficiency grinding technology for special-shaped products of granite based on fractal was advanced. The paper was conducted by equipments, tools, materials and process of high-efficiency grinding, the critical technology system was improved for high-efficiency grinding technology, the definition and theory criteria was perfected, the theory analysis for grinding mechanism was conducted based on fractal theory. The fractal characters of machining processing were studied and the fractal models were constituted too. The relations between fractal characters and machining processes and efficiency were studied by experiments.
     The fractal grinding mechanism of granite special-shaped surface was studied by analysis the fractal characters of the diamond single particle grinding curve, crack spreading and mineral crystal rupturing. The diamond profiled wheel is selected to grinding the irregular surface of granite. The diamond single particle grinding curve model was obtained by analysis of the profiled surface grinding process and the specialty of diamond profiled wheel, the geometry angles and the removal material volume were analyzed and the arc length and the fractal dimension of the grinding fractal curve were deduced. The mineral crystal fracture fractal model was established and the removal mechanism and process granite materials fractal fracture was studied.
     The mathematic model of grinding force fractal dimension with process parameters was advanced. Granite profiled surface processing is intermittent grinding, the grinding force fluctuates greatly, the dynamic characteristics have a fractal law. Through establishing the diamond single particle force model derived tangential force, normal force and axial force relationship analysis of the variation of the size and direction. As a basis for establishing the diamond forming agglomerates force model, the force fractal character of agglomerates was analyzed and the calculate method of the fractal dimension was confirmed too. Experimental study of law based on orthogonal experimental design method for the1/4arc profiled surface grinding Wulian red granite grinding force and its fractal dimension. Cutting speed, feed rate and cutting depth of three factors, each of the four levels of each four-level orthogonal three factors, its three directions grinding force were measured and the fractal dimension of force calculated. Range analysis, analysis of variance and regression analysis of grinding forc were conducted, the mathematical model of grinding force was established. The mathematic model of grinding force fractal dimension with process parameters was advanced. The relationship between grinding force fractal dimension and grinding force was analyze to the linear function, namely, the force increasing the fractal dimension increasing, the force decreasing the fractal dimension decreasing too.
     The high-efficiency process parameters optimization model was established with the evaluation indexs of material removal rate (MRR) and grinding force fractal dimension (GFFD). The signal-to-noises (S/N) of MRR and GFFD were calculated in different process parameters with the MRR larger-features and GFFD small-features using the Taguchi method. The main effect charts of S/N and mean were made and the process parameters were optimized. Moreover, the optimum parameter was verificated by experiments.
     The granite grinding debris fractal model was advanced and the evaluation and grading forecast research on grindability of granite specia-shaped surface were studied based on fractal dimension of granite debris. Through analyzing fracture process broken into crumbs of granite special-shaped surface, the plane and three-dimensional space fragmentation model were established and the fractal crushing characteristics were analysed. The relationship between the the debris fragmentation fractal dimension and the process parameters was studied by quadratic response surface methodology experiment and the factors impacting debris fragmentation fractal dimension were analysed. Select SiO2, quartz, Shore hardness, density, compressive strength, flexural strength and wear rate of the seven granite grinding influential indicators, the study on grindability classification were conducted by triangular fuzzy number TOPSIS analysis method on ten typical granite materials. Then analysed and verificated by1/4arc profiled surface grinding experimental. Selecting the Y direction grinding forces and granite debris fractal dimension as evaluation indicators. Univariate analysis and multivariate comprehensive analysis of the experimental results were conducted, using the linear functions, exponential functions, logarithmic functions to establish the mathematical evaluation model between granite debris fragmentation fractal dimension with granite performance indicators. The grinding grading standards were established based on granite debris fractal dimension and the grindability of ten granite materials were classificated, the experimental results is consistent to FAHP-TOPSIS conclusions.
     The purpose of this study is to improve the efficiency of grinding granite special-shaped products, reduce production costs. The research has theoretical and practical significance to the production and processing and promotes granite special-shaped products processing to take the standardized, low-cost, high-efficiency and high value-added processing. It also has significance guiding for discipline construction of granite processing technology. Meanwhile, the research ideas and methods of the paper will also play a stimulating role to stone processing technology.
引文
1 张进生,王日君,王志.饰面石材加工技术[M].北京:化学工业出版社,2007.
    2 中国建材规划研究院.中国石材产业“十二五”发展规划纲要(草案)[J].石材.2011,(4):7-19.
    3 徐西鹏.岩石材料的金刚石锯切研究进展[J].机械工程学报.2003,39(9):17-22.
    4 王日君.基于运动学图谱的石材加工设备模块化设计技术的研究[D].山东大学博士学位论文.2009,12:22-25.
    5 Antoniomaria Di Ilio, Antonio Togna. A theoretical wear model for diamond tools in stone cutting[J]. International Journal of Machine Tools and Manufacture. 2003(43):1171-1177.
    6 A.Ersoy, S.Buyuksagic, U.Atici. Wear characteristics of circular diamond saws in the cutting of different bard abrasive rocks[J]. Wear.2005 (258):1422-1436.
    7 U. Atici, A. Ersoy. Correlation of specific energy of cutting saws and drilling bits with rock brittleness and destruction energy[J]. Journal of Materials Processing Technology 2009 (209):2602-2612.
    8 Polini. W, Turchetta. S. To characterise diamond mill wear[J]. Wear.2003(255): 1414-1420.
    9 L. Carrino, W. Polini, S. Turchetta. Wear progression of diamond mills[J]. Diamond and Related Materials.2003 (12):728-732.
    10 Shinsaku Hagiwara, Shuji Iwata, Toshiyuki Obikawa, Eiji Usui. Study on the transition process of diamond grain shape in stone grinding[J]. Journal of Materials Processing Technology.1997(63):892-896.
    11 B. Brook. Principles of diamond tool technology for sawing rock[J]. International Journal of Rock Mechanics and Mining Sciences.2002 (39):41-58.
    12 P.M. Amaral, J. Cruz Fernandes, L. Guerra Rosa. Wear mechanisms in materials with granitic textures-applicability of a lateral crack system model [J]. Wear. 2009(266):753-764.
    13 P.M. Amaral, L.Guerra Rosa, J. Cruz Fernandes. Fracture toughness of different types of granite[J]. International Journal of Rock Mechanics and Mining Sciences. 1999(36):839-842.
    14 P.M. Amaral, L.Guerra Rosa, J. Cruz Fernandes. Assessment of fracture toughness in ornamental stones [J]. International Journal of Rock Mechanics and Mining Sciences.2008(45):554-563.
    15 M.H.B. Nasseri, B. Mohanty. Fracture toughness anisotropy in granitic rocks[J]. International Journal of Rock Mechanics and Mining Sciences.2008 (45):167-193.
    16 H.K. Tonshoff, H. Hillmann-Apmann, J. Asche. Diamond tools in stone and civil engineering industry:Cutting Principles[J], Wear and Applications [J]. Diamond and Related Materials.2002, (11):736-741
    17 Polini. W. Turchetta. S. Force and specific energy in stone cutting by diamond mill[J]. International Journal of Machine Tools and Manufacture.2004,44(11): 1189-1196.
    18 Xu. Xipeng. Experimental study on temperatures and energy partition at the diamond granite interface in grinding[J]. Tribology International.2001,34(6):419-426.
    19 H. Huang, X.P. Xu. Interfacial interactions between diamond disk and granite during vertical spindle grinding[J]. Wear.2004, (256):623-629.
    20王成勇,刘培德,胡荣生.花岗岩切削破损过程研究[J].岩石力学与工程学报.1991,10(2):185-196.
    21 Reza Mikaeil, Reza Yousefi, Mohammad Ataei. Sawability ranking of carbonate rock using fuzzy analytical hierarchy process and TOPSIS approaches [J]. Scientia Iranica B.2011,18(5):1106-1115.
    22 J. Xie, J. Tamaki. Parameterization of micro-hardness distribution in granite related to abrasive machining performance [J]. Journal of Materials Processing Technology. 2007,186:253-258.
    23 I.S. Buyuksagis. Effect of cutting mode on the sawability of granites using segmented circular diamond sawblade[J]. Journal of Materials Processing Technology.2007,183:399-406.
    24 S. Kahraman, O. Gunaydin. Indentation hardness test to estimate the sawability of carbonate rocks[J]. Bull Eng Geol Environ.2008, (67):507-511.
    25 B. Tutmez, S. Kahraman, O. Gunaydin. Multifactorial fuzzy approach to the sawability classification of building stones[J]. Construction and Building Materials 2007,(21):1672-1679.
    26 S. Kahraman, O. Gunaydin, M. Alber, M. Fener. Evaluating the strength and deformability properties of Misis fault breccia using artificial neural networks[J]. Expert Systems with Applications.2009, (36):6874-6878.
    27 S. Kahraman, H. Altun, B.S. Tezekici, M. Fener. Sawability prediction of carbonate rocks from shear strength parameters using artificial neural networks[J]. International Journal of Rock Mechanics and Mining Sciences 2006, (43):157-164.
    28 S. Kahraman, M. Fener, O. Gunaydin. Predicting the sawability of carbonate rocks using multiple curvilinear regression analysis[J]. International Journal of Rock Mechanics and Mining Sciences.2004, (41):1123-1131.
    29 Zhengmei Zhang, Jinsheng Zhang, Zhi Wang, Chunying Zheng. Experimental Study on High Efficiency Grinding Technology for Irregular Surface of Q.L. Red Granite[J]. Key Engineering Materials.2009, Vols.416:40-44.
    30 Zhengmei Zhang, Jinsheng Zhang, Sheng Gao, Chengrui Lu, Chunying Zheng. Experimental Study on Relation between Tool Wear and Grinding Force for Shaping Diamond Tool[J]. Advanced Materials Research.2010, Vols.97-101: 1925-1928.
    31赵恒华,宋涛,蔡光起.磨削加工技术的发展趋势[J].制造技术与机床.2012,(1):55-58..
    32袁巨龙,邓朝晖,熊万里,等.高效磨削技术与装备进展及展望[J].航空制造技术.2010,(5):66-70.
    33盛晓敏,邓朝晖.先进制造技术[M].北京:机械工业出版社:2000.
    34李伯民,赵波.现代磨削技术[M].机械工业出版社:2004.
    35李志宏.陶瓷磨具制造[M].中国标准出版社:2000.
    36 J. Asche. Deep grinding-a new dimension in cutting granite. Industrial Diamond Review[J],1999,(2):110-122.
    37李远.花岗石超大切深锯切机理与技术研究[D ].华侨大学博士学位论文.2004.
    38张济忠.分形[M].北京:清华大学出版社.1995.
    39陈颙,陈凌.分形几何学[M].北京:地震出版社.1998.
    40朱文学,张玉先,李栋,等.玉米应力裂纹扩展的分形模型及动力学分析[J].农业机械学报.1999,30(3)48-52.
    41 Kenneth Falconer.分形几何数学基础及其应用[M].曾文曲,译.第2版.北京:人民邮电出版社,2007.
    42 Prasanta Sahoo, Tapan Barman, Joao Paulo Davim. Fractal Analysis in Machining[M]. London/New York:Springer Dordrecht Heidelberg,2011.
    43葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005.
    44石博强,申炎华.机械故障诊断的分形方法:理论与实践[M].北京:冶金工业出版社,2001.
    45刘彬,王霄,谢平.多重分形在复杂机械系统故障诊断中的应用[J].复杂系统与复杂性科学.2005,2(1):66-70.
    46 Yujing Jiang, Bo Li, Yosihiko Tanabashi. Estimating the relation between surface roughness and mechanical properties of rock joints[J]. International Journal of Rock Mechanics & Mining Sciences.2006. (43):837-846.
    47 T. Babadagli, K. Develi. Fractal characteristics of rocks fractured under tension[J]. Theoretical and Applied Fracture Mechanics.2003, (39):73-88.
    48 Luis M.O. Sousa. Granite fracture index to check suitability of granite outcrops for quarrying[J]. Engineering Geology.2007, (92):146-159.
    49 J. Ehlen. Fractal analysis of joint patterns in granite[J]. International Journal of Rock Mechanics and Mining Sciences.2000, (37):909-922.
    50 E. Perfect. Fractal models for the fragmentation of rocks and soils:a review[J]. Engineering Geology.1997,48:185-198.
    51 Franccoise Homand. Dashnor Hoxha, Tikou Belem, Marie-No elle Pons, Nasser Hoteit. Geometric analysis of damaged microcracking in granites[J]. Mechanics of Materials.2000, (32):361-376.
    52谢和平,高峰,周宏伟,左建平.岩石断裂和破碎的分形研究[J].防灾减灾工程学报.2003,23(4):1-9.
    53孙洪泉,谢和平.岩石断裂表面的分形模拟[J].岩土力学.2008,39(2)347-352.
    54 Luis Guarracino. A fractal constitutive model for unsaturated flow in fractured hard rocks[J]. Journal of Hydrology.2006, (324):154-162.
    55单晓云,李占金.分形理论和岩石破碎的分形研究[J].河北理工学院学报.2003,25(2):11-30.
    56王培义,王克雄,翟应虎,徐杰,尹栋梁.分形理论及地层岩石抗钻特性参数的分形表示方法[J].钻采工艺.2006,29(2):30-31.
    57盛建龙,刘新波,朱瑞赓.分形理论及岩石破碎的分形特征[J].武汉冶金科技大学学报(自然科学版).1999,22(1):6-8.
    58谢和平,彭瑞东,周宏伟,鞠杨.基于断裂力学与损伤力学的岩石强度理论研 究进展[J].自然科学进展.2004,14(10):1086-1092.
    59李士斌,李玮,由洪利,王习武.基于分形理论的岩石可钻性分级方法[J].天然气工业.2007,27(10):63-66.
    60林颖,刘亚俊,陈忠.基于分形理论和神经网络的刀具磨损检测[J].中国机械工程.2004,15(16):1426-1428.
    61闫铁,李玮,李士斌,张方玉.牙轮钻头的岩屑破碎机理及可钻性的分形法[J].石油钻采工艺.2007,29(2):27-30.
    62张厚美,薛佑刚.岩石可钻性表示方法探讨[J].钻采工艺.1999,22(1):10-13.
    63李士斌,李玮.岩石可钻性分形法的可行性分形.大庆石油学院学报.2006,30(3):24-26.
    64王谦源,姜玉顺,胡京爽.岩石破碎体的粒度分布与分形[J].中国矿业.1997,6(3):50-55.
    65李士斌.深井岩石破碎规律及破碎的分形机理研究[D].大庆石油学院博士学位论文.2006.
    66谢和平,陈至达.分形(fractal)几何与岩石断裂[J].力学学报.1988,20(3):264-271.
    67 Lung C. W. Fractals and Fracture of Cracked Metals[J]. Preprint of the Int. Centre for Theoretical Physics, Trieste, Italy IC,1985.123.
    68 G. Zhou, M. Leu, D. Blackmore. Fractal geometry modeling with applications in surface characterisation and wear prediction[J]. Int. J. Mach. Tools manufact.1995, 35(2):203-206.
    69 E. Perfect. Fractal models for the fragmentation of rocks and soils:a review[J]. Engineering Geology.1997,48:185-198.
    70 H. Zahouani, R. Vargiolu, J.J. Loubet. Fractal models of surface topography and contact mechanics. Mathl. Comput. Modelling.1998,28(4-8):517-534.
    71 Marcelo Epstein, Jedrzej Sniatycki. Fractal Mechanics[J]. Physica D.2006,220: 54-68.
    72 E. Charkaluk, M. Bigerelle, A. lost. Fractals and Fracture[J]. Engineering Fracture Mechanics.1998,61:119-139.
    73 Bernardino Chiaia. Fracture mechanisms induced in a brittle material by a hard cutting indenter[J]. International Journal of Solids and Structures.2001,38:7747-7768.
    74 Edith Perrier, Nigel Bird, Michel Rieu. Generalizing the fractal model of soil structure the pore solid fractal approach[J]. Geoderma.1999,88:137-164.
    75 J.U. Baer, T.F. Kent, S.H. Anderson. Image analysis and fractal geometry to characterize soil desiccation cracks[J]. Geoderma.2009,154:153-163.
    76 He Manchao, Nie Wen, Han Liqiang, et al. Microcrack analysis of Sanya grantite fragments from rockburst tests[J]. Mining Science and Technology.2010,20:238-243.
    77 Michael P. Wnuk, Arash Yavari. On estimating stress intensity factors and modulus of cohesion for fractal cracks[J]. Engineering Fracture Mechanics.2003,70:1659-1674.
    78 I.A. El-Sonbaty, U.A. Khashaba, A.I. Selmy, et al. Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach[J]. Journal of materials processing technology.2008,200:271-278.
    79谢其泰,王建力.石材裂纹扩展分形特性[J].岩石力学与工程学报.2007,26(1):3355-3360.
    80谢和平.分形-岩石力学导论[M].北京:科学出版社,2005.
    81任敬心,华定安,黄奇.磨削钛合金的磨削力数学磨型[J].航空学报.1986,7(1):97-103.
    82 Janusz Konstanty. Theoretical analysis of stone sawing with diamonds[J]. Journal of Materials Processing Technology.2002, (123):146-154.
    83李玉和,张弘韬.硬脆材料切削加工负切削力现象的研究[J].中国机械工程.1999,10(11):1207-1210.
    84 H.K. Tonshoff, H. Hillmann-Apmann, J. Asche. Diamond tools in stone and civil engineering industry:cutting principles, wear and applications[J]. Diamond and Related Materials.2002,11:736-741.
    85胡焕校,刘静,张绍和,等.金刚石磨粒切削运动分析及切削厚度计算[J].中南工业大学学报.1997,28(1):8-11.
    86李贺.岩石断裂力学[M].重庆:重庆大学出版社.1988.
    87 L. L. Mishnaevsky Jr. Investigation of the cutting of brittle materials [J]. International Journal of Machine Tools and Manufacture.1994,34(4):499-505.
    88任敬心,华定安.磨削原理[M].西安:西北工业大学出版社,1988.
    89艾兴.高效加工技术及其应用研究[J].中国工程科学.2000,2(11):40-51.
    90傅玉灿.难加工材料高效加工技术[M].西安:西北工业大学出版社,2010.
    91 loan D. Marinescu先进陶瓷加工导论[M].田欣利,张保国,吴志远.北京:国防工业出版社,2010.
    92 Huang-Cheng Chang, J.-J.Junz Wang. A stochastic grinding force model considering random grit distribution[J]. International Journal of Machine Tools & Manufacture.2008,48:1335-1344.
    93 A. Ersoy, U. Atici. Performance characteristics of circular diamond saws in cutting different types of rocks[J]. Diamond and Related Materials.2004, (13):22-37.
    94 Julio Garrido Campos, Ricardo Marin Martin. Modelling and Implementing Circular Sawblade Stone Cutting Processes in STEP-NC[J]. Robotics and Computer-Integrated Manufacturing.2010, (26):602-609.
    95李玉和,张弘韬.金刚石刀具切削硬脆材料时切削力与刀具振动的关系[J].工具技术.1999,33(6):10-12.
    96高佳宏,朱梅玲,王琳.分形理论在金属切削加工中的应用[J].煤矿机械.2006,27(12):97-99.
    97苏辉,陈冷,阎振綮.金属沿晶断裂表面的随机分形分析[J].科学通报.1991,(19):1510-1511.
    98赵文祥,王西彬,龙震海,等.锻压镁合金材料端面高速铣削过程中切削力特征规律分析[J].兵工学报.2005,26(4):540-544.
    99周志斌,曾志新,林金萍,刘亚俊.高速铣削中切削力动态分量信号分形特征的研究[J].工具技术.2003,37(2):14-17.
    100刘亚俊.基于分形理论的SiC颗粒增强金属基复合材料切削加工研究[D].华南理工大学博士论文.2002.
    101郑光明,赵军,王晓琴.硬质合金刀具车削钛合金时切削力分形特征研究[J].工具技术.2010,44(1):23-25.
    102宋欠芽.基于分形理论的玻璃切削加工研究[D].华南理工大学硕士论文.2005.
    103石博强,申炎华.机械故障诊断的分形方法—理论与实践[M].北京:冶金工业出版社,2001.
    104林鸿溢,李映雪.分形论—奇异性探索[M].北京:北京理工大学出版社,2001.
    105徐永福.岩石力学中的分形几何[J].水利水电科技进展.1995,15(6):15-26.
    106 T. Warren Liao. Fractal and DDS characterization of diamond wheel profiles[J]. Journa] of Materials Processing Technology.1995, (53):567-581.
    107金良超.正交设计与多指标分析[M].中国铁道出版社.1988.
    108李云雁,胡传荣.试验设计与数据处理[M].化学工业出版社.2005.
    109 C.F. Jeffr Wu, Michael Hamada试验设计与分析及参数优化[M].张润楚,郑海涛,兰燕,等,译.北京:中国统计出版社,2003.
    110 Vijayan Krishnaraj, A. Prabukarthi, Arun Ramanathan,et al. Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates[J]. Composites:Part B.2012,43:1791-1799.
    111廉哲满.车削加工中表面粗糙度影响因子的最佳化[J].延边大学学报(自然科学版).2002,28(2):110-114.
    112 IIhan Asilturk, Suleyman Neseli. Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis[J]. Measurement. 2012,45:785-794.
    113 Yung-Tien Liu, Wei-Che Chang, Yutaka Yamagata. A study on optimal compensation cutting for an aspheric surface using the Taguchi method[J]. CIRP Journal of Manufacturing Science and Technology.2010,3:40-48.
    114 F.C. Tsai, B.H. Yan, C.Y. Kuan, et al. A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel [J]. International Journal of Machine Tools and Manufacture.2008,48:932-945.
    115 M. Nalbant, H. Gokkaya, G. Sur. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning[J]. Materials and Design. 2007,28:1379-1385.
    116李玮.在岩石可钻性的分形表示方法研究[D].大庆石油学院硕士论文.2006.
    117 N. Gunes Yilmaza, R.M. Goktanb, Y. Kibici. An investigation of the petrographic and physico-mechanical properties of true granites influencing diamond tool wear performance, and development of a new wear index [J]. Wear.2011, (271):960-969.
    118 J.M. Derkx, A.M. Hoogstrate, J.J. Saurwalt, B. Karpuschewski. Form crush dressing of diamond grinding wheels[J]. CIRP Annals-Manufacturing Technology. 2008, (57):349-352.
    119 M. Lopez, J. Martinez, J.M. Matias, et al. Functional classification of ornamental stone using machine learning techniques[J]. Journal of Computational and Applied Mathematics.2010,234:1338-1345.
    120 Francoise Homand, Dashnor Hoxha, Tikou Belem, et al. Geometric analysis of damaged microcracking in granites[J]. Mechanics of Materials.2000,32:361-376.
    121 Luis M.O. Sousa. Granite fracture index to check suitability of granite outcrops for quarrying[J]. Engineering Geology.2007,92:146-159.
    122 Jianyi Chen, Jianyun Shen, Hui Huang. Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels[J]. Journal of Materials Processing Technology.2010,210:899-906.
    123 I.S. Buyuksagis, R.M. Goktan. Investigation of marble machining performance using an instrumented block-cutter[J]. Journal of Materials Processing Technology. 2005,169:258-262.
    124 Dauskardt R H, Haubensak F, Ritchie O. On the Interpretation of the Fractal Character of Fracture Surfaces[J]. Acta Metall.1990,38(2):143-159.
    125 U.S. Patnaik Durgumahanti, Vijayender Singh, P. Venkateswara Rao. A New Model for Grinding Force Prediction and Analysis [J]. International Journal of Machine Tools & Manufacture.2010,50:231-240.
    126 Ghatu Subhash, Josh E. Loukus, Sudhakar M. Pandit. Application of data dependent systems approach for evaluation of fracture modes during a single-grit scratching [J]. Mechanics of Materials.2002,34:25-42.
    127 Mark R.Miller,George Mulhooland. Charles Anderson. Experimental Cutting Tool Temperature Distributions[J]. Journal of Manufacturing Science and Engineering. 2003,125(11):667-673.
    128 D.N. Wright, W.R.J. Tagg. The development of a rock classification system for use with diamond tools[J]. Industrial Diamond Review,1998, (4):113-120.
    129 N. Gunes Yilmaz, M, Yurdakul, R.M. Goktan. Prediction of radial bit cutting force in high-strength rocks using multiple linear regression analysis [J]. Rock Mechanics and Mining Sciences.2007,44:962-970.
    130 Murat Yurdakul, Hurriyet Akdas. Prediction of specific cutting energy for large diameter circular saws during natural stone cutting[J]. International Journal of Rock Mechanics and Mining Sciences.2012,53:38-44.
    131 A.M.A. AI-Ahamari. Predictive machinability models for a selected hard material in turning operations[J]. Journal of Materials Processing Technology.2007,190: 305-311.
    132 Mohammad Ataei, Reza Mikaeil, Seyed Hadi Hoseinie, Seyed Mehdi Hosseini. Fuzzy analytical hierarchy process approach for ranking the sawability of carbonate rock[J]. Rock Mechanics and Mining Sciences.2012,50:83-93.
    133 Mikaeil Reza, Ataei Mohammad, Yousefi Reza. Application of a fuzzy analytical hierarchy process to the prediction of vibration during rock sawing[J]. Mining Science and Technology(China).2011,21:611-619.
    134 Saffet Yagiz, Candan Gokceoglu. Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness[J]. Expert Systems with Applications.2010,37:2266-2272.
    135 Bulent Tiryaki. Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees[J]. Engineering Geology.2008,99:51-60.
    136 Bulent Tiryaki. Application of artificial neural networks for predicting the cuttability of rocks by drag tools [J]. Tunnellinng and Underground Space Technology.2008,23:273-280.
    137 M. Fener, S. Kahraman, M. O.Ozder. Performance Prediction of Circular Diamond Saws from Mechanical Rock Properties in Cutting Carbonate Rocks [J]. Rock Mechanics and Rock Engineering.2007,40(5):505-517.
    138 J. Xie, Y.J. Liu, Y. Tang, et al. Ground surface integrity of granite by using dry electro-contact discharge dressing of #600 diamond grinding wheel [J]. Journal of Materials Processing Technology.2009,209:6004-6009.
    139邵国有,杨中喜,周长民,陈亚明,戴宝刚.花岗石矿物组成与抛光难易程度[J].石材.1999,(11):26-31.
    140魏昕,花岗岩可锯切加工性的模糊综合评判[J],石材.1998,(12):6-10.
    141 X. Wei, C.Y. Wang, Z.H. Zhou. Study on the fuzzy ranking of granite sawability[J]. Journal of Materials Processing Technology.2003,139:277-280.
    142 Da-Yong Chang. Applications of the extent analysis method on fuzzy AHP[J]. European Journal of Operational Research.1996,95(3):649-655.
    143 Devendra Choudhary, Ravi Shankar. An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location:A case study from India[J]. Energy.2012,42:510-521.
    144 Reza Rostamzadeh, Saudah Sofian. Prioritizing effective 7Ms to improve production systems performance using fuzzy AHP and fuzzy TOPSIS (case study) [J]. Expert Systems with Applications.2011,38:5166-5177.
    145 Chia-Chi Sun. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods[J]. Expert Systems with Applications.2010,37:7745-7754.
    146 Metin Dagdeviren, Serkan Yavuz, Nevzat Kilinc. Weapon selection using the AHP and TOPSIS methods under fuzzy environment [J]. Expert Systems with Applications.2009,36:8143-8151.
    147向隅.基于三角模糊数的TOPSIS评价方法在新建铁路线路选择中的应用[J].石家庄铁道大学学报.2011,24(2):56-60.
    148 Alev Taskin Gumus. Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP and TOPSIS methodology [J]. Expert Systems with Applications.2009,36:4067-4074.
    149 Jianrong Wang, Kai Fan, Wanshan Wang. Integration of fuzzy AHP and FPP with TOPSIS methodology for aeroengine health assessment[J]. Expert Systems with Applications.2010,37:8516-8526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700