用户名: 密码: 验证码:
玉米芯半纤维素水解液发酵生产木糖醇的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木糖醇是一种甜度与蔗糖相当、具有防龋齿、胰岛素不依赖性代谢等多种优良性质的五碳糖醇,在食品、医药、轻工业等领域具有广泛用途。传统的木糖醇生产方法是采用化学还原法,在高温高压下催化氢化纯木糖制得,该法生产成本较高,且镍催化剂会污染环境。本论文以假丝酵母(Candida sp.)为生产菌株,采用微生物发酵技术转化生产木糖醇,高效、节能、无污染,具有重要的社会及经济价值。
     通常发酵法生产木糖醇多利用纯木糖为底物,成本过高,不利于大规模推广。本论文针对自然界中丰富的植物纤维原料玉米芯,通过稀酸水解法将其中的半纤维素转化为可发酵的木糖,再以水解液为原料发酵生产木糖醇,廉价而易得。在优化工艺条件下制得的玉米芯半纤维素水解液中,总糖含量为39.4 g/L(洗液重复利用、水解液未浓缩时),其中木糖占81.9%,乙酸、糠醛等发酵抑制物浓度低,发酵性能良好,无需经脱色及复杂脱毒处理便可由驯化的假丝酵母细胞直接转化为木糖醇,经济而高效,为工业化应用奠定了良好的基础。
     对木糖醇发酵过程中的主要工艺参数进行了优化,并在3.7 L发酵罐中进行了放大试验。间歇发酵时,假丝酵母细胞转化纯木糖的生产速率为2.46 g/(L·h),木糖醇得率为0.83 g木糖醇/g木糖;转化半纤维素水解液的生产速率为0.66 g/(L·h),木糖醇得率为0.75 g木糖醇/g木糖。进一步采取补料分批发酵方式,对半纤维素水解液而言,可减轻底物、产物及乙酸、糠醛等发酵抑制物的抑制作用,有利于提高发酵效率。若采用连续发酵方式,当控制半纤维素水解液的稀释率为0.015 h-1时,木糖醇生产速率和得率分别比间歇发酵时提高了63.23%和5.33%,酵母细胞的发酵潜能得到较大发挥。
     由于假丝酵母在木糖醇发酵前期需要较高的氧气供应,以促进菌体快速生长,而后期则需要微氧环境,以利于木糖醇的大量积累;因而本论文采用固定化酵母细胞发酵,可省去菌体的营养生长阶段,直接进入产物合成阶段,有利于缩短发酵周期,便于实现连续生产及自动化控制。在2.0 L鼓泡式生物反应器中,海藻酸钙凝胶包埋固定的假丝酵母细胞发酵玉米芯半纤维素水解液生产木糖醇,持续稳定,经济高效,可以重复利用,发酵效果良好,具有明显的特色。
     对木糖醇发酵液的脱色、纯化与结晶工艺条件进行了初步有效的探索,证实了从纯化后的发酵液中获得高纯度木糖醇晶体的可行性,显示出良好的工业应用前景。本文采用驯化后的假丝酵母细胞,发酵经过简单脱毒处理的玉米芯半纤维素水解液生产木糖醇,工艺简单、对环境友好、能耗低、发酵效率高、产品质量好;相关研究结果对于促进作为重要可再生资源的玉米芯的转化利用及木糖醇工业化生产的可持续发展具有重要意义。
Xylitol, a five-carbon sugar alcohol, has many applications in the food, pharmaceutical, and odontological industries, owing to its sweetening power equal to sucrose, anticariogenic properties, and insulin-independent metabolism. Xylitol is currently manufactured by catalytic hydrogenation of xylose, an expensive process mainly because it involves a large number of purification steps. In addition, the nickel catalyst used can pollute the environment. This research investigated the bioconversion of xylose to xylitol by Candida sp., a biological xylitol production process, which holds great economic and social value compared to the chemical process. This microbial production of xylitol requires neither xylose purification nor high temperatures and pressures. It bears many advantages, including high specificity and low energy requirements, and more importantly, no environmental pollution.
     Generally, synthetic xylose solution was used as the fermentation medium for producing xylitol. However, the high overall processing costs prevent it from a large scale application. Corn cob, consisting of mainly lignocellulosic residue, has many advantages: renewable, widespread, inexpensive, and xylose-abundant. Firstly, the degradation of corn cob hemicellulose into fermentable xylose, which can be performed by dilute sulphuric acid hydrolysis. Subsequently, the corn cob hemicellulosic hydrolysates could be efficiently converted to xylitol by the adapted Candida sp. cells. Totally,39.4 g/L reducing sugar exists in the corn cob hemicellulosic hydrolysates, which were prepared under the optimal process parameters (Reuse of wash water and unconcentrated hemicellulosic hydrolysates). Xylose constitutes 81.9% of the total reducing sugar, and concentrations of acetic acid, furfuraldehyde and other fermentation inhibitors were lower than the maximum allowable concentration of each inhibitor. In this thesis, the corn cob hemicellulosic hydrolysates could be directly and efficiently converted to xylitol without decolorization or ion-exchanged by the adapted Candida sp. cells. This process can effectively reduce the pretreatment costs, and its fermentation results are desirable, laying favourable foundation for industrial applications.
     In this study, we optimized the major processing parameters for xylitol fermentation by an adapted Candida sp. Moreover, a series of scale-up xylitol fermentation experiments were performed in a 3.7-L fermentator. Meanwhile, batch xylitol fermentations were carried out under the optimum culture conditions by Candida sp. Fermentation on synthetic xylose solutions produces xylitol at an average rate of 2.46 g/(L·h) and yield of 0.83 g xylitol/g xylose, whereas fermentation on hemicellulosic hydrolysates generates the average xylitol productivity (0.66 g/(L·h)) and xylitol yield (0.75 g xylitol/g xylose). In addition, fed-batch cultures of hemicellulosic hydrolysates were employed, which could alleviate the inhibition of xylose, xylitol, acetic acid, furfuraldehyde, and other inhibitors, and therefore might increase the fermentation efficiency. As for the continuous xylitol fermentation on hemicellulosic hydrolysates, the best results were obtained with a dilution rate of 0.015 h-1, compared to batch fermentation, the xylitol productivity and xylitol yield increased by 63.23% and 5.33%, respectively.
     In the early stage of the xylitol fermentation by Candida sp., relatively high oxygen supply favoured higher cell growth, but in the later stage, relatively low oxygen supply, led to substantial accumulation of xylitol. Therefore, in this research, immobilized Candida sp. cells were used for xylitol fermentations on corn cob hemicellulosic hydrolysates, which can omit the cell growth phase, direct toward xylitol biosynthesis immediately, shorten the fermentation period, readily employ continuous production, and easily automate the process. In a 2.0 L bubble column bioreactor, xylitol fermentations on corn cob hemicellulosic hydrolysates were carried out under the optimized conditions by Candida sp. cells immobilized in calcium alginate, the fermentation results were good and continuously stable, the immobilized cells could be successively reused, rendering the process efficient and economical, and other beneficial characteristics.
     The process parameters of decolorization, purification and crystallization of the xylitol fermented broths had been investigated primarily, and the results confirmed the feasibility of xylitol crystallization from purified fermentation broths, showing broad prospects of industrial applications. This work developed an environmental-friendly, simple, efficient, and economical xylitol production process by fermentation on corn cob hemicellulosic hydrolysates using the adapted Candida sp. The results should not only favor higher biconversion of corn cob, an important renewable resource, but also help the persistent development of xylitol industrial production.
引文
[1]尤新,木糖醇的生产和应用.北京:轻工业出版社,1984.
    [2]吴星,木糖醇微生物转化的研究.工业微生物,1994,24(4):24-26.
    [3]Rao RS, Jyothi CP, Prakasham RS, Sarma PN, Rao LV. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol, 2006,97(15):1974-1978.
    [4]Canilha L, Carvalho W, Silva JBA. Xylitol bioproduction from wheat straw: hemicellulose hydrolysis and hydrolyzate fermentation. J Sci Food Agric,2006,86: 1371-1376.
    [5]Mussatto SI, Roberto IC. Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer's spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem,2008,43(5):540-546.
    [6]Villarreal MLM, Prata AMR, Felipe MGA, Silva JBA. Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol,2006,40(1):17-24.
    [7]Moniruzzaman M, Dien BS, Skory CD, Chen ZD, Hespell RB, Ho NWY, Dale BE, Bothast RJ. Fermentation of corn fibre sugars by an engineered xylose utilizing Saccharomyces yeast strain. World J Microbiol Biotechnol,1997,13(3):341-346.
    [8]Latif F, Raj oka MI. Production of ethanol and xylitol from corn cobs by yeasts. Bioresour Technol,2001,77:57-63.
    [9]Poonam N, Singh D. Processes for fermentative production of xylitol-a sugar substitute. Process Biochem,1995,30(2):117-124.
    [10]Gong CS, Claypool TA, Mccracken LD, Maun CM, Ueng PP, Tsao GT. Conversion of pentoses by yeasts. Biotechnol Bioeng,1983,25(1):85-102.
    [11]Barbosa MFS, Demedeiros MB, Demancilha IM, Schneider H, Lee H. Screening of yeasts for production of xylitol from D-xylose and some factors which affect xylitol yield in Candida guiliiermondii. Process Biochem,1988,3(4):241-251.
    [12]Parajo JC, Dominguez H, Dominguez JM. Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansenii:effect of the initial cell concentration. Biotechnol Lett,1998,18(5):593-598.
    [13]Kastner JR, Roberts RS, Jones WJ. Effects of pH on cell viability and product yields in D-xylose fermentations by Candida shehatae. Appl Microbiol Biotechnol,1996,45: 224-228.
    [14]Rosa SMA, Felipe MGA, Silva SS, Vitolo M. Xylose reductase production by Candida guilliermondii. Appl Biochem Biotechnol,1998, (70/72):127-135.
    [15]Felipe MGA, Vitolo M, Mancilha IM, Silva SS. Fermentation of sugar cane bagasse hemicellulosic hydrolysate for xylitol production:effect of pH. Bioresour Bioenergy, 1997,13(1-2):11-14.
    [16]Saracoglu NE, Arslan Y. Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnol Lett,2000,22:855-858.
    [17|Converti A, Perego P, Dominguez J, Silva SS. Effect of temperature on the microaerophilic metabolism of Pachysolen tannophilus. Enzyme Microb Technol,2001, 28:339-345.
    [18]Martinez EA, Silva SS, Felipe MGA. Effect of the oxygen transfer coefficient on xylitol production from sugarcane bagasse hydrolysate by continuous stirred-tank reactor fermentation. Appl Biochem Biotechnol,2000, (84/86):633-641.
    [19]Dominguez JM, Gong CS, Tsao GT. Production of xylitol from D-xylose by Debaryomyces hansenii. Appl. Biochem. Biotechnol,1997, (63/65):117-127.
    [20]Gimenes MAP, Carlos LCS, Faria LFF, Pereira NJ. Oxygen uptake rate in prodution of xylitol by Candida guilliermondii with different aeration rates and initial xylose concentrations. Appl Biochem Biotechnol,2002, (98/100):1049-1058.
    [21]Alves LA, Vitolo M, Felipe MGA, Silva JBA. Xylose reductase and xylitol dehydrogenase activities of Candida guilliermondii as a function of different treatments of sugarcane bagasse hemicellulosic hydrolysate employing experimental design. Appl Biochem Biotechnol,2002, (98/100):403-413.
    [22]Rodrigues DCGA, Silva SS, Silva JBA, Vitolo M. Xylose reductase activity of Candida guilliermondii during xylitol production by fed-batch fermentation. Appl Biochem Biotechnol,2002, (98/100):875-883.
    [23]Meyrial V, Delgenes J P, Moletta R, Navarro JM. Xylitol production from D-xylose by Candida guilliermondii-fermentation behavior. Biotechnol Lett,1991,13(4):281-286.
    [24]Vandeska E, Amartey S, Kuzmanova S, Jeffries T. Effects of environmental-conditions on production of xylitol by Candida boidinii. World J Microb Biotechnol,1995,11(2): 213-218.
    [25]Dahiya JS. Xylitol production by Petromyces albertensis grown on medium containing D-xylose. Can J Microbiol,1991,37:14-18.
    [26]Jacobsen SE, Wyman CE. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol, 2000, (84/86):81-96.
    [27]Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog. 2001,17:287-293.
    [28]Roberto IC, Lacis LS, Barbosa MFS, Mancilha IM. Utilization of sugar cane bagasse hemicellulosic hydrolysate by Pichia stipitis for the production of ethanol. Process Biochem,1991,26:15-21.
    [29]Kim SY, Oh DK, Kim JH. Evaluation of xylitol production from corn cob hemicellulose hydrolysate by Candida parapsilosis. Biotechnol Lett,1999,21:891-895.
    [30]陈育如.植物纤维原料预处理及酶水解和乳酸发酵的研究[博士学位论文],杭州,浙江大学,2000,44-51.
    [31]Dominguez JM, Cao NJ, Gong CS. Dilute acid hemicellulose hydrolysates from corn cobs for xylitol production by yeast. Bioresour Technol,1997,61:85-90.
    [32]Chen LF, Gong CS. Fermentation of sugarcane bagasse hemicellulose hydrolysate to xylitol by a hydrolysate-acclimatized Yeast. J Food Sci,1985,50(1):226-228.
    [33]Mayerhoff ZDVL, Roberto IC, Silva SS. Xylitol production from rice straw hemicellulose hydrolysate using different yeast strains. Biotechnol Lett,1997,19(5): 407-409.
    [34]Parajo JC, Domi'nguez H, Dominguez JM. Xylitol production from Eucalyptus wood hydrolysates extracted with organic solvents. Process Biochem,1997,32(7):599-604.
    [35]Lourdes AA, Felipe MGA, Silva JBA, Silva SS, Prata AMR. Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Appl Biochem Biotechnol,1998, (70/72):89-98.
    [36]Morita TA, Silva SS. Inhibition of microbial xylitol production by acetic acid and its relation with fermentative parameters. Appl Biochem Biotechnol,2000, (84/86): 801-808.
    [37]Martinez EA, Silva SS, Felipe MGA. Effect of the oxygen transfer coefficient on xylitol production from sugarcane bagasse hydrolysate by continuous stirred-tank reactor fermentation. Appl Biochem Biotechnol,2000, (84/86):633-641.
    [38]Preziosi-Belloy L, Nolleau V, Navarro JM. Xylitol production from aspenwood hemicellulose hydrolysate by Candida guilliermondii. Biotechnol Lett,2000,22(3): 239-243.
    [39]Walther T, Hensirisak D, Agblervor A. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol,2001,76: 213-220.
    [40]Silva SS, Roberto IC, Felipe MGA, Mancilha IM. Batch fermentation of xylose for xylitol production in stirred tank bioreactor. Process Biochem,1996,31(6):549-553.
    [41]Leathers TD, Dien BS. Xylitol production from corn fibre hydrolysates by a two-stage fermentation process. Process Biochem,2000,35:765-769.
    [42]Oh DK, Kim SY. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol,1998,50:419-425.
    [43]Morita TA, Silva SS, Felipe MGA. Effects of initial pH on biological synthesis of xylitol using xylose-rich hydrolysates. Appl Biochem Biotechnol,2000, (84/86): 751-759.
    [44]Sene L, Vitolo M, Felipe MGA, Silva SS. Effects of environmental conditions on xylose reductase and xylitol dehydrogenase production by Candida guilliermondii. Appl Biochem Biotechnol,2000, (84/86):371-380.
    [45]Pfeifer MJ, Silva SS, Felipe MGA, Roberto IC, Mancilha IM. Effect of culture conditions on xylitol production by Candida guilliermondii FTI 20037 Appl Biochem Biotechnol,1996, (57/58):423-430.
    [46]Carvalho W, Silva SS, Converti A, Vitolo M, Felipe MGA, Roberto IC, Silva MB, Mancilha IM. Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate. Appl Biochem Biotechnol,2002, (98/100):489-496.
    [47]方祥年,黄炜,夏黎明.半纤维素水解液中抑制物对木糖醇发酵的影响.浙江大学学报(工学版),2005,39(4):661-665.
    [48]Morita TA, Silva SS, Felipe MGA. Effects of initial pH on biological synthesis of xylitol using xylose-rich hydrolysate. Appl Biochem Biotechnol,2000, (84/86): 751-759.
    [49]Cheng KK, Zhang JA, Ling HZ, Ping WX, Huang W, Ge JP, Xu JM. Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J,2009,43(2):203-207.
    [50]Walther T, Hensirisak P, Agblevor FA, The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol,2001,76(3): 213-220.
    [51]Santos DT, Sarrouh BF, Rivaldi JD, Converti A, Silva SS. Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production. J Food Eng,2008,86(4): 542-548.
    [52]Liaw WC, Chen CS, Chang WS, Chen KP. Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J Biosci Bioeng,2008,105(2):97-105.
    [53]Santos JC, Converti A, Carvalho W, Mussatto SI, Silva SS. Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized-cell fluidized bed reactor. Process Biochem,2005,40(1):113-118.
    [54]Santos JC, Carvalho W, Silva SS, Converti A. Xylitol production from sugarcane bagasse hydrolyzate in fluidized bed reactor:effect of air flowrate. Biotechnol Prog, 2003,19:1210-1215.
    [55]Carvalho W, Canilha L, Silva SS. Semi-continuous xylose-to-xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor. Bioprocess Biosyst Eng,2008, 31:493-498.
    [56]Povelainen M, Miasnikov AN. Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol,2007,128(1):24-31.
    [57]Rivas B, Torre P, Dominguez JM, Converti A. Maintenance and growth requirements in the metabolism of Debaryomyces hansenii performing xylose-to-xylitol bioconversion in corncob hemicellulose hydrolyzate. Biotechnol Bioeng.2009,102(4): 1062-1073.
    [58]Nair NU, Zhao HM. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metabolic Eng,2010,12(5),462-468.
    [59]Yoon BH, Jeon WY, Shim WY, Kim JH. Enhancement of xylitol production by constitutive expression of codon-optimized xylose reductase gene in Candida tropicalis. J Biotechnol,2010,150S(1),345. doi:10.1016/j.jbiotec.2010.09.377
    [60]Pitkanen JP, Aristidou A, Salusjarvi L, Ruohonen L, Penttila M. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metabolic Eng.2003,5:16-31.
    [61]Krahulec S, Klimacek M, Nidetzky B. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol J.2009,4:684-694.
    [62]Rivas B, Torre P, Dominguez JM, Converti A. Maintenance and growth requirements in the metabolism of Debaryomyces hansenii performing xylose-to-xylitol bioconversion in corncob hemicellulose hydrolyzate. Biotechnol Bioeng.2009,102(4): 1062-1073.
    [63]Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng, 2009,102(1):209-220.
    [64]Zhang XM, Chen GJ, Liu WF. Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis. FEMS Microbiol Lett,2009, 293(2):214-219.
    [65]Branco RF, Santos JC, Sarrouh BF, Rivaldi JD, Pessoa AJ, Silva SS. Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. J Chem Technol Biotechnol,2009,84:326-330.
    [66]Gurpilhares DB., Hasmann FA., Pessoa AJ, Roberto IC. The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. J Ind Microbiol Biotechnol,2009,36:87-93.
    [67]Oh YJ, Lee TH, Lee SH, Oh EJ, Ryu YW, Kim MD, Seo JH. Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B:Enzymatic,2007,47:37-42.
    [68]Sakakibara Y, Saha BC, Taylor P. Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli. J Biosci Bioeng,2009,107(5):506-511.
    [69]Faveri DD, Torre P, Perego P, Converti A. Statistical investigation on the effects of starting xylose concentration and oxygen mass flowrate on xylitol production from nce straw hydrolyzate by response surface methodology. J Food Eng,2004,65(3):383-3S9.
    [70]Kim SY, Kim JH, Oh DK. Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis. J Ferment Bioeng,1997,83(3):267-270.
    [71]Oh DK, Kim SY, Kim JH. Increase of xylitol production rate by controlling redox potential in Candida par apsilosis. Biotechnol Bioeng,1998,58(4):440-444.
    [72]Kastner JR, Eiteman MA, Lee SA. Effect of redox potential on stationary-phase xylitol fermentations using Candida tropical is. Appl Microbiol Biotechnol,2003,63:96-100.
    [73]Sheu DC, Duan KJ, Jou SR, Chen YC, Chen CW. Production of xylitol from Candida Iropicalis by using an oxidation-reduction potential-stat controlled fermentation. Biotechnol Lett,2003,25:2065-2069.
    [74]Arruda PV, Rodrigues RCLB, Silva DDV, Felipe MGA. Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysates. Biodegradation.2010, DOI 10.1007/sl0532-010-9397-1.
    [75]Arruda PV, Felipe MGA. Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii. Curr Microbiol,2009,58:274-278.
    [76]Cortez DV, Roberto IC. Effect of phosphate buffer concentration on the batch xylitol production by Candida guilliermondii. Lett Appl Microbiol,2006,42(4):321-325.
    [77]Azuma M, Ikeuchi T, Kiritani R, Kato J, Ooshima H. Increase in xylitol production by Candida tropicalis upon addition of salt. Biomass and Bioenergy,2000,19(2):129-135.
    [78]Tavares JM, Duarte LC, Amaral-Collaco MT, Girio FM. Phosphate limitation stress induces xylitol overproduction by Debaryomyces hansenii. FEMS Microbiol Lett,1999, 171(2):115-120.
    [79]Kern M, Nidetzky B, Kulbe KD, Haltrich D. Effect of nitrogen sources on the levels of aldose reductase and xylitol dehydrogenase activities in the xylose-fermenting yeast Candida tenuis. J Ferment Bioeng,1998,85(2):196-202.
    [80]Ling, H. Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnol,2010, doi:10.1016/j.nbt.2010.05.004.
    [81]Sampaio FC, Mantovani HC, Passos FJV, Moraes CA, Converti A, Passos FML Bioconversion of d-xylose to xylitol by Debaryomyces hansenii UFV-170:Product formation versus growth. Process Biochem,2005,40(11):3600-3606.
    [82]Martinez EA, Silva SS, Silva JBA, Solenzal AIN, Felipe MGA. The influence of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii. Process Biochem,2003,38(12): 1677-1683.
    [83]Bae SM, Park YC, Lee TH, Kweon DH, Choi JH, Kim SK, Ryu YW, Seo JH. Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzyme Microb Technol,2004,35(6-7):545-549.
    [84]Faria LFF, Pereira JN, Nobrega R. Xylitol production from D-xylose in a membrane bioreactor. Desalination,2002,149:231-236.
    [85]Kwon SG, Park SW, Oh DK. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng,2006,101(1):13-18.
    [86]Cunha MAA, Converti A, Santos JC, Silva SS. Yeast immobilization in LentiKats:a new strategy for xylitol bioproduction from sugarcane bagasse. World J Microbiol Biotechnol,2006,22:65-72.
    [87]Cunha MAA, Converti A, Santos JC, Ferreira STS, Silva SS. PVA-Hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate. Appl Biochem Biotechnol,2009,157:527-537.
    [88]Rodrigues RCLB, Felipe MGA, Silva JBA, Vitolo M. Response surface methodology for xylitol production from sugarcane bagasse hemicellulosic hydrolyzate using controlled vacuum evaporation process variables. Process Biochem,2003,38(8): 1231-1237.
    [89]Mussatto SI, Santos JC, Roberto IC. Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol,2004,79(6):590-596.
    [90]Canilha L, Silva JBA, Solenzal AlN. Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchange resins for xylitol production. Process Biochem,2004,39(12):1909-1912.
    [91]Akinterinwa O, Cirino PC. Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metabolic Eng,2009,11(1):48-55.
    [92]Nyyssola A, Pihlajaniemi A, Palva A, von Weymarn N, Leisola M. Production of xylitol from d-xylose by recombinant Lactococcus lactis. J Biotechnol,2005,118(1): 55-66.
    [93]Oh YJ, Lee TH, Lee SH, Oh EJ, Ryu YW, Kim MD, Seo JH. Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B:Enzymatic,2007,47(1-2): 37-42.
    [94]Jeppsson M, Traff K, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Research,2003, 3:167-175.
    [95]Cirino PC, Chin JW, Ingram LO. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng,2006,95(6):1167-1176.
    [96]Rivas B, Torre P, Dominguez JM, Perego P, Converti A, Parajo JC. Carbon material and bioenergetic balances of xylitol production from corncobs by Debaryomyces hansenii. Biotechnol Prog,2003,19:706-713.
    [97]Granstrom T, Aristidou AA, Leisola M. Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat. Metabolic Eng,2002, (4):248-256.
    [98]Chung YS, Kim MD, Lee WJ, Ryu YW, Kim JH, Seo JH. Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol,2002,30(6):809-816.
    [99]Kim MD, Jeun YS, Kim SG, Ryu YW, Seo JH. Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring XYL1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae. Enzyme Microb Technol,2002,31(6):862-866.
    [100]Wang TH, Zhong YH, Huang W, Liu T, You YW. Antisense inhibition of xylitol dehydrogenase gene xdhl from Trichoderma reesei. Lett Appl Microbiol,2005,40(6): 424-429.
    [101]Ko BS, Rhee CH, Kim JH. Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Biotechnol Lett,2006, DOI 10.1007/s 10529-006-9068-9.
    [102]Eliasson A, Hofmeyr JHS, Pedler S, Hahn-Hagerdal B. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol,2001, 29:288-297.
    [103]Kwon DH, Kim MD, Lee TH, Oh YJ, Ryu YW, Seo JH. Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B:Enzymatic,2006,43(1-4):86-89.
    [104]Povelainen M, Miasnikov AN. Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol,2007,128:24-31.
    [105]Rodrigues RCLB, Lu CF, Lin B, Jeffries TW. Fermentation kinetics for xylitol production by a Pichia stipitis D-xylulokinase mutant previously grown in spent sulfite liquor. Appl Biochem Biotechnol,2008,148:199-209.
    [106]Cortez DV, Roberto IC. Improved xylitol production in media containing phenolic aldehydes:application of response surface methodology for optimization and modeling of bioprocess. J Chem Technol Biotechnol,2010,85:33-38.
    [107]陈宏文,方柏山,万宁,胡宗定.木糖醇发酵动力学研究.无锡轻工大学学报,2002,21(6):579-582.
    [108]Mussatto SI, Roberto IC. Kinetic behavior of Candida guilliermondii yeast during xylitol production from highly concentrated hydrolysate. Process Biochem,2004,39: 1433-1439.
    [109]Tochampa W, Sirisansaneeyakul S, Vanichsriratana W, Srinophakun P, Bakker HHC, Chisti Y. A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst Eng,2005,28(3):175-183.
    [110]Gurgel PV, Mancilha IM, Pecanha RP, Siqueira JFM. Xylitol recovery from fermented sugarcane bagasse hydrolyzate. Bioresour Technol,1995,52(3):219-223.
    [111]Hao HX, Hou BH, Wang JK, Lin GY. Effect of solvent on crystallization behavior of xylitol. J Crystal Growth,2006,290(1):192-196.
    [112]Sampaio FC, Passos FML, Passos FJV, Faveri DD, Perego P, Converti A. Xylitol crystallization from culture media fermented by yeasts. Chem Eng Processing,2006, 45(12):1041-1046.
    [113]Mussatto SI, Santos JC, Filho WCR, Silva SS. A study on the recovery of xylitol by batch adsorption and crystallization from fermented sugarcane bagasse hydrolysates. J Chem Technol Biotechnol,2006,81 (11):1840-1845.
    [114]Martinez EA, Giulietti M, Silva JBA, Derenzo S, Felipe MGA. Batch cooling crystallization of xylitol produced by biotechnological route. J Chem Technol Biotechnol,2009,84:376-381.
    [115]Sampaio FC, Passos FML, Passos FJV, Faveri DD, Perego P, Converti A. Xylitol crystallization from culture media fermented by yeasts. Chem Eng Processing; 2006, 45(12):1041-1046.
    [116]Vyglazov VV. Kinetic characteristics of xylitol crystallization from aqueous-ethanolic solutions. Russian J Appl Chem,2004,77(1):26-29.
    [117]Martinez EA, Giulietti M, Silva JBA, Derenzo S. Kinetics of the xylitol crystallization in hydro-alcoholic solution. Chem Eng Processing:Process Intensification,2008,47(12):2157-2162.
    [118]Faveri DD, Perego P, Converti A, Borghi MD. Xylitol recovery by crystallization from synthetic solutions and fermented hemicellulose hydrolyzates. Chem Eng J,2002, 90(3):291-298.
    [119]Faveri DD, Torre P, Perego P, Converti A. Optimization of xylitol recovery by crystallization from synthetic solutions using response surface methodology. J Food Eng, 2004,61(3):407-412.
    [120]Wei JC, Yuan QP, Wang TX, Wang L. Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Front Chem Eng, China 2010,4(1): 57-64.
    [121]Silva CJSM, Mussatto SI, Roberto IC. Study of xylitol production by Candida guilliermondii on a bench bioreactor. J Food Eng,2006,75(1):115-119.
    [122]Parajo JC, Dominguez H, Dominguez JM. Biotechnological production of xylitol. Part 3:Operation in culture media made from lignocellulose hydrolysates. Bioresour Technol,1998,66(1):25-40.
    [123]Carvalheiro F, Duarte LC, Lopes S, Parajo JC, Pereira H, Girio FM. Evaluation of the detoxification of brewery's spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem,2005,40(3-4):1215-1223.
    [124]Parajo JC, Dominguez H, Dominguez JM. Xylitol production from Eucalyptus wood hydrolysates extracted with organic solvents. Process Biochem,1997,32(7): 599-604.
    [125]Parajo JC, Dominguez H, Dominguez JM. Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enzyme Microb Technol,1997,21(1):18-24.
    [126]Dominguez JM, Cao NJ, Gong CS, Tsao GT. Dilute acid hemicellulose hydrolysates from corn cobs for xylitol production by yeast. Bioresour Technol,1997, 61(1):85-90.
    [127]Tavares JM, Duarte LC, Amaral-Collaco MT, Girio FM. The influence of hexoses addition on the fermentation of D-xylose in Debaryomyces hansenii under continuous cultivation. Enzyme Microb Technol,2000,26:743-747.
    [128]Converti A, Perego P, Torre P, Silva SS. Mixed inhibitions by methanol, furfural and acetic acid on xylitol production by Candida guilliermondii. Biotechnol Lett,2000, 22:1861-1865.
    [129]Perego P, Converti A, Palazzi E, Delborghi M, Ferraiolo G. Fermentation of hardwood hemicellulose hydrolysate by Pachysolen-tannophilus, Candida-shehatae and Pichia-stipitis. J Ind Microb,1990,6(3):157-164.
    [130]孙昆山,夏黎明.玉米芯水解液发酵生产木糖醇的研究.林产化学与工业,2002,22(2):26-30.
    [131]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976, 72:248-254.
    [132]Parajo JC, Dominguez H, Dominguez JM. Biotechnological production of xylitol. Part 2:Operation in culture media made with commercial sugars. Bioresour Technol, 1998,65(3):203-212.
    [1331 Nolleau V, Preziosibelloy L, Delgenes JP, Navarro JM. Xylitol production from xylose by two yeast strains:Sugar tolerance. Current Microbiol,1993,27(4):191-197.
    [134]Horitsu H, Yahashi Y, Takamizawa K, Kawai K, Suzuki T, Watanabe N. Production of xylitol from D-Xylose by Candida tropicalis:Optimization of production rate. Biotechnol Bioeng,1992,40(9):1085-1091.
    [135]Oh DK, Kim SY. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol,1998,50:419-425.
    [136]Kim JH, Han KC, Koh YH, Ryu YW, Seo JH. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotechnol, 2002,29:16-19.
    [137]Parajo JC, Dominguez H, Domfnguez JM. Biotechnological production of xylitol. Part 1:Interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol,1998, 65(3):191-201.
    [138]Alves LA, Vitolo M, Felipe MGA, Silva JBDE. Xylose reductase and xylitol dehydrogenase activities of Candida guilliermondii as a function of different treatments of sugarcane bagasse hemicellulosic hydrolysate employing experimental design. Appl Biochem Biotechnol,2002, (98/100):403-413.
    [139]Gimenes MAP, Carlos LCS, Faria LFF, Pereira N. Oxygen uptake rate in production of xylitol by Candida guilliermondii with different aeration rates and initial xylose concentrations. Appl Biochem Biotechnol,2002, (98/100):1049-1059.
    [140]Martinez EA, Silva SS, Felipe MGA. Effect of the oxygen transfer coefficient on xylitol production from sugarcane bagasse hydrolysate by continuous stirred-tank reactor fermentation. Appl Biochem Biotechnol,2000, (84/86):633-641.
    [141]Leathers TD, Dien BS. Xylitol production from corn fibre hydrolysates by a two-stage fermentation process. Process Biochem,2000,35:765-769.
    [142]黄炜,方祥年,夏黎明.固定化细胞在三相流化床中发酵生产木糖醇.浙江大学学报(工学版),2004,38(6):633-638.
    [143]Sakakibara Y, Saha BC, Taylor P. Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli. J Biosci Bioeng,2009, 107(5):506-511.
    [144]Morita TA, Silva SS, Felipe MGA. Effects of initial pH on biological synthesis of xylitol using xylose-rich hydrolysate. Appl Biochem Biotechnol,2000, (84/86): 751-759.
    [145]Susan E. Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae. J Cell Biology,1992,118(3):619-629.
    [146]Franceschin G, Sudiro M, Ingram T, Smirnova I, Brunner G, Bertucco A. Conversion of rye straw into fuel and xylitol:a technical and economical assessment based on experimental data. Chem Eng Res Des,2010, doi:10.1016/j.cherd.2010.11.001.
    [147]Kadam KL, Chin CY, Brown LW. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J Ind Microbiol Biotechnol,2008,35,331-334.
    [148]Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M. Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour. Technol.2010, doi:10.1016/j.biortech.2010.10.074.
    [149]Rivas B, Dominguez JM, Dominguez H, Parajo JC. Bioconversion of posthydrolysed autohydrolysis liquors:an alternative for xylitol production from corn cobs. Enzyme Microb Technol,2002,31:431-438.
    [150]Rivas B, Torre P, Dominguez JM, Perego P. Converti A, Parajo JC. Carbon material and bioenergetic balances of xylitol production from corncobs by Debaryomyces hansenii. Biotechnol Prog,2003,19,706-713.
    [151]Horiuchi J-I, Tada K, Kanno T. Biorefinery for bioethanol, lactic acid, xylitol and astaxanthin production from corn cobs. J of Biotechnol,2010,150S(1),171 doi:10.1016/j.jbiotec.2010.08.443
    [152]Zhang Y, Gao F, Zhang SP, Su ZG, Ma GH, Wang P. Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration. Bioresour Technol,2010, doi:10.1016/j.biortech.2010.09.069
    [153]Ling HZ, Cheng KK, Ge JP, Ping WX. Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnology,2010, In Press, Corrected Proof, Available online 11 May.
    [154]Freitas BR, Santos JC, Silva SS. A novel use for sugarcane bagasse hemicellulosic fraction:Xylitol enzymatic production. Biomass and Bioenergy,2011, doi:10.1016/j.biombioe.2011.02.014.
    [155]Wang L, Yang M, Fan X, Zhu X, Xu T, Yuan QP. An environmentally friendly and efficient method for xylitol bioconversion with hightemperature-steaming corncob hydrolysate by adapted Candida tropicalis. Process Biochem,2010, doi:10.1016/j.procbio.2011.05.004.
    [156]Gimenes MAP, Carlos LCS, Faria LFF, Pereira N. Oxygen uptake rate in production of xylitol by Candida guilliermondii with different aeration rates and initial xylose concentrations. Appl Biochem Biotechnol,2002, (98/100):1049-1059.
    [157]Parajo JC, Dominguez H, Dominguez JM. Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansenii:effect of initial cell concentration. Biotechnol Lett,1998,18:593-598.
    [158]Heikkilae H, Nygren J, Sarkki M L, Gros H, Eroma OP, Pearson J, Pepper T. Crystallization of xylitol, crystalline xylitol product and use thereof. WO Patent 9959426,1999.
    [159]谢晓兰,方柏山.木糖醇发酵液脱色条件的研究.泉州师专学报(自然科学版),2000,18(2):10-12.
    [160]梅余霞,谢晓兰,万宁,方柏山.木糖醇发酵液脱色的优化工艺.华侨大学学报(自然科学版),2000,21(4):394-398.
    [161]Gurgel PV, Mancilha IM, Pecanha RP, Siqueira JFM. Xylitol recovery from fermented sugarcane bagasse hydrolyzate. Bioresour Technol,1995,52(3):219-223.
    [162]应国清,王普,张峰,等.发酵法生产木糖醇的分离纯化工艺.中国医药工业杂志,2002,33(3):117-118.
    [163]方祥年,黄炜,夏黎明.半纤维素水解液中抑制物对木糖醇发酵的影响.浙江大学学报(工学版),2005,39(4):661-665.
    [164]黄炜,方祥年,夏黎明.固定化细胞发酵半纤维素水解液产木糖醇的研究.林产化学与工业,2004,24(1):29-33.
    [165]方祥年,黄炜,夏黎明.假丝酵母发酵玉米芯半纤维素水解液生产木糖醇.生物工程学报,2004,20(2):295-298.
    [166]Rivas B, Torre P, Dominguez JM, Converti A, Parajo JC. Purification of xylitol obtained by fermentation of corncob hydrolysates. J Agric Food Chem,2006,54: 4430-4435.
    [167]Martinez EA, Silva JBA, Giulietti M, Solenzal AIN. Downstream process for xylitol produced from fermented hydrolysate. Enzyme Microb Technol,2007,40(5): 1193-1198.
    [168]Martinez EA, Giulietti M, Silva JBA, Derenzo S, Felipe MGA. Batch cooling crystallization of xylitol produced by biotechnological route. J Chem Technol Biotechnol,2009,84:376-381.
    [169]Seppala A, Merilainen A, Wikstrom L, Kauranen P. The effect of additives on the speed of the crystallization front of xylitol with various degrees of supercooling. Exp Therm Fluid. Sci,2010,34:523-527.
    [170]Misra S, Gupta P, Raghuwanshi S, Dutt K, Saxena RK. Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep Purif Technol,2011,78:266-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700