用户名: 密码: 验证码:
复发转移乳腺癌中ERK、JNK/MAPK通路的激活或抑制及FAK、Ezrin、Paxillin、Integrinβ3、TrkC的表达与ERK/MAPK通路关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:丝裂原活化蛋白激酶(MAPK)包括ERK、JNK等,它是细胞内重要的信号传导通路,在细胞的恶性转化和肿瘤的发生发展中起重要作用。FAK、Ezrin、Paxillin、Integrinβ3、TrkC可能与此信号传导通路有关。本研究检测ERK、JNK、FAK、Ezrin、Paxillin、Integrinβ3、TrkC在复发转移与未复发转移乳腺癌中的表达情况,探讨在复发转移乳腺癌中ERK、JNK/MAPK通路的激活情况,及FAK、Ezrin、Paxillin、Integrinβ3、TrkC的表达与ERK /MAPK通路的关系。
     研究方法:收集1994-2006年广西医科大学第一附属医院外科及广西中医学院第一附属医院外科住院的女性乳腺癌患者共100例,收集临床资料,通过电话或通信随访,获得复发及生存情况。100例病人分成两个组:实验组为乳腺癌根治术后半年以上出现复发转移者共46例,标本取自1994-2006年在该两所医院手术并有完整的临床资料的患者,对照组为手术时间相近、发病年龄相近的乳腺癌根治术后未发生复发转移者共54例。石蜡封存组织块切片,应用免疫组织化学和核酸原位杂交技术,检测ERK、JNK、FAK、Integrinβ3、Paxillin、Ezrin、TrkC、ER、PR、CerbB-2在实验组、对照组的表达情况,并对实验组、对照组的临床病理因素进行研究。
     研究结果:
     1.ERK在实验组(复发转移组)与对照组(无复发转移组)中的阳性表达率分别为63.04%、38.89%,ERK在实验组中的表达较对照组显著增高(P<0.05);JNK在实验组与对照组中的阳性表达率分别为60.87%,75.93%(p>0.05),JNK在对照组中表达较与实验组高,但差异无显著性(P>0.05)。
     2. FAK在实验组与对照组中的阳性表达率分别为73.91%、42.59%,FAK在实验组中的表达较对照组显著增高(p<0.01);Ezrin在实验组与对照组中的阳性表达率分别为78.26%、51.85%,Ezrin在实验组中的表达较对照组显著增高(p<0.01);
     3. Paxillin在实验组与对照组中的阳性表达率分别为50.00%,40.74%,(p>0.05),Paxillin在实验组的表达较对照组增高,但差异无显著性(P>0.05)。
     4. Integrinβ3在实验组与对照组中的阳性表达率分别为58.70%、33.33%,Integrinβ3在实验组中的表达较对照组显著增高(p<0.05);TrkC在实验组与对照组中的阳性表达率分别为50.00%、24.07%,TrkC在实验组中的表达较对照组显著增高(p<0.01)。
     5.FAK、ERK、Ezrin的表达呈现彼此正相关的关系(P均<0.05)。
     6.Integrinβ3的表达与Ezrin相关(P<0.01),但与ERK不相关(P>0.05)。
     7.TrkC与ERK、Ezrin、FAK、Integrinβ3表达均无相关性(P>0.05)。
     8.对临床病理因素包括发病年龄、肿瘤大小、腋淋巴结转移状态、pTNM分期进行寿命表法及单因素Kaplan-Meier法分析,结果显示:发病年龄、肿瘤大小、腋淋巴结转移状态、pTNM分期均与乳腺癌根治手术后复发转移率有关。
     9.对十个实验指标包括ERK、JNK、FAK、Ezrin、Integrinβ3、TrkC、Paxillin、ER、PR、CerbB-2进行寿命表法及单因素Kaplan-Meier法分析,结果显示:ERK、FAK、Ezrin、Integrinβ3、TrkC、ER六个实验指标均与乳腺癌根治手术后复发转移率有关。
     10.将单因素分析中与乳腺癌根治手术后复发转移有关的临床病理因素及实验指标包括发病年龄、肿瘤大小、腋淋巴结转移状态、pTNM分期、ERK、FAK、Ezrin、Integrinβ3、TrkC、ER共十个因素放入多因素COX模型中进行分析,结果显示:在α=0.05水平上,经逐步后退法筛选,逐步剔除pTNM分期、TrkC、肿瘤大小、腋淋巴结转移状态、发病年龄、Integrinβ3后,显示ER、FAK、ERK、Ezrin与乳腺癌根治手术后复发转移有关( P均<0.01 )。其中ER的B(相关系数)为-1.287,OR(比值比)为0.276; ERK、Ezrin、FAK的B依次为1.908、1.611、1.529,OR依次为6.742、5.007、4.611。
     研究结论:
     1.实验组中,ERK通路明显激活,JNK通路可能受抑制。ERK通路的激活、JNK通路受抑制在乳腺癌根治术后复发转移的发生中扮演了重要角色。
     2.实验组中FAK、Ezrin、Integrinβ3、TrkC表达增高,受到激活,促进乳腺癌根治手术后复发转移。
     3.实验组中Paxillin可能被激活,促进乳腺癌根治手术后复发转移。
     4.实验组中ER表达降低,在乳腺癌根治手术后复发转移过程中受到抑制或拮抗。
     5. FAK、Ezrin协同作用或与ERK结合成复合物,激活ERK/MAPK通路,促进乳腺癌根治手术后复发转移。
     6. Integrinβ3与Ezrin有协同作用,促进乳腺癌根治手术后复发转移,但Integrinβ3的作用不是通过ERK/MAPK通路的激活实现的。
     7.TrkC的表达促进乳腺癌根治手术后复发转移,TrkC的作用与ERK/MAPK通路的激活无关,可能与乳腺癌细胞的自分泌有关。
     8.临床病理因素中,腋淋巴结转移、肿瘤大小>5 cm、发病年龄<40岁、临床分期Ⅲ期是乳腺癌根治手术后复发转移的危险因素。
     9.实验指标中,FAK、ERK、Ezrin、Integrinβ3、TrkC是乳腺癌根治手术后复发转移的危险因素,ER是乳腺癌根治手术后复发转移的保护因素。
     10.所有因素(包括临床病理因素和实验指标)中,FAK、ERK、Ezrin是乳腺癌根治手术后复发转移的独立危险因素,ER是乳腺癌根治手术后复发转移的独立保护因素。
OBJECTIVE:Mitogen-activated protein kinase(MAPK), including the extracellular signal- regulated protein kinase(ERK), the c-Jun N-terminal protein kinase(JNK) and et al, was an important signal transduction pathway of the cell, controlling cell malignant transformation, tumorigenesis and tumor proliferation. The analysis was to detect the expression of FAK, Ezrin, Paxillin, Integrinβ3, TrkC in 100 breast cancer cases, and to study the relationship between the expression of FAK, Ezrin, Paxillin, Integrinβ3, TrkC and ERK, JNK/MAPK signal transduction pathway in breast cancer with local recurrence and metastasis.
     METHODS:All the 100 female breast cancer cases from the surgical department of the first affiliated hospital of Guang-Xi medical university and the first affiliated hospital of Guang-Xi tradional chinese medical university were collected. The clinical data and surgical information of the cases were got by follow-up survey. Two groups were established in the cases. One is experimental group, composing of 46 local recurrence and metastasis cases. The other is control group, composing of 54 tumor-free survival cases which have similar operative time and age. All the cases were treated by radical operation between 1994 and 2006 in the two hospitals. The analysis through immuno- histochemistry method and in situ hybridization in paraffin block was to detect the expression of FAK, Ezrin, Paxillin, Integrinβ3, TrkC in experimental group and control group, and to study the clinical characteristics of experi- mental group and control group.
     RESULTS:
     1.Over-expression for ERK was observed in 29/46 ( 63.04% ) in experimental group, while 21/54(38.46%)in control group. Over-expression for ERK in experimental group was higher than that in control group obviously(P<0.05). Over-expression for JNK was observed in 28/46(60.87%)in experimental group, while 41/54(75.93%)in control group . Over-expression for JNK in experimental group was lower than that in control group without significant difference(P>0.05).
     2.Over-expression for FAK was observed in 34/46 ( 73.91% ) in experimental group, while 23/54(32.59%)in control group . Over-expression for FAK in experimental group was higher than that in control group obviously(P<0.01). Over-expression for Ezrin was observed in 36/46(78.26%)in experimental group, while 28/54(51.85%)in control group . Over-expression for Ezrin in experimental group was higher than that in control group obviously(P<0.01).
     3. Over-expression for Paxillin was observed in 23/46(50.00%)in experimental group, while 22/54(40.74%)in control group. Over-expression for Paxillin in experimental group was higher than that in control group without significant difference(P>0.05).
     4. Over-expression for Integrinβ3 was observed in 27/46(58.70%)in experimental group, while 18/54(33.33%)in control group. Over-expression for Integrinβ3 in experimental group was higher than that in control group obviously(P<0.05). Over-expression for TrkC was observed in 23/46 (50.00%)in experimental group, while 13/54(24.07%)in control group. Over- expression for TrkC in experimental group was higher than that in control group obviously(P<0.01).
     5. Over-expression for ERK, FAK, Ezrin were positively correlated each other in the 100 cases(P<0.05).
     6. Over-expression for Integrinβ3 was positively correlated with that for Ezrin in the 100 cases(P<0.01). Over-expression for Integrinβ3 was not correlated with that for ERK in the 100 cases(P>0.05).
     7. Over-expression for ERK was not correlated with that for TrkC in the 100 cases(P>0.05). So did over-expression for Ezrin, FAK, Integrinβ3.
     8.The results of the univariate analysis based on survival table and Kaplan-Meier method for clinical factors showed that the incidence age, the size of tumor, the status of axillary lymph node, the pTNM stage were related to the rate of local recurrence and metastasis after radical operation in breast cancer cases respectively.
     9.The results of the univariate analysis based on Kaplan-Meier method for experimental factors showed that ERK, FAK, Ezrin, Integrinβ3, TrkC, ER were related to the rate of local recurrence and metastasis after radical operation in breast cancer cases respectively.
     10. All the 10 factors related to local recurrence and metastasis after radical operation in breast cancer cases, including the incidence age, the size of tumor, the status of axillary lymph node, the pTNM stage, ERK, FAK, Ezrin, Integrinβ3, TrkC, ER, entered multivariate analysis by Cox regression to reject confounding factors. Backward gradually method used in Cox regression show that ERK, FAK, Ezrin, ER were related to local recurrence and metastasis after radical operation in breast cancer cases respectively ( P < 0.01 ) . The B(Correlation Coefficient) for ER was -1.287. The OR for ER was 0.276; The B for ERK, Ezrin, FAK were in sequence of 1.908, 1.611, 1.529. The OR for ERK, Ezrin, FAK were in sequence of 6.742, 5.007, 4.611.
     CONCLUSIONS:
     1. ERK signal pathway was activated obviously in experimental group, while JNK signal pathway might be suppressed. The activity of ERK signal transduction pathway and the suppression of JNK signal transduction pathway act as crucial roles for local recurrence and metastasis after radical operation in breast cancer cases in our opinion.
     2. Over-expression of FAK, Ezrin, Integrinβ3, TrkC were higher in experimental group, showing that FAK, Ezrin, Integrinβ3, TrkC were acti- vated. The activity of FAK, Ezrin, Integrinβ3, TrkC promoted the incidence for local recurrence and metastasis after radical operation in breast cancer cases.
     3. Over-expression of Paxillin was higher in experimental group, showing that Paxillin might be activated. The activity of Paxillin might promote the incidence for local recurrence and metastasis after radical operation in breast cancer cases.
     4. Over-expression of was lower in experimental group, showing that ER might be suppressed or antagonized during the process of local recurrence and metastasis after radical operation in breast cancer cases.
     5. Synergistic effect of FAK and Ezrin activated the ERK/MAPK signal transduction pathway, promoting the incidence for local recurrence and metastasis after radical operation in breast cancer cases.
     6. Synergistic effect of Integrinβ3 and Ezrin without activating the ERK/MAPK signal transduction pathway, promoted the incidence for local recurrence and metastasis after radical operation in breast cancer cases.
     7. The over-expression of TrkC without activating the ERK/MAPK signal transduction pathway, promoted the incidence for local recurrence and metastasis after radical operation in breast cancer cases through the autocrine loop of the breast cancer cells.
     8. The status of axillary lymph node, the size of tumor, of the incidence age, the pTNM stage were risk factors for the incidence for local recurrence and metastasis after radical mastectomy in breast cancer cases in all clinical factors being related to local recurrence and metastasis of post-operational breast cancer.
     9. ERK, FAK, Ezrin, Integrinβ3, TrkC were risk factors for the incidence for local recurrence and metastasis after radical operation in breast cancer cases in all experimental factors being related to local recurrence and metastasis of post-operational breast cancer, while ER was a protective factor.
     10. ERK, FAK, Ezrin were independent risk factors for the incidence for local recurrence and metastasis after radical operation in breast cancer cases in all clinical and experimental factors being related to local recurrence and metastasis of post-operational breast cancer, while ER was a independent protective factor.
引文
1. Fukazawa H, Noguchi K, Murakami Y, et al. Mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitors restore anoikis sensitivity in human breast cancer cell lines with a constitutively activated extracellular-regulated kinase (ERK) pathway. Mol Cancer Ther. 2002; 1(5): 303-9.
    2. Zheng L, Ren JQ, Zhang L, et al. [Overexpression of HER2/neu downregulates wild p53 protein expression via PI3K and Ras/Raf/ MEK/ERK pathways in human breast cancer cells]. Zhonghua Bing Li Xue Za Zhi. 2004; 33(4): 358-62.
    3.纪小龙,施作霖.诊断免疫组织化学[M].军事医学科学出版社. 1997: 25-6.
    4. Wen XF, Shen Z, Shen ZZ, et al. The expression of ER beta protein correlates with vascular endothelial growth factor and its prognostic significance in human breast cancer. Oncol Rep. 2002; 9(5):937-44.
    5. Sivaraman VS, Wang H, Nuovo GJ, et al. Hyperexpression of mitogen- activated protein kinase in human breast cancer. J Clin Invest. 1997; 99(7):1478-83.
    6. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J. 1995; 9(9): 726-35.
    7. Coutts AS, Murphy LC. Elevated mitogen-activated protein kinase activity in estrogen-nonresponsive human breast cancer cells. Cancer Res. 1998 15; 58(18): 4071-4.
    8. Tan X, Tamori Y, Egami H, et al. Analysis of invasion-metastasis mechanism in pancreatic cancer: involvement of tight junctiontransmembrane protein occludin and MEK/ERK signal transduction pathway in cancer cell dissociation. Oncol Rep. 2004; 11(5):993-8.
    9. Viala E, Pouyssegur J. Regulation of tumor cell motility by ERK mitogen-activated protein kinases. Ann N Y Acad Sci. 2004; 1030:208-18.
    10. Cheng YJ, Lee CH, Lin YP, et al. Caspase-3 enhances lung metastasis and cell migration in a protease-independent mechanism through the ERK pathway. Int J Cancer. 2008; 123(6):1278-85.
    11. Ming J, Liu N, Gu Y, et al. PRL-3 facilitates angiogenesis and metastasis by increasing ERK phosphorylation and up-regulating the levels and activities of Rho-A/C in lung cancer. Pathology. 2009; 41(2):118-26.
    12. Guruvayoorappan C, Kuttan G. Amentoflavone inhibits experimental tumor metastasis through a regulatory mechanism involving MMP-2, MMP-9, prolyl hydroxylase, lysyl oxidase, VEGF, ERK-1, ERK-2, STAT-1, nm23 and cytokines in lung tissues of C57BL/6 mice. Immunopharmacol Immunotoxicol. 2008; 30(4):711-27.
    13. Mueller H, Flury N, Eppenberger-Castori S, et al. Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients. Int J Cancer. 2000; 89(4):384-8.
    14.Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000; 103(2):239-52.
    15. Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol. 1999; 19(4): 2435-44.
    16. Altiok N, Koyuturk M, Altiok S. JNK pathway regulates estradiol-induced apoptosis in hormone-dependent human breast cancer cells. Breast Cancer Res Treat. 2007 N;105(3):247-54.
    17.李航宇孔,董明. HSP70和JN K信号传导通路在肝癌组织中的表达
    18.Hecker TP, Gladson CL. Focal adhesion kinase in cancer. Front Biosci. 2003; 8:s705-14.
    19. Weiner TM, Liu ET, Craven RJ, et al. Expression of focal adhesion kinase gene and invasive cancer. Lancet. 1993; 342(8878):1024-5.
    20. Irigoyen JP, Besser D, Nagamine Y. Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. J Biol Chem. 1997; 272(3):1904-9.
    21. Irigoyen JP, Nagamine Y. Cytoskeletal reorganization leads to induction of the urokinase-type plasminogen activator gene by activating FAK and Src and subsequently the Ras/Erk signaling pathway. Biochem Biophys Res Commun. 1999; 262(3):666-70.
    22. Hunger-Glaser I, Fan RS, Perez-Salazar E, et al. PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J Cell Physiol. 2004; 200(2):213-22.
    23. Bouchard V, Demers MJ, Thibodeau S, et al. Fak/Src signaling in human intestinal epithelial cell survival and anoikis: differentiation state-specific uncoupling with the PI3-K/Akt-1 and MEK/Erk pathways. J Cell Physiol. 2007; 212(3):717-28.
    24. Kamarajan P, Kapila YL. An altered fibronectin matrix induces anoikis of human squamous cell carcinoma cells by suppressing integrin alpha v levels and phosphorylation of FAK and ERK. Apoptosis. 2007; 12(12):2221-31.
    25. Elzagheid A, Korkeila E, Bendardaf R, et al. Intense cytoplasmic ezrin immunoreactivity predicts poor survival in colorectal cancer. Hum Pathol.2008; 39(12):1737-43.
    26. Chuan YC, Pang ST, Cedazo-Minguez A, et al. Androgen induction of prostate cancer cell invasion is mediated by ezrin. J Biol Chem. 2006; 281(40): 29938-48.
    27. Zhang Y, Hu MY, Chen BH, et al. [The influence of downregulation of ezrin expression by RNA interference on the growth and metastasis of hepatocellular carcinoma: experiment in vitro]. Zhonghua Yi Xue Za Zhi. 2006; 86(8):530-5.
    28. Hunter KW. Ezrin, a key component in tumor metastasis. Trends Mol Med. 2004; 10(5):201-4.
    29. Elliott BE, Meens JA, SenGupta SK, et al. The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells. Breast Cancer Res. 2005; 7(3):R365-73.
    30.马小斌,王西京,刘小旭,等. Ezrin在乳腺癌发生发展中的表达及意义.现代肿瘤医学. 2008;16(3):3.
    31. Schaller MD. Paxillin: a focal adhesion-associated adaptor protein. Oncogene. 2001; 20(44):6459-72.
    32. Jagadeeswaran R, Surawska H, Krishnaswamy S, et al. Paxillin is a target for somatic mutations in lung cancer: implications for cell growth and invasion. Cancer Res. 2008; 68(1):132-42.
    33. Salgia R, Li JL, Ewaniuk DS, et al. Expression of the focal adhesion protein paxillin in lung cancer and its relation to cell motility. Oncogene. 1999; 18(1):67-77.
    34. Pelagalli A, Scibelli A, Lombardi P, et al. Expression of the focal adhesion protein paxillin in normal and breast cancer tissues. Vet Res Commun. 2003; 27 Suppl 1:343-6.
    35. Ishibe S, Joly D, Liu ZX, et al. Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morpho- genesis. Mol Cell. 2004; 16(2):257-67.
    36. Monami G, Gonzalez EM, Hellman M, et al. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res. 2006; 66(14):7103-10.
    37. Hieken TJ, Farolan M, Ronan SG, et al. Beta3 integrin expression in melanoma predicts subsequent metastasis. J Surg Res. 1996;63(1):169-73.
    38. Vellon LM, Lupu R. A Bidirectional‘‘avb3 Integrin-ERK1/ERK2 MAPK’’Connection Regulates the Proliferation of Breast Cancer Cells. Molecular Carcinogenesis. 2006; 45:795-804.
    39. Takayama S, Ishii S, Ikeda T, et al. The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Res. 2005; 25(1A):79-83.
    40. Harms JF, Welch DR, Samant RS, et al. A small molecule antagonist of the alpha(v)beta3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin Exp Metastasis. 2004; 21(2):119-28.
    41. Brooks PC SS, Klemke R. Antiintegrin av,83 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest .1995;96:1815-22.
    42. Joneson T, McDonough M, Bar-Sagi D, et al. RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science. 1996; 274(5291):1374-6.
    43. Weyts FA, Li YS, van Leeuwen J, et al. ERK activation and alpha v beta 3 integrin signaling through Shc recruitment in response to mechanical stimulation in human osteoblasts. J Cell Biochem. 2002; 87(1):85-92.
    44. Blasco-Gutierrez MJ, Jose-Crespo IJ, Zozaya-Alvarez E, et al. TrkC: a new predictive marker in breast cancer? Cancer Invest. 2007;25(6):405-10.
    45. Terenghi G, Mann D, Kopelman PG, et al. trkA and trkC expression is increased in human diabetic skin. Neurosci Lett. 1997; 228(1):33-6.
    46.梁日生,周良辅,张荣,等. TRKC基因体外转染大鼠神经干细胞的方法.基础医学与临床. 2006; 26(11):5.
    47. Dolle L, El Yazidi-Belkoura I, Adriaenssens E, et al. Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene. 2003; 22(36):5592-601.
    48. Aesoy R, Sanchez BC, Norum JH, et al. An autocrine VEGF/VEGFR2 and p38 signaling loop confers resistance to 4-hydroxytamoxifen in MCF-7 breast cancer cells. Mol Cancer Res. 2008; 6(10):1630-8.
    49. Maehle BO, Skjaerven R. Prediction of prognosis in axillary lymph node positive breast cancer patients: a statistical study. Br J Surg. 1984; 71(6): 459-62.
    50. Ribeiro GG, Swindell R. The prognosis of breast carcinoma in women aged less than 40 years. Clin Radiol. 1981; 32(2): 231-6.
    51. Cascinelli N, Singletary E, Greco M, et al. Long-term survival and prognostic factors for 2170 breast cancer patients treated at two cancer centers (Milan and Houston). Tumori. 1989; 75(2):123-31.
    52. Vander LJ, Lindeman J, Baak JP, et al. The Multivariate Prognostic Index and nuclear DNA content are independent prognostic factors in primary breast cancer patients. Cytometry. 1989; 10(1):56-61.
    53. Russo J, Frederick J, Ownby HE, et al. Predictors of recurrence and survival of patients with breast cancer. Am J Clin Pathol. 1987; 88(2):123-31.
    54. Merkel DE, Osborne CK. Prognostic factors in breast cancer. HematolOncol Clin North Am. 1989; 3(4):641-52.
    55. Torregrosa D, Bolufer P, Lluch A, et al. Prognostic significance of c-erbB-2/neu amplification and epidermal growth factor receptor (EGFR) in primary breast cancer and their relation to estradiol receptor (ER) status. Clin Chim Acta. 1997; 262(1-2):99-119.
    56. Toikkanen S, Helin H, Isola J, et al. Prognostic significance of HER-2 oncoprotein expression in breast cancer: a 30-year follow-up. J Clin Oncol. 1992; 10(7):1044-8.
    1. Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005; 6(5):322-7.
    2. Cheng YJ, Lee CH, Lin YP, et al. Caspase-3 enhances lung metastasis and cell migration in a protease-independent mechanism through the ERK pathway. Int J Cancer. 2008; 123(6):1278-85.
    3. Ling MT, Wang X, Ouyang XS, et al. Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth. Oncogene. 2002; 21(55): 8498-505.
    4. Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway in melanoma. Curr Opin Oncol. 2008; 20(2):183-9.
    5. Hindley A, Kolch W. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J Cell Sci. 2002; 115(Pt 8):1575-81.
    6. Neilson LM, Zhu J, Xie J, et al. Coactivation of janus tyrosine kinase (Jak)1 positively modulates prolactin-Jak2 signaling in breast cancer: recruitment of ERK and signal transducer and activator of transcription (Stat)3 and enhancement of Akt and Stat5a/b pathways. Mol Endocrinol. 2007; 21(9):2218-32.
    7. Wei YY, Chen YJ, Hsiao YC , et al. Osteoblasts-derived TGF-beta1 enhance motility and integrin upregulation through Akt, ERK, and NF- kappaB-dependent pathway in human breast cancer cells. Mol Carcinog. 2008; 47(7):526-37.
    8. Ahamed S, Foster JS, Bukovsky A, et al. Signal transduction through the Ras/Erk pathway is essential for the mycoestrogen zearalenone-inducedcell-cycle progression in MCF-7 cells. Mol Carcinog. 2001; 30(2):88-98.
    9. Towatari M, Iida H, Tanimoto M, et al. Constitutive activation of mitogen- activated protein kinase pathway in acute leukemia cells. Leukemia. 1997; 11(4):479-84.
    10. Gioeli D, Mandell JW, Petroni GR, et al. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 1999; 59(2):279-84.
    11. Oka H, Chatani Y, Hoshino R, et al. Constitutive activation of mitogen- activated protein (MAP) kinases in human renal cell carcinoma. Cancer Res. 1995; 55(18):4182-7.
    12. Pozzi A, Yan X, Macias-Perez I, et al. Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation. J Biol Chem. 2004;279(28):29797-804.
    13. Davido DJ, Richter F, Boxberger F, et al. Butyrate and propionate downregulate ERK phosphorylation in HT-29 colon carcinoma cells prior to differentiation. Eur J Cancer Prev. 2001; 10(4):313-21.
    14. Sivaraman VS, Wang H, Nuovo GJ, et al. Hyperexpression of mitogen- activated protein kinase in human breast cancer. J Clin Invest. 1997; 99(7): 1478-83.
    15. Mueller H, Flury N, Eppenberger-Castori S, et al. Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients. Int J Cancer. 2000; 89(4):384-8.
    16. Fiddes RJ, Janes PW, Sivertsen SP, et al. Inhibition of the MAP kinase cascade blocks heregulin-induced cell cycle progression in T-47D human breast cancer cells. Oncogene. 1998; 16(21):2803-13.
    17. Alblas J, Slager-Davidov R, Steenbergh PH, et al. The role of MAP kinasein TPA-mediated cell cycle arrest of human breast cancer cells. Oncogene. 1998; 16(1):131-9.
    18. Maemura M, Iino Y, Koibuchi Y, et al. Mitogen-activated protein kinase cascade in breast cancer. Oncology. 1999;57 Suppl 2:37-44.
    19. Jeng MH, Yue W, Eischeid A, et al. Role of MAP kinase in the enhanced cell proliferation of long term estrogen deprived human breast cancer cells. Breast Cancer Res Treat. 2000; 62(3):167-75.
    20. Kabil A, Silva E, Kortenkamp A. Estrogens and genomic instability in human breast cancer cells--involvement of Src/Raf/Erk signaling in micronucleus formation by estrogenic chemicals. Carcinogenesis. 2008; 29(10): 1862-8.
    21. Frogne T, Benjaminsen RV, Sonne-Hansen K, et al. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant. Breast Cancer Res Treat. 2009; 114(2): 263-75.
    22. Azzam DG, Tay JW, Greeve MA, et al. ERK/MAPK regulation of the androgen responsiveness of breast cancer cells. Adv Exp Med Biol. 2008; 617:429-35.
    23. Fukazawa H, Noguchi K, Murakami Y, et al. Mitogen-activated protein/ extracellular signal-regulated kinase kinase (MEK) inhibitors restore anoikis sensitivity in human breast cancer cell lines with a constitutively activated extracellular-regulated kinase (ERK) pathway. Mol Cancer Ther. 2002; 1(5):303-9.
    24. Zheng L, Ren JQ, Zhang L, et al. [Overexpression of HER2/neu downregulates wild p53 protein expression via PI3K and Ras/Raf/ MEK/ERK pathways in human breast cancer cells]. Zhonghua Bing Li XueZa Zhi. 2004; 33(4):358-62.
    25. Siddiqa A, Long LM, Li L, et al. Expression of HER-2 in MCF-7 breast cancer cells modulates anti-apoptotic proteins Survivin and Bcl-2 via the extracellular signal-related kinase (ERK) and phosphoinositide-3 kinase (PI3K) signalling pathways. BMC Cancer. 2008; 8:129.
    26. Ostrakhovitch EA, Cherian MG. Inhibition of extracellular signal regulated kinase (ERK) leads to apoptosis inducing factor (AIF) mediated apoptosis in epithelial breast cancer cells: the lack of effect of ERK in p53 mediated copper induced apoptosis. J Cell Biochem. 2005; 95(6):1120-34.
    27. Upadhyay AK, Ajay AK, Singh S, et al. Cell cycle regulatory protein 5 (Cdk5) is a novel downstream target of ERK in carboplatin induced death of breast cancer cells. Curr Cancer Drug Targets. 2008;8(8):741-52.
    28. Yamamoto T, Ebisuya M, Ashida F, et al. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr Biol. 2006; 16(12):1171-82.
    29. Chiu LC, Kong CK, Ooi VE. The chlorophyllin-induced cell cycle arrest and apoptosis in human breast cancer MCF-7 cells is associated with ERK deactivation and Cyclin D1 depletion. Int J Mol Med. 2005; 16(4):735-40.
    30. El-Dahr SS, Dipp S, Baricos WH. Bradykinin stimulates the ERK——Elk-1——Fos/AP-1 pathway in mesangial cells. Am J Physiol. 1998; 275(3 Pt 2):F343-52.
    31. Lester RD, Jo M, Campana WM, et al. Erythropoietin promotes MCF-7 breast cancer cell migration by an ERK/mitogen-activated protein kinase-dependent pathway and is primarily responsible for the increase in migration observed in hypoxia. J Biol Chem. 2005; 280(47):39273-7.
    32. Klemke RL, Cai S, Giannini AL, et al. Regulation of cell motility bymitogen-activated protein kinase. J Cell Biol. 1997;137(2):481-92.
    33. Hibi M, Lin A, Smeal T, et al. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 1993;7(11):2135-48.
    34. Ramirez MT, Sah VP, Zhao XL, et al. The MEKK-JNK pathway is stimulated by alpha1-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem. 1997; 272(22):14057-61.
    35. Kaneto H. The JNK pathway as a therapeutic target for diabetes. Expert Opin Ther Targets. 2005;9(3):581-92.
    36. Koyuturk M, Ersoz M, Altiok N. Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer Lett. 2007;250(2):220-8.
    37. Zhang R, Al-Lamki R, Bai L, et al. Thioredoxin-2 inhibits mitochondria- located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res. 2004; 94(11):1483-91.
    38. Filomeni G, Aquilano K, Civitareale P, et al. Activation of c-Jun-N-terminal kinase is required for apoptosis triggered by glutathione disulfide in neuroblastoma cells. Free Radic Biol Med. 2005; 39(3):345-54.
    39. Hochedlinger K, Wagner EF, Sabapathy K. Differential effects of JNK1 and JNK2 on signal specific induction of apoptosis. Oncogene. 2002; 21(15): 2441-5.
    40. MacKinnon AC, Armstrong RA, Waters CM, et al. [Arg6, D-Trp7,9, NmePhe8]-substance P (6-11) activates JNK and induces apoptosis in small cell lung cancer cells via an oxidant-dependent mechanism. Br J Cancer. 1999; 80(7):1026-34.
    41. Chen N, Nomura M, She QB, et al. Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2-deficient mice. Cancer Res. 2001; 61(10): 3908-12.
    42. Mamay CL, Mingo-Sion AM, Wolf DM, et al. An inhibitory function for JNK in the regulation of IGF-I signaling in breast cancer. Oncogene. 2003; 22(4):602-14.
    43. Altiok N, Koyuturk M, Altiok S. JNK pathway regulates estradiol-induced apoptosis in hormone-dependent human breast cancer cells. Breast Cancer Res Treat. 2007;105(3):247-54.
    44. Kim J, Freeman MR. JNK/SAPK mediates doxorubicin-induced differen- tiation and apoptosis in MCF-7 breast cancer cells. Breast Cancer Res Treat. 2003; 79(3):321-8.
    45. Lopez-Bergami P, Ronai Z. Requirements for PKC-augmented JNK activation by MKK4/7. Int J Biochem Cell Biol. 2008; 40(5):1055-64.
    46. Su GH, Hilgers W, Shekher MC, et al. Alterations in pancreatic, biliary, and breast carcinomas support MKK4 as a genetically targeted tumor suppressor gene. Cancer Res. 1998; 58(11):2339-42.
    47. Qi X, Pramanik R, Wang J, et al. The p38 and JNK pathways cooperate to trans-activate vitamin D receptor via c-Jun/AP-1 and sensitize human breast cancer cells to vitamin D(3)-induced growth inhibition J Biol Chem. 2002;277(29):25884-92.
    48. Byun HJ, Hong IK, Kim E, et al. A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways. J Biol Chem. 2006; 281(46):34833-47.
    49. Han J, Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin andhyperosmolarity in mammalian cells. Science. 1994; 265(5173):808-11.
    50. Svensson CI, Marsala M, Westerlund A, et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem. 2003; 86(6): 1534-44.
    51. Han J, Jiang Y, Li Z, et al. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997; 386(6622):296-9.
    52. Paine E, Palmantier R, Akiyama SK, et al. Arachidonic acid activates mitogen-activated protein (MAP) kinase-activated protein kinase 2 and mediates adhesion of a human breast carcinoma cell line to collagen type IV through a p38 MAP kinase-dependent pathway. J Biol Chem. 2000; 275(15):11284-90.
    53. Neve RM, Holbro T, Hynes NE. Distinct roles for phosphoinositide 3-kinase, mitogen-activated protein kinase and p38 MAPK in mediating cell cycle progression of breast cancer cells. Oncogene. 2002; 21(29): 4567-76.
    54. Kim MS, Lee EJ, Kim HR, et al. p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res. 2003; 63(17):5454-61.
    55. Esteva FJ, Sahin AA, Smith TL, et al. Prognostic significance of phosphorylated P38 mitogen-activated protein kinase and HER-2 expression in lymph node-positive breast carcinoma. Cancer. 2004; 100(3): 499-506.
    56. Kamaraju AK, Roberts AB. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem.2005; 280(2): 1024-36.
    57. Iyoda K, Sasaki Y, Horimoto M, et al. Involvement of the p38 mitogen- activated protein kinase cascade in hepatocellular carcinoma. Cancer. 2003; 97(12):3017-26.
    58. Abe J, Kusuhara M, Ulevitch RJ, et al. Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem. 1996; 271(28): 16586-90.
    59. Lee JD, Ulevitch RJ, Han J. Primary structure of BMK1: a new mammalian map kinase. Biochem Biophys Res Commun. 1995;213(2):715-24.
    60. Zhou G, Bao ZQ, Dixon JE. Components of a new human protein kinase signal transduction pathway. J Biol Chem. 1995;270(21):12665-9.
    61. Kamakura S, Moriguchi T, Nishida E. Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characteriz- ation of a signaling pathway to the nucleus. J Biol Chem. 1999; 274(37): 26563-71.
    62. Wang X, Tournier C. Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal. 2006; 18(6):753-60.
    63. Dinev D, Jordan BW, Neufeld B, et al. Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. EMBO Rep. 2001;2(9):829-34.
    64. Kato Y, Tapping RI, Huang S, et al. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature. 1998; 395 (6703): 713-6.
    65. Rovida E, Spinelli E, Sdelci S, et al. ERK5/BMK1 is indispensable for optimal colony-stimulating factor 1 (CSF-1)-induced proliferation in macrophages in a Src-dependent fashion. J Immunol. 2008;180(6):4166-72.
    66. English JM, Pearson G, Baer R, et al. Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases. J Biol Chem. 1998; 273(7):3854-60.
    67. Izawa Y, Yoshizumi M, Ishizawa K, et al. Big mitogen-activated protein kinase 1 (BMK1)/extracellular signal regulated kinase 5 (ERK5) is involved in platelet-derived growth factor (PDGF)-induced vascular smooth muscle cell migration. Hypertens Res. 2007;30(11):1107-17.
    68. Pi X, Garin G, Xie L, et al. BMK1/ERK5 is a novel regulator of angiogenesis by destabilizing hypoxia inducible factor 1alpha. Circ Res. 2005;96(11):1145-51.
    69. Sticht C, Freier K, Knopfle K, et al. Activation of MAP kinase signaling through ERK5 but not ERK1 expression is associated with lymph node metastases in oral squamous cell carcinoma (OSCC)ERK5. Neoplasia. 2008; 10(5):462-70.
    70. Esparis-Ogando A, Diaz-Rodriguez E, Montero JC, et al. Erk5 participates in neuregulin signal transduction and is constitutively active in breast cancer cells overexpressing ErbB2. Mol Cell Biol. 2002;22(1):270-85.
    1.沈镇宙,邵志敏.乳腺肿瘤学.2005,1-3
    2. Ernster YL, Barclay J,et al. Incidence of and treatment for ductal carcinoma in situ of the breast. JAMA, 1996; 275(12):913-918.
    3.李宣海,巫向前,倪语星.肿瘤标志物的检测与临床.1997,68-69.
    4.季晨阳.乳腺癌肿瘤标志物的临床应用和研究进展,实用医学杂志.2000,16(7):521-523.
    5.张天泽,徐光炜.肿瘤学, 2005.
    6. Ma H, Siegel AJ ,Berezney R. Association of chromosome territories with the nuclear matrix. J cell Biochem, 1999, 146:531-542.
    7. Berezney R, Mortillaro MJ, Ma H, et al. The nuclear matrix: a structral milien for genomic function. Int Rev cytol, 1995, 162A:1-65.
    8. Keesee SK, Marchese J, Meneses A, et al. Human cervical cancer-associated nuclear matrix proteins. Exp cell Res,1998,244(1):14-25
    9. San chez-Carbayo M, Herreo E, Megias J, et al. Comparative Sensitivity of urinary CYFRA21-1, urinary bladder cancer antigen,tissue polypeptide antigen and NMP 22 to dettct bladder cancer.J Urol,1999,162:1951-1956.
    10. Qin-xian zhang, Yi Ding, zhuo Li, et al. Comparison of nuclear matrix proteins between gastric cancer and normal gastric tissue. World J Gastroenterol, 2004,10(12):1819-1821.
    11. Luftner D, possinger K. Nuclear matrix proteins as biomarkers for breast cancer. Expert Rev Mol Diagn, 2002,2(1):23-31.
    12. Tracey W, Adam M. Breast cancer : new technologies for risk assessment and diagnosis. Mol Diagn, 2003,7(1):49-55.
    13. Coulombe PA. The cellular and molecular biology of keratin : beginning anew era. Curr Opin cell Bid,1993,5:17-29.
    14.狄力,王念黎.细胞角蛋白34βE12在鉴别乳腺良、恶性病变中的意义.中华病理学杂志,2004,33(1):31~35.
    15. Aslan F, Demirkesen C, Cagatay P, et al. Expression of cytokeratin subtypes in intraepidermal malignancies : a guide for differentiation. J Cutan Pathol, 2006,33(8):531-538.
    16. Varma M, Morgan M, Amin MB, et al. High molecular weight cytokeratin antibody (clone34 beta E 12) :a sensitive marker for differentiation of high grade invasive urothelial carcinoma from prostate cancer. Histopathology.2003,42(2):167-172.
    17. Bustin SA, Gyselman VG. Williams NS, et al. Detection of cgtokeratins 19/20 and granglyl cyclase C in peripheral blood of colorectal cancer patients.Br J Cancer,1999,79:1813-1820.
    18. Deshapande V, Fernandez-del castillo C, Muzi KA, et al .Cytokeratin 19 is a powerful predictor of survival in pancreatic endocrine tumors. Am J Surg Pathol, 2004,28(9):1145-1153.
    19. Traweek ST, Liu J, Battifora H, et al. Keratin gene expression in nonepithelial tissues:detection with polymerase chain reaction. Am J pathol,1993,192:1111-1118.
    20. Ding SJ, Li Y, Tan YX, et al. From proteomic analysis to clinical Significance:over expression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis .Mol Cell Proteonics, 2004,3:73-81.
    21. Fu JII Y, KAGEYAMA Y, KAWA KAMI S, et al. Detection of disseminated urothelial cancer cells in peripheral venous blood by a cytokeratin 20-specific nested reverse transcripatase-polymerase chain reaction. Jpn J cancer Res, 1991,90:753-757.
    22.王敏慧,张树才,刘志东,等.肺癌患者外周血癌胚抗原、细胞角蛋白19 mRNA水平与肿瘤分期、近期疗效及预后的关系.结核病与胸部肿瘤,2005,4:267-271.
    23. Ram prassad VV, Nirmala NR, Kotian MS. Immunohistochemical evaluation of expression of cytokeratin 19 in different histological grades of leukoplakia and oral squamous cell carcinoma. Indian J Dent Res,2005,16(1):6-11.
    24. Jung R, Krugor W, Hosch S, et al. Spescificity of reverse transcripase polymerase chain reaction assays designed for the detection of circulating cancer cells influenced by cytokine in vitro .Br J Cancer, 1998,78(9):1194-1198.
    25. Tao L, Lefevre M, Ricci S, et al. Detection of occult carcinomatous diffusion in lymph nodes from head and neck squamous cell carcinoma using real-time RT-PCR detection of cytokeratin 19 mRNA. Br J Cancer, 2006,94(8):1164-1169.
    26.肖锦华,朱华燕,孙钧铭. ECLIA法测定血清细胞角蛋白19片段(CYFRA21-1)等肿瘤标志物及其临床应用,中国微循环,2005,9(5):339-342.
    27. el-Alumady O, Halim AB, el-Din AG. The clinical value of CYFRA21-1 in bladder cancer patients:Egyptian experience. Anticancer Res, 1999, 19(4A): 2603-2608
    28. Aihara T,Noguchi S,Ishikawa O, et al. Detection of pancreatic and gastric cancer cells in peripheral and portal blood by amplification of keratin 19 mRNA with reverse transcriptase polymerase chain reaction. Int J Cancer,1997,72(3):408-411.
    29. Xenidis N, Perraki M, Kafousi M, et al. Predictive and prognostic value ofperipheral blood cytokeratin-19 mRNA-positive cells detected by real–time polymerase chain reaction in node-negative breast cancer patients. J Clin Oncol, 2006,24(23):3756-3762.
    30. Stathopoulos EN, Sanidas E, Kafousi M, et al. Detection of ck-19 mrna–positive cells in the peripheral blood of breast cancer patients with nistologically and inmuno wist chamically hegative axillary lymph nodes. Annals of oncaogg.2005m16:240-246.
    31. Stathopoulou A, Vlachonikolis I,Mavroudis D, et al. Molecular Detection of cygokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer:evaluation of their prognostic significance. Journal of clinical oncology.2002,20(16):PP3404-3412.
    32. Yam CH, Fung TK, Poon RY . Cyclin A in cell cycle control and cancer.Ceu Mol Life Sci, 2002,59(8):1317-1326.
    33. Saarilahti K, Kajanti M, kouri M, et al. Cyclin A and Ki-67 expressing, as predictors for locoregional recurrence and outcome in laryngeal cancer patients treated with surgery and postoperative radiotherapy .Int J Radiat oncol Biol Pngs, 2003,57(4):986-995.
    34. Bahnassy AA, zekri AR, E1-Houssini S, et al. Cyclin A and Cyclin D1 as significant prognostic markers in colorectal cancer patients. BMC Gastroenterol, 2004, 4:22
    35. Michalides R, Van Tinteren H, Balkenende A, et al. Cyclin A is a prognostic indicator in early stage breast cancer with and without tamoxifen treatment. Br J Cancer, 2002,86(3):402-408.
    36. Husdal A, Bukholm G, Bukholm IR. The prognostic value and overexpression of Cyclin A is correlated with gene amplification of both Cyclin A and Cyclin E in breast cancer patient. Cell Oncol, 2006,28(3):107-116.
    37. De Benedetti A, Harris A. eIF4E express in tumors : its possible role in progression of malignancies. Int J Biochem Cell Biol,1999,31(1):59-72.
    38. Defatta RI, Turbat-Herrera BA, Li BD, et al. Elevated expression of eIF4E in contined early breast cancer lesions : possible role of hypoxia. Int J Cancer. 1999,80(4):516-522.
    39. Oridate N, Kim HJ, Xu X, et al. Growth inhibition of head and neck squamous carcinoma cells by small interfering RNAs targeting eIF4E or Cyclin D, alone or combined with cisplatin. Cancer Bio Ther,2005,4(3):318-323.
    40.陶磊,周梁,郑璐滢,等.原癌基因真核细胞翻译起始因子在喉鳞癌中表达的研究,临床耳鼻咽喉科杂志,2002,16(2):62-64.
    41. Liang Z, Lei T, LuYing Z, et al. The expression of proto-oncogene eIF4E in larg ngeal squamous cell carcinoma. Largngoscope. 2003,113 ( 7 ) : 1238-1243.
    42. Li BD, Mcdonald JC, Nassar R, et al. Clinical outcome in stage I toⅢbreast carcinoma and eIF4E over expression.Ann Surg, 1998,227(5):756-761
    43. Kato T, Kameoka S, Kimura T,et al.The combination of angiogenesis and blood vessel invasion as a prognostic indicator in primary breast cancer .Br J Cancer, 2003, 88(12):1900-1908
    44. Hyung WJ, Lee JH, Choi SH,et al. Prognostic impact of lymphatic and/or blood vessel invasion in patients with node-negative advanced gastric cancer .Ann Surg Oncol. 2002,9(6):562-7.
    45. Kessler R, Gasser B, Massard G,et al. Blood vessel invasion is a major prognostic factor in resected non-small cell lung cancer.Ann Thorac Surg.1996, 62(5):1489-93.
    46. Kato T, Kameoka S, Kimura T, et al.Angiogenesis and blood vessel invasion as prognostic indicator for node-negative breast cancer.Breast Cancer Res Treat,2001,65(3):203-215
    47. Kato T, Kameoka S, Kimura T,et al. Blood vessel invasion as a predictor of long-term survival for Japanese patients with breast cancer.Breast Cancer Res Treat. 2002, 73(1):1-12
    48. Brown L, Berse B,Jackman R,et al .Expression of VPF/VEGF and its receptor in breast cancer .Hum Pathol,1995,26(1):86
    49. Ichikura T,Tomimatsus S,Ohkara E,et al.Prognostic significance of the expression of vasvular endothelial growth factor(VEGF) and VEGF-C in gastric carcinoma.J Surg Oncol,2001,78(2):132-137.
    50. Werther K,Christensen IJ,Nielsen HJ .Prognostic impact of matched preoperative plasma and serum VEGF in patients with primary colorectal carcinoma.Br J Cancer,2002,86(3):417-423
    51. Sledge G.VEGF-targeting therapy for breast cancer.2005,10(4):319-323
    52. Persons DL, Bur MM,Lowery MC,et al.Fluorescene in situ hybridizationg(FISH) for detection of Her-2/Neu amplification in breast cancer:a multicentre portability study.Ann Clin Lab Sci,2000,30(1):41-48
    53. Berns EN,Liljn JG,Van putten WL,et al. C-myc amplification is a better prognostic factor than Her-2/Neu amplification in primary breast cancer.Cancer Res,1992,52(5):1107-1113
    54. Deming SL,Nass SJ,Dickson RB, et al.C-myc amplification in breast cancer:a meta-analysis of its occurrence and prognostic revelance.Br J Cancer,2000,83(12):1688-1695
    55. Park DI, Yun JW, Park JH, et al. Her-2/Neu amplification is an independentprognostic factor in gastric cancer .Dig Dis Sci,2006
    56. Nishio Y, Yamada Y, Kokubo H, et al.Prognostic significance of immunohistochemical expression of Her-2/Neu oncoprotein in bone metastatic protate cancer.Urology,2006,68(1):110-115
    57. Hecker TP, Gladson CL. Focal adhesion kinase in cancer. Front Biosci,2003, 8:s705-14.
    58. Weiner TM, Liu ET, Craven RJ, et al. Expression of focal adhesion kinase gene and invasive cancer. Lancet. 1993, 342(8878):1024-5.
    59. Irigoyen JP, Besser D, Nagamine Y. Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. J Biol Chem. 1997, 272(3):1904-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700