用户名: 密码: 验证码:
化学发泡麦秆粉/HDPE复合材料注塑制品机械性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为近年来环保型复合材料的研究热点,木/塑微孔发泡复合材料既具有一般木/塑复合材料的所有优点,又具有密度低、韧性好、隔音、隔热等优点,所以被广泛应用于建筑、汽车内饰甚至军事等领域。为了降低塑料原材料成本,保护我国森林资源,增加农业废弃物(麦秸秆)的利用率和附加值,提高木/塑复合材料制品的成型效率,结合区域经济的特点,本文研究了用高密度聚乙烯和经过简单电磨加工的麦秆粉共混制成的麦秆粉/HDPE复合材料用于常规注射成型的可能性。由于在常规注射成型中HDPE的加工温度多高于200℃,而麦秆粉分解的起始温度在170℃左右,所以用化学发泡法以提高麦秆粉/HDPE复合材料的流动性、降低复合材料的成型加工温度。
     本课题采用注塑成型的方法制备了发泡聚烯烃试样和麦秆粉/HDPE发泡复合材料试样。首先研究了化学发泡剂偶氮二甲酰胺(AC)的含量及形态(发泡剂粉末或发泡母料)对发泡聚烯烃(HDPE、LDPE、PP)试样密度、力学性能、动态力学性能及泡孔形态的影响;其次研究了麦秆粉含量及目数、硅烷偶联剂含量对麦秆粉/HDPE复合材料的加工流动性及热性能的影响;最后研究了AC含量、麦秆粉含量及目数、硅烷偶联剂含量对注塑成型的麦秆粉/HDPE发泡复合材料试样的密度、力学性能、动态力学性能及泡孔形态的影响。主要得出以下结论:
     1、就发泡聚烯烃而言,AC的形态对发泡聚烯烃材料的密度、力学性能及泡孔形态的影响很小;化学发泡对聚烯烃材料的力学性能并没有起到明显的改善作用,化学发泡使聚烯烃材料的拉伸性能和冲击性能下降、弯曲性能提高且当AC含量为2wt%时发泡聚烯烃试样的综合性能较好,发泡HDPE和发泡LDPE的储能模量与损耗模量比未发泡的低、而发泡PP的储能模量与损耗模量比未发泡的高;发泡聚烯烃试样的泡孔均匀性较差、发泡区域较窄且主要集中在试样的中心部分,泡孔形态及未发泡部分的断面形貌随基体树脂的不同差异较大。
     2、就流动性和热性能而言,随麦秆粉及硅烷偶联剂含量的增加,麦秆粉/HDPE复合材料的熔体流动速率(MFR)下降,但麦秆粉目数的增加(麦秆粉尺寸变小)使麦秆粉/HDPE复合材料的MFR增加;硅烷偶联剂含量及麦秆粉目数对麦秆粉/HDPE复合材料的熔融温度(Tm)和分解温度(Td)的影响很小
     3、就密度而言,随麦秆粉含量的增加,麦秆粉/HDPE发泡复合材料的密度增加且当麦秆粉含量为50wt%时密度增加18%;麦秆粉目数、硅烷偶联剂含量和AC含量对麦秆粉/HDPE发泡复合材料的密度影响很小
     4、就力学性能而言,发泡改性使麦秆粉/HDPE复合材料的拉伸强度下降、弯曲性能变化较小、冲击强度增加,并使其储能模量和损耗模量升高;随麦秆粉含量的增加,麦秆粉/HDPE发泡复合材料拉伸与冲击性能下降、弯曲性能增加,同时储能模量和损耗模量升高;硅烷偶联剂的处理使麦秆粉/HDPE发泡复合材料的力学性能增加,且当含量为6wt%时其综合力学性能最好,同时储能模量和损耗模量较高;随麦秆粉目数的增加,麦秆粉/HDPE发泡复合材料的力学性能先增加后降低,并且粒度为40-60目时其综合力学性能较好、60-80目时其储能模量和损耗模量较高。
     5、就微观形貌而言,通过SEM观察可知,硅烷的处理并不会使麦秆粉表面产生变化;随麦秆粉含量的增加,麦秆粉在HDPE中的分散性变差,发泡HDPE的泡孔变大均匀性变差;硅烷偶联剂的处理可以改善复合材料中麦秆粉纤维从HDPE中拔出的现象,同时硅烷偶联剂的处理改善复合材料中HDPE基体的发泡效果使泡孔的均匀性变好;麦秆粉目数的增加改善了HDPE对麦秆粉的包覆效果使两者的相容性变好,且当麦秆粉目数为40-60目时HDPE基体的发泡效果较好,泡孔较为均匀。
In recent years, as a research hotspot of environmentally friendly composite, the microcellular foaming wood/plastic composites not only has all the advantages of the general wood/plastic composites, but also has low density, high toughness, sound insulation, heat insulation and other advantages. So it is widely used in construction, car interior and even military fields. Combined with the characteristics of regional economy, the possibility of conventional injection molding for the wheat straw powder/HDPE composites which was made and processed by blending HDPE and wheat straw powder was studied. Through this research, the cost of raw materials can be reduced, the forest resources would be protected, the utilization and value-added of the agricultural waste (wheat straw) can be increased, and the molding efficiency of the wood/plastic composites also can be improved. Because the processing temperature of HDPE is higher than 200℃, while the decomposition temperature of wheat straw powder is around 170℃, the chemical blowing agent is used to improve the melt flow rate (MFR) of the wheat straw powder/HDPE composites and reduce the processing temperature of the wheat straw powder/HDPE composites.
     In this study, foaming polyolefin and wheat straw powder/HDPE foaming composites sample were prepared using the injection molding. Firstly, the influence of the content and form (powder vs. masterbatch) of chemical foaming agent azodicarbonamide (AC) on the density, mechanical properties, dynamic mechanical properties and cell morphology of foaming polyolefin (HDPE、LDPE、PP) were studied. Secondly, the influence of the content and mesh of wheat straw powder and the content of silane coupling agent on the melt flow rate and the thermal property of wheat straw powder/HDPE composites were studied. Finally, the influence of the content of AC, the content and mesh of wheat straw powder and the content of silane coupling agent on density, mechanical performance, dynamic mechanical properties and cell morphology of the wheat straw powder/HDPE foaming composites which made by injection molding were studied.The main results are as follows:
     1、For foaming polyolefin, the AC form has little effect on the density, mechanical properties and cell morphology of foaming polyolefin.Compared with the mechanical properties of pure polyolefin, the properties of foaming polyolefin show no significantly improvement. On the contrary, the tensile properties and impact properties of the foaming polyolefin are declined, but its flexural properties are increased. When AC content is 2wt%, the comprehensive performances of foaming polyolefin is better than others. Compared with the loss modulus of pure polyolefin, the storage modulus and the loss modulus of foaming LDPE and foaming HDPE is declined, while the storage modulus and the loss modulus of foaming PP is increased.The uniformity of the foaming polyolefin is bad, the foaming area is narrow and mainly concentrated in the center of the sample. With the matrix resin different, cell morphology and surface morphology of non-foaming part are quite different.
     2、For rheological property and thermal property of the wheat straw powder/HDPE composites, the melt flow rate (MFR) of the wheat straw powder/HDPE composites declined with the increasing of wheat straw powder content and silane coupling agent content. However, MFR of the wheat straw powder/HDPE composites increased with the increasing of mesh of wheat straw powder. The effect of silane coupling agent content and mesh of wheat straw powder on the melting temperature (Tm) and the decomposition temperature (Td) of wheat straw powder/HDPE composites are very limited.
     3、For density of the wheat straw powder/HDPE foaming composites, the density of the wheat straw powder/HDPE foaming composites increased with the increasing of wheat straw powder content. When wheat straw powder content is 50wt%, the density of the wheat straw powder/HDPE foaming composites is increased by 18%. The effect of silane coupling agent content, mesh of wheat straw powder and AC content on the density of the wheat straw powder/HDPE foaming composites are very limited.
     4、For mechanical properties of the wheat straw powder/HDPE foaming composites, compared with the mechanical properties of the foaming HDPE, the tensile strength of the wheat straw powder/HDPE foaming composites declined, small changes in the flexural properties, the impact strength increased. At the same time, the storage modulus and the loss modulus of it increased. With the increasing of wheat straw powder content, the tensile and impact properties of wheat straw powder/HDPE foaming composites decreased, the flexural properties increased. At the same time, the storage modulus and the loss modulus of it increased. Silane coupling agent treated to make the mechanical properties of the wheat straw powder/HDPE foaming composites increased. When content of silane coupling agent is 6wt%, its comprehensive mechanics performance is the best. Compared with the wheat straw powder/HDPE foaming composites without treated by silane coupling agent, the storage modulus and the loss modulus of the wheat straw powder/HDPE foaming composites with treated by silane coupling agent are increased. With the increasing of mesh of wheat straw powder, the mechanical properties of the wheat straw powder/HDPE foaming composites first increased and then decreased. When particle size of wheat straw powder is 40-60 mesh, the mechanical properties of wheat straw powder/HDPE foaming composites is the best. When particle size of wheat straw powder is 60-80 mesh, the storage modulus and the loss modulus of wheat straw powder/HDPE foaming composites are higher than others.
     5、For microstructure, SEM observation shows that the morphology of wheat straw powder does not change which treated by silane coupling agent. With the increasing of wheat straw powder content, the dispersion of wheat straw powder gets worse, the size of cell increases and the uniformity of the cell gets worse. The use of silane coupling agent can improve the phenomenon of wheat straw powder pull out from the HDPE and can improve the uniformity of the cell.With the increasing of particle size of wheat straw powder, the compatibility between wheat straw powder and HDPE is improved.When particle size of wheat straw powder is 40-60 mesh, the uniformity of cell is better than others.
引文
[1]曾广胜,徐成,江太君.发泡木塑复合材料发泡及成型工艺研究[J].包装学报,2011,3(4):27-32.
    [2]Faruk O, Bledzki AK, Matuana LM. Microcellular foamed wood-plastic composites by different processes:a review [J]. Macromolecular Materials and Engineering,2007,292(2): 113-127.
    [3]Morton J, Quarmley J, Rossi L. Current and emerging applications for natural and woodfiber-plastic composites [C]. Wisconsin, USA, The Seventh International Conference on Woodfiber-Plastic Composites,2003:3-6.
    [4]朱文利,周南桥,张志洪.开孔微孔塑料的研究进展[J].塑料,2004,33(2):53-56.
    [5]唐伟家,丁建生.塑木复合材料市场和发泡塑木复合材料[J].塑料制造,2007,152(3):25-29.
    [6]Schut JH. Foaming expands possibilities for wood-fiber composites [J]. Plastics Technology, 2001,47(7):58-67.
    [7]Bledzki AK, Zhang WY, Faruk O. Microfoaming of flax and wood fiber reinforced polypropylene composites [J]. Holz als Roh-und Werkstoff,2005,63(1):30-37.
    [8]Bledzki AK, Faruk O. Effects of the chemical foaming agents, injection parameters, and melt-flow index on the microstructure and mechanical properties of microcellular injection-molded wood-fiber/polypropylene composites [J]. Journal of Applied Polymer Science,2005,97(3):1090-1096.
    [9]Bledzki AK, Faruk O. Microcellular wood fiber reinforced PP composites:cell morphology surface roughness, impact, and odor properties [J]. Journal of Cellular Plastics,2005,41(6): 539-550.
    [10]Bledzki AK, Faruk O. Microcellular injection molded wood fiber-PP composites:Part I-effect of chemical foaming agent content on cell morphology and physico-mechanical properties [J]. Journal of Cellular Plastics,2006,42(1):63-76.
    [11]Bledzki AK, Faruk O. Microcellular injection molded wood fiber-PP composites:Part II-effect of wood fiber length and contention cell morphology and physico-mechanical properties [J]. Journal of Cellular Plastics,2006,42(1):77-88.
    [12]Guo G, Lee YH, Rizvi GM, et al. Influence of wood fiber size on extrusion foaming of wood fiber/HDPE composites [J]. Journal of Applied Polymer Science,2008,107(6):3505-3011.
    [13]Matuana LM, Mengeloglu F. Microcellular foaming of impact-modified rigid PVC/wood-flour composites [J]. Journal of Vinyl and Additive Technology,2001,7(2): 67-75.
    [14]Li QX, Matuana LM. Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents [J]. Journal of Applied Polymer Science,2003,88(14): 3139-3150.
    [15]姚祝平.微发泡硬质PVC/木粉体系型材的挤出[J].上海塑料,2002,(3):27-29.
    [16]高巧春.稻壳/聚丙烯-低密度聚乙烯微孔发泡复合材料的研究[D].[硕十学位论文].淄博:山东理工大学,2009.
    [17]张军.聚丙烯(PP)/木粉复合材料注塑发泡成型的研究[D].[硕士学位论文].北京:北京化工大学,2010.
    [18]张军,何继敏.木塑复合材料注射发泡成型技术的研究[J].工程塑料应用,2009,37(4):88-91.
    [19]张桂兰,王正.生物质纤维/塑料复合材料微孔发泡技术研究概述[J].中国人造板材,2006,13(12):8-11.
    [20]向帮龙,管蓉,杨世芳.微孔发泡机理研究进展[J].高分子通报,2005,(6):7-15.
    [21]傅志红,彭玉成,王洪.微孔塑料气泡成核的聚合物刷子模型[J].杭州工学院学报,2002,16(6):66-72.
    [22]吴舜英,徐敬一.泡沫塑料成型[M].北京:化学工业出版社.1988.
    [23]Guo G, Rizvi GM, Park CB, et al. Critical processing temperature in the manufacture of fine-celled plastic/wood-fiber composite foams [J]. Journal of Applied Polymer Science, 2004,91(1):621-629.
    [24]张纯.高品质化学发泡聚烯烃材料的制备及其断裂行为的研究[D].[博士学位论文].上海:上海大学,2009.
    [25]刘嘉.木塑复合材料在军品领域应用展望[N].中国建材报,2011-10-24(B02).
    [26]唐伟家,李茂彦,吴汾.世界塑木复合材料市场动向和开发建议[J].中外能源,2007,12(6):15-18.
    [27]冯孝中,李亚东.高分子材料[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [28]桂一支.高分子用有机助剂[M].北京:人民教育出版社,1983.
    [29]杨文.AC发泡剂市场消费展望[J].市场纵览,2003,(5):40-41.
    [30]黄锐,曾邦录.塑料成型工艺学[M].北京:中国轻工业出版社,1997.
    [31]郭娟.发泡聚烯烃母粒的研制及应用[M].北京:化学工业出版社,2009.
    [32]杨慧丽,徐俊,姚占海.聚乙烯泡沫中AC发泡剂的研究[J].中国塑料,1998,12(1):63-67.
    [33]何曼君,陈维孝,董西侠等.高分子物理[M].上海:复旦大学出版社,2000.
    [34]朱诚身.聚合物结构分析[M].北京:科学出版社,2004.
    [35]Rodriguez-Perez MA, De-saja JA. Dynamic mechanical analysis applied to the characterization of closed cell polyolefin foams [J]. Polymer Testing,2000,19(7):831-848.
    [36]董玲玲,牛涛,李德莹等.半纤维素和木质素去除对纤维素糖化过程的影响[J].农产品加工·学刊,2009,(4):31-35.
    [37]李新功,吴义强,郑霞等.偶联剂在改善天然植物纤维/塑料界面相容性的应用[J].高分子通报,2010,(1):7-10.
    [38]付文,王丽,刘安华.木塑复合材料改性研究进展[J].高分子通报,2010,(3):61-65.
    [39]Mai C,Militz H. Modification of wood with silicon compounds treatment systems based on organic silicon compounds-a review [J]. Wood Science and Technology,2004,37(7): 453-461.
    [40]Abdelmouleh M, Boufi S, Belgacem MN, et al. Modification of cellulose fibers with functionalized silanes:Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites [J]. Journal of Applied Polymer Science.2005,98(3): 974-984.
    [41]Matuana LM, Woodhams RT, Balatinecz JJ, et al. Influence of interactions on the properties of PVC/cellulosic fiber composites [J]. Polymer Composites,1998,19(4):446-455.
    [42]Abdelmouleh M, Boufi S, Belgacem MN, et al. Short natural-fiber reinforced polyethylene and natural rubber composites:effect of silane coupling agents and fibers loading [J]. Composites Science and Technology,2007,67(7-8):1627-1639.
    [43]王燕,张保利,朱柯等.丙烯酸有机硅共聚物乳液聚合及性能研究[J].试验研究,2000,(10):2-5.
    [44]谢刚,历荣,崔丹等.硅烷交联聚丙烯的研究Ⅰ-引发剂用量、接枝剂用量和反应温度对凝胶率和熔体流动速率的影响[J].黑龙江大学自然科学学报,2002,19(1):99-102.
    [45]Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, et al. Chemical modification of henequen fibers with an organosilane coupling agent [J]. Composites Part B:Engineering,1999,30(3): 321-331.
    [46]彭思来.麦秸/聚乙烯复合材料的制备与性能的研究[D].[硕士学位论文].淄博:山东理工大学,2007.
    [47]Rizvi G, Matuana LM, Park CB. Foaming of PS/wood fiber composites using moisture as a blowing agent [J]. Polymer Engineering and Science,2000,40(10):2124-2132.
    [48]李军.硬质PVC/木粉复合材料研制及其性能的研究[D].[硕士学位论文].北京:北京化工大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700