用户名: 密码: 验证码:
石膏基吸声材料结构设计与性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在治理环境噪声污染中,利用吸声材料进行吸声降噪处理是一种重要的措施。要求使用的吸声材料不仅具有良好的高频吸声性能,还应该具有较好的中低频吸声性能,同时要考虑材料的力学性能、环保性以及廉价性。吸声材料已成为国内外相关领域的研究重点。
     通过对各类吸声原材料与吸声结构的吸声机理分析,选择耐久性好、强度较高、价格低廉、具有较好中低频吸声性能的玻璃纤维-石膏体系作为吸声材料体系,探索吸声材料的组成与制备工艺。采用瑞利创立的经典吸声理论,通过声阻抗率的变化规律建立圆管吸声理论模型。充分利用理论成果更好地指导实验,而实验反过来可以对理论进行验证和修正。对多孔吸声材料的声学特性以及吸声机制进行了初步探讨。
     材料制备中,利用高强石膏作为原料,内掺玻璃纤维,提高材料的吸声性能、抗折强度以及耐久性;采用硅酸盐水泥来增强石膏基吸声材料的抗水化性能和强度;利用发气技术形成多孔吸声材料所需要的孔形及合理的显微结构,采用柠檬酸控制材料的凝固时间,使发气速度与料浆的凝结速度相适应,以期形成适宜的多孔结构,同时给工程施工带来便利。通过对发气剂含量、玻璃纤维含量、水灰比等因素的控制,使材料内部形成相互连通、分布均匀的微孔,以期提高多孔性吸声材料的吸声性能。通过对材料的厚度、孔隙率、孔径大小等因素的研究,考察它们对材料吸声性能的影响程度。
     采用驻波管法测试材料的垂直吸声系数。研究结果表明,石膏基复合吸声材料具有较好的中低频吸声性能,特别在125Hz~500Hz范围内吸声性能突出。材料在六个频率下的平均吸声系数为0.58,降噪系数达0.6,在125Hz下吸声系数高达0.3以上。当孔隙率在60%~70%、孔径大小在30μm~40μm时,材料具有较佳的吸声性能。玻璃纤维经过热、酸处理,使材料的强度提高20%。加入0.2%的柠檬酸可以延长石膏凝固时间。
In the environmental noise pollution, the use of sound absorption materialsprocessing is an important measure. The materials that being put into use not only hasthe fine high frequency sound absorption performance, also should have fairly goodmiddle-low frequency sound absorption function, we should also consider themechanical properties of materials, environmental protection, as well as price. Sound-absorbing materials have become a focus of research in related fields at home andabroad.
     Analysis of all the raw materials and acoustic absorption mechanism ofstructural analysis, choosing good durability, high-intensity, low-prices, better lowfrequency sound absorption properties of glass fiber-gypsum system as asound-absorbing material system. Preparation of sound-absorbing material to explorethe best materials and components. Adopt the classics acoustic absorption theory thatRayleigh founds, establishing acoustic absorption theory model by the orderlinessthat the change sound impedance. Make full use of theory to guide the experiment,and the experimental validation of the theory that could turn. The acousticcharacteristics of the porous materials and acoustic absorption mechanism for apreliminary discussion.
     Make use of high-strength gypsum as a major strong gel raw material. Withindoped glass fiber, increase the absorption properties of materials, flexural strengthand durability; Portland cement is used to enhance the material of hydrationresistance and strength. Vesicant technologies using porous materials needed hole andreasonable microstructure. The citric acid control time to make the slurry gascondensation pace with the speed of adaptation, and the porous structure with a viewto developing appropriate, to facilitate the construction; Factors of the content offiber, gas former, water-gypsum ratio and thickness were controlled, and the materialforming the internal connectivity, uniform distribution of micro-hole, with a view toenhancing the absorption properties of porous sound-absorbing material; Effects of the material thickness, porosity, pore size were investigated, and the influenceddegree was reviewed about sound absorption performance, thus a more directunderstanding of the acoustic characteristics of materials.
     The sound absorption coefficient of the material was tested by standing wavetube method. The results show that gypsum composite materials with betterlow-frequency acoustic absorption properties, especially from 125Hz to 500Hz werehighlighted. The vertical wave method tests the absorption coefficient. The resultshows that the average absorption coefficient for the six frequencies at 0.58, and thenoise reduction coefficient of the material at 0.6, and the absorption coefficient was ashigh as 0.3 at 125Hz. The material has better sound absorption properties when theporosity from 60% to 70% and the pore size from 300μm to 400μm. The material ofstrength increase 20% when glass fiber was treated with heat and acid. Gypsumclotting time was added with citric acid of 0.2%.
引文
[1] 李耀中.噪声控制技术.北京:化学工业出版社,2003
    [2] 刘振辉等.纤维吸声材料吸声性能的实验研究.昆明工学院学报,1993.18(1):30~39
    [3] 田英良等.生产泡沫玻璃的关键工艺及质量控制.新型建筑材科,2000.29~34
    [4] 程桂萍.多孔铝的吸声性能.东南大学学报,1998.28(6):169~174
    [5] Lu T J. Sound absorption in metallic foams. Journal of Applied Physics, 1999. 85 (11): 75~84
    [6] Zhang Z M and Gu X T. The theoretical and application study on a double layer microperforated sound absorption structure. Journal of Sound and Vibration, 1998.215(3): 399~405
    [7] 苑金生.世界各地的陶瓷.装饰装修天地,2001.7:47~51
    [8] 周海燕.新型声屏障材料泡沫陶瓷.环境保护科学,2002.8(28):42~44
    [9] 高红武.噪声控制工程.武汉:武汉理工大学出版社,2003
    [10] 盛美萍,王敏庆,孙进才.噪声与振动控制技术基础.北京:科学出版社,2001
    [11] 张帆,姚德生.探讨吸声材料在工程应用中吸声性能的影响因素.噪声与振动控制,2005.4:64~67
    [12] Claudio Braccesi,Andrea Bracciali. Least Squares Estimation of Properties of Sound Absorbing Materials through Acoustical Measurements. Applied Acoustics,1998. 54(1): 59~70
    [13] Brennan M J. Acoustic properties of rigid-frame porous material—an engineering perspective. Applied acoustics,2001. 793~811
    [14] 洪宗辉主编.环境噪声控制工程.北京:高等教育出版社,2002.118~144
    [15] 周洪.高分子微粒吸声材料的制备、吸声特性及计算机仿真研究:[硕士学位论文].四川:四川大学,2004
    [16] 段金明,周敬宣.国外道路声屏障结构形式的研究进展.交通环保,2005.26(3):62~64
    [17] 潘钧.泡沫玻璃制品的吸声效果和应用.地下工程与隧道,1993.1.27~30
    [18] 柳华实,葛曷一,王冬至等.玻璃纤维表面处理对玻璃纤维/石膏复合材料力学性能的影响.山东建材,2004.5:34~36
    [19] 马大猷.现代声学理论基础.北京:科学出版社,2004
    [20] Zhen kai Xie. Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification. Materials Science and Engineering, 2004, (386): 390~395
    [21] Han Seung Yang, Dae-Jun Kim, Hyun-Joong Kim. Rice straw-wood particle composite for sound absorbing wooden construction materials. Bioresource Technology, 2003.86:117~121
    [22] Sgard F C. On the use of perforations to improve the sound absorption of porous materials. Applied Acoustics, 2005. 66:625~651
    [23] Boutin C, Royer P and Auriault J L. Acoustic absorption of porous sufficing with dual porosity. Solids structures, 1998. 35:34~35
    [24] Voronina N. An Empirical Model elastic Porous Materials. Applied Acoustics,1998. 55: 67~83
    [25] 孙蓬,王晓东.a型半水石膏的研究与发展.丹东纺专学报,2004.1l(3):36~40
    [26] 韩跃新.石膏的应用及其深加工研究.矿产保护与利用,1998.1:10~13
    [27] [章红梅,岳渠德,滕少波.纤维石膏板应用于外墙的材料耐久性能研究.青岛建筑工程学院学报,2004.25(3):17~21
    [28] 钱军民,李旭祥.聚合物—无机纤维复合泡沫材料吸声性能的研究.高分子材料科学与工程,2001.7:145~148
    [29] 张德.MPB的研制与应用.新型建筑材料,1996.8:25~28
    [30] 姜肇中,邹宁宇,叶鼎铨.玻璃纤维应用技术.北京:中国石化出版社,2003
    [31] 黄学辉,曹雪枫,吴少鹏等.聚丙烯纤维增强的水泥基吸声材料的研制.武汉理工大学学报(交通科学与工程版),2004.28(4):530~532
    [32] 李先友等.缓凝剂对石膏作用效果的影响.重庆建筑大学学报,2004.26(4):92~95
    [33] 彭家惠等.缓凝剂对建筑石膏结构与强度的负面影响.哈尔滨工业大学学报,2004.36(9):1177~1181
    [34] 沈威,黄文熙,闵盘荣等.水泥工艺学.武汉:武汉工业大学出版社,1990
    [35] 蔡正泳,王足献.正交设计在混凝土中的应用.北京:中国建筑工业出版社,1985
    [36] 刘培生.多孔材料引论.北京:清华大学出版社,2004
    [37] 黄学辉,尚福亮,薛红亮等.公路隧道降噪用吸声材料的研制.武汉理工大学学报,2003.25(4):27~30
    [38] 伍洪标.无机非金属材料实验.北京:化学工业出版社,2002
    [39] 刘惠玲.环境噪声控制.哈尔滨:哈尔滨工业大学出版社,2002
    [40] Narang P P. Material parameter selection in polyester fiber insulation for sound transmission and absorption. Applied Acoustics, 1995. 45:335~358
    [41] Jie Jun Wu, Cheng Gong Li, Dian bin Wang et al. Damping and sound absorption properties of particle reinforced AI matrix composite foams. Composites Science and Technology, 2003. 63:569~574
    [42] 洪宗辉主编.环境噪声控制工程.北京:高等教育出版社,2002:118~144
    [43] 贺尔铭,盛美萍,刘元镛等.微穿孔复合材料夹层板吸声性能测试研究.机械科学与技术,2001.20(3):424~427
    [44] Takuya Fujimoto. Kyoji Fujiwara.Analysis of sound absorption by periodic structures using a hybrid-boundary element/mode expansion method. Applied Acoustics, 2003. 64:525-532
    [45] Peat K S and Rathi K LA. Finite element analysis of the convected acoustic wave motion in dissipative silencers. Journal of Sound and Vibration, 1995. 184(3): 529-545
    [46] Furstoss M, Themail D and Galland M A. Surface Impedance Control For Sound Absorption: Direct and Hybrid Passive/Active Strategies. Journal of Sound and Vibration,1997. 203(2): 219~236
    [47] D.Takahashi. A new method for predicting the sound absorption of perforated absorber systems: Applied Acoustics,1997. 51(1): 71~84
    [48] 张沛商.噪声控制工程.北京:经济学院出版社,1991
    [49] Tam C K W and Kurbatshii K A. A numberical and experimental investigation of the dissipation mechanisms of resonant acoustic liners. Journal of Sound and Vibration, 2001. 245(3): 545~557
    [50] 薛滔菁.玻璃纤维石膏板的生产及特性.建筑石膏与胶凝材料,1995.12:44~45
    [51] 阎利,万朝均,王绍东等.聚丙烯纤维增强的混凝土概述.新型建筑材料,2003.1:52~54
    [52] 林宗寿,李凝芳,赵修建等.无机非金属材料工学.武汉:武汉工业大学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700