用户名: 密码: 验证码:
硅基稀土掺杂氧化物半导体薄膜电致发光器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,硅是间接带隙半导体,其极低的发光效率严重限制了硅基光电集成的发展。近二十年来,人们提出了多种途径实现硅基发光。其中,硅基稀土掺杂半导体薄膜的电致发光是一条重要的途径,这是由于稀土发光具有发光谱带窄、波段分布区域宽、光色纯度高且几乎不受外部环境影响等优点。氧化物半导体中稀土离子的固溶度高,且其富氧环境有利于稀土离子的光学跃迁。此外,氧化物半导体薄膜的制备工艺可与集成电路工艺相兼容。因此,若能实现硅基稀土掺杂氧化物半导体薄膜的电致发光,将为硅基发光器件的发展提供新的途径。本文详细研究了硅基稀土掺杂ZnO和TiO2薄膜器件的电致发光及其物理机制,取得的主要创新成果如下:
     (1)利用射频溅射法在重掺硼硅(p+-Si)上沉积掺Er的ZnO(ZnO:Er)薄膜,制备出基于ZnO:Er/p+-Si异质结的器件。该器件在不低于6V的直流偏压驱动下,产生源于Er3+离子的-1.54μm电致发光,同时伴有源于ZnO基体的近带边复合紫外发光和缺陷态可见发光。研究表明,掺Er量为0.9at%的器件的-1.54μm电致发光比掺Er量为1.7at%的器件更强,表现出Er浓度淬灭效应。分析指出,与Er3+离子相关的-1.54μm电致发光是由ZnO基体中的缺陷辅助间接复合传递给ZnO晶粒中Er3+离子的能量所激发的。
     (2)利用射频溅射法在硅衬底上制备了基于MgxZn1-xO/ZnO:RE异质结的器件。分别采用ZnO:Eu、ZnO:Er和ZnO:Tm薄膜作为发光层,实现了红、绿和蓝三基色电致发光,其启动电压仅为5V左右。此外,分别利用ZnO:Nd和ZnO:Er薄膜作为发光层还实现了中心波长为-0.91gm、-1.09μm和-1.54μm的近红外电致发光。研究发现,器件发光是由注入至MgxZn1-xO势垒层中的空穴被电场加速成为“热空穴”,随后进入ZnO:RE层中直接碰撞激发RE3+离子而产生的。该器件所采用的将热载流子产生层与碰撞激发稀土离子发光层在空间上加以分离的设计思路可应用于开发低电压驱动稀土掺杂半导体薄膜电致发光器件。
     (3)利用射频溅射法在p+-Si上沉积掺Er的TiO2(TiO2:Er)薄膜,制备出基于TiO2:Er/p+-Si异质结的发光器件。在不低于5.5V的直流电压驱动下,器件产生源于Er3+离子的可见光区(-522、553、564和663nm)以及红外光区-1.54μm的电致发光。研究发现,在Ti02基体中有足够多的氧空位对激发Er3+离子相关的电致发光至关重要。器件的与Er3+离子相关的电致发光是由Ti02基体中与氧空位相关的束缚激子复合向Er3+离子传递的能量所激发的。
     (4)利用射频溅射法在p+-Si上沉积A1和Er共掺的TiO2(TiO2:Al,Er)薄膜,制备出基于TiO2:(Al,Er)/p+-si异质结的电致发光器件。与基于TiO2:Er/p+-Si异质结的器件相比,共掺Al的器件在可见光区的与Er3+离子相关的电致发光被显著抑制,而在红外光区-1.54μm的电致发光得到增强。研究表明,掺Al并未明显改变Ti02基体中的氧空位浓度以及掺入Ti02晶粒中的Er3+离子浓度,即:Al的共掺并未明显改变与Ti02基体向Er3+离子的能量传递相关的供体和受体的数量。因此,如上所述的对Er3+离子电致发光的调控与A1的共掺对Ti02中Er3+离子周围晶体场的影响有关。
     (5)利用射频溅射法在p+-Si上沉积掺Nd的TiO2(TiO2:Nd)薄膜,制备出基于TiO2:Nd/p+-Si异质结的发光器件。在不低于5V的直流电压驱动下,器件产生源于Nd3+离子的~0.91、1.09和1.37μm的红外电致发光。研究发现,基于单一锐钛矿相的TiO2:Nd(1.1%)薄膜的异质结器件产生较强的源于TiO2基体的可见发光和相当弱的与Nd3+离子相关的红外发光;而基于锐钛矿和金红石两相共存的TiO2:Nd(2.0%)薄膜的异质结器件的与Nd3+离子相关的红外电致发光得到了显著增强,源于Ti02基体的可见发光被淬灭。实验证实金红石相Ti02中的Nd3+离子不具有光学活性,与锐钛矿Ti02中的Nd3+离子截然相反。分析认为锐钛矿/金红石Ti02两相间的界面态是向锐钛矿Ti02中的Nd3+离子传递能量的有效媒介,它们显著增强了器件的与Nd3+离子相关的红外电致发光
It is well known that the low luminescence efficiency of silicon (Si) due to its indirect bandgap in nature hinders the development of Si-based optoelectronic integration. In the past two decades, a variety of stratergies have been presented to achieve Si-based light-emitting devices (LEDs). The electroluminescence (EL) from Si-based rare-earth (RE) doped semiconductor devices has received intensive attention. The RE-related luminescences feature narrow linewidths, wide spectral range and weak influence from external environment. Oxide semiconductors have the advantages of high RE solubility and the natural oxygen inclusion which is favorable for optical transition in RE3+ions. Moveover, the preparative processes for oxide semiconductor film are compatible with Si integrated circuit manufacturation. In this context, if the EL from Si-based RE-doped oxide semiconductor thin film devices is achieved, it will offer a new strategy to develop Si-based optoelectronic devices. In this dissertation, the EL performances and related physical mechanisms for Si-based LEDs based on RE-doped ZnO or TiO2films have been intensively investigated. The primary achievements are described as follows.
     (1) The LEDs based on the ZnO:Er/p+-Si heterostructures have been prepared, in which the Er-doped ZnO films are deposited by radio frequency (RF) sputtering. At a bias voltage not less than6V, the Er-related~1.54μm EL can be enabled, together with the ultraviolet emission arisen from near-band-edge recombination and visible emissions related to defects in the ZnO host. The~1.54μm EL from the ZnO:Er(0.9%)/p+-Si heterostructured device is stronger than the device using ZnO:Er(1.7%) film, showing the Er-concentration quenching effect. The Er-related~1.54μm EL is triggered by transfer of the energy released from the defect-assisted indirect recombination in the ZnO host to the incorporated Er3+ions.
     (2) The LEDs based on the MgxZn1-xO/ZnO:RE heterostructures on Si substrates have been achieved by RF sputtering. Remarkable red, green and blue EL are realized from the devices using the ZnO:Eu, ZnO:Er and ZnO:Tm films as the light-emitting layers, respectively. The threshold voltages are~5V. Moreover, the infrared (IR)(~0.91μm,~1.09μm and~1.54μm) EL can be achieved by using the ZnO:Nd and ZnO:Er films, respectively. The holes injected into the MgxZn1-xO barrier layer are accelerated by the electric field thus becoming the'hot holes', then they enter into the ZnO:RE film to directly impact-excite the RE3+ions, leading to the characteristic emissions. The strategy of spatially separating the hot-carrier generation and impact excitation of RE3+ions is viable to develop low-voltage driven EL devices based on the RE-doped semiconductor films.
     (3) The LEDs based on the TiO2:Er/p+-Si heterostructures have been prepared, in which the Er-doped TiO2films are deposited by RF sputtering. The Er-related visible (-522,553,564and663nm) and IR (~1.54μm) EL can be enabled at a bias voltage not less than5.5V. The existence of sufficient oxygen vacancies in TiO2host is critical for the Er-related EL. The energy transfer from the recombination of the trapped-excitons related to oxygen vacancies in TiO2host to Er3+ions triggers the Er-related EL.
     (4) The LEDs based on the TiO2:(Al,Er)/p+-Si heterostructures have been prepared, in which the (Al,Er) co-doped TiO2films are deposited by RF sputtering. In comparison with the TiO2:Er/p+-Si heterostructured device, the TiO2:(Al,Er)/p+-Si heterostructured device features the Er-related EL with the substantially suppressed visible emissions and the enhanced~1.54μm IR emission. The Al co-doping is proved not to substantially affect the amounts of the oxygen vacancies in TiO2and the Er3+ions doped into TiO2grains. That is, the quantities of both the sensitizers and activators in the energy transfer from TiO2to Er3+ions are almost consistent. Thus the above-mentioned engineering of Er-related EL is tentatively ascribed to the modification of the crystal field around Er3+ions by the Al co-doping in TiO2.
     (5) The LEDs based on the TiO2:Nd/p+-Si heterostructures have been demonstrated, in which the Nd-doped TiO2film are deposited by RF sputtering. The Nd-related IR EL (-0.91,1.09and1.37μm) can be enabled at a bias voltage not less than5V. The device using the TiO2:Nd(1.1%) film of single anatase phase exhibits considerably weak Nd-related EL accompanied with relatively stronger visible emissions from the TiO2host itself. While, the device with the TiO2:Nd(2.0%) film in which the TiO2host coexists with anatase and rutile phases features only pronounced Nd-related EL. It is proved the Nd3+ions in rutile TiO2are not luminescent, quite other than those in anatase TiO2. The anatase/rutile interface states are believed to be the effective mediators in the energy transfer from anatase TiO2to Nd3+ions, leading to the pronounced Nd-related IR EL.
引文
[1]F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature,2010,463:1061-1065.
    [2]A. Kanjilal, L. Rebohle, M. Voelskow, W. Skorupa, and M. Helm. Enhanced blue-violet emission by inverse energy transfer to the Ge-related oxygen deficiency centers via Er3+ ions in metal-oxide semiconductor structures. Applied Physics Letters,2009,94:051903.
    [3]A. Kanjilal, L. Rebohle, N. K. Baddela, S. Zhou, M. Voeolskow, W. Skorupa, and M. Helm. Probing the impact of microstructure on the electroluminescence properties of Ge-nanocrystal enriched Er-doped SiO2 layers. Physical Review B,2009,79:161302(R).
    [4]S. Ossicini, L. Pavesi, and F. Priolo. Light emitting silicon for microphotonics. STMP, Springer-Verlag Berlin Heidelberg,2003,194:179-226.
    [5]C. C. Baker, J. heikenfeld, Z. Yu, and A. J. Steckl. Optical amplification and electroluminescence at 1.54 μm in Er-doped zinc silicate germinate on silicon. Applied Physics Letters,2004,84(9):1462-1464.
    [6]T. Gregorkiewicz, B. A. Andreev, M. Forcales, I. Izeddin, W. Jantsch, Z. F. Krasil'nik, D. I. Kryzhkov, V. P. Kuznetsov, and J. M. Zavada. Er-doped electro-optical memory element for 1.5-μm silicon photonics. IEEE Journal of Selected Topics in Quantum Electronics,2006, 12(6):1539-1544.
    [7]D. Timmerman, and T. Gregorkiewicz. Space-separated quantum cutting in differently prepared solid-state dispersions of Si nanocrystals and Er3+ ions in SiO2. Materials Science and Engineering B,2009,159-160:87-89.
    [8]B. A. Andreev, Z. F. Krasinik, D. I. Kryzhkov, V. P. Kuznetsov, T. Gregorkiewicz, and W. Jantsch.1.54 μm Si:Er light emitting diode with memory function. Applied Physics Letters, 2006,88:201101.
    [9]B. A. Andreev, Z. F. Krasinik, D. I. Kryzhkov, K. E. Kudryavtsev, and V. P. Kuznetsov. The features of electro-optical memory effect for 1.54 μm electroluminescence of an Er doped Si diode. Physica B,2009,404:4597-4600.
    [10]H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider.1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy. Applied Physics Letters,1985,46:381-383.
    [11]A. J. Kenyon. Erbium in silicon. Semiconductor Science and Technology,2005,20: R65-R84.
    [12]S. Minissale, N. Q. Vinh, W. de Boer, M. S. Bresler, and T. Gregorkiewicz. Microscopic evidence for the role of oxygen in luminescence of Er3+ ions in Si:Two-color and pump-probe spectroscopy. Physcal Review B,2008,78:035313.
    [13]A. Kanjilal, L. Rebohle, W. Skorupa, and M. Helm. Correlation between the microstructure and electroluminescence properties of Er-doped metal-oxide-semiconductor structures. Applied Physics Letters,2009,94:101916.
    [14]I. Izeddin, M. A. J. Klik, N. Q. Vinh, M. S. Bresler, and T. Gregorkiewicz. Donor-state-enabling Er-related luminescence in silicon:direct identification and resonant excitation. Physical Review Letters,2007,99:077401.
    [15]S. Minissale, N. Q. Vinh, and T. Gregorkiewicz. On relation between the 1.5 μm Er-related emission and 9 μm vibrational modes of oxygen in silicon. Physica E,2009,41:1052-1054.
    [16]N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, and A. Polman. Energy backtransfer and infrared photoresponse in erbium-doped silicon p-n diodes. Journal of Applied Physics, 2000,88(9):5381-5387.
    [17]S. Peucnal, J. M. Sun, W. Skorupa, and M. Helm. Switchable two-color electroluminescence based on a Si metal-oxide-semiconductor structure doped with Eu. Applied Physics Letters, 2007,90:181121.
    [18]Y. Chen, G. Z. Ran, L. Dai, B. R. Zhang, G. G. Qin, Z. C. Ma, and W. H. Zong. Room-temperature 1.54-μm electroluminescence from the Au/nanometer (SiO2:Er/Si/SiO2:Er)/n+-Si structure, Applied Physics Letters,2002,80(14):2496-2498.
    [19]M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman. Forster transfer and the local optical density of states in erbium-doped silica. Physical Review B,2005,71:115102.
    [20]M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno. Si-based materials and devices for light emission in silicon. Physica E,2003,16: 547-553.
    [21]M. E. Castagna, S. Coffa, M. Monaco, A. Messina, L. Caristia, S. Lorenti, and A. Messina. High efficiency light emitting devices in silicon. Materials Science and Engineering B,2003, 105:83-90.
    [22]J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel. Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices. Journal of Applied Physics,2005,97:123513.
    [23]J. M. Sun, L. Rebohle, S. Prucnal, M. Helm, and W. Skorupa. Giant stability enhancement of rare-earth inplanted SiO2 light emitting devices by an additional SiON protection layer. Applied Physics Letters,2008,92:071103.
    [24]J. M. Sun, S. Prucnal, W. Skorupa, T. Dekorsy, A. Muchlich, and M. Helm. Electroluminescence properties of the Gd3+ ultraviolet luminescent centers in SiO2 gate oxide layers. Journal of Applied Physics,2006,99:103102.
    [25]J. M. Sun, S. Prucnal, W. Skorupa, M. Helm, L. Rebohle, and T. Gebel. Increase of blue electroluminescence from Ce-doped SiO2 layers through sensitization by Gd3+ ions. Applied Physics Letters,2006,89:091908.
    [26]N. Daldosso, and L. Pavesi. Nanosilicon photonics. Laser & Photonics Reviews,2009,3(6): 508-534.
    [27]A. Pitani, D. Navarro-Urrios, N. Prtljaga, N. Daldosso, F. Gourbilleau, R. Rizk, B. Garrido, and L. Pavesi. Energy transfer mechanism and Auger effect in Er3+ coupled silicon nanopartical samples. Journal of Applied Physics,2010,108:053518.
    [28]Y. Lebour, D. Navarro-Urrios, P. Pellegrino, G Sarrabayrouse, L. Pavesi, and B. Garrido. Optical amplification studies in Si nanocrystals-based waveguides prepared by ion-beam synthesis. Physica E,2009,41:1044-1047.
    [29]D. Navarro-Urrios, A. Pitani, N. Daldosso, F. Gourbilleau, L. Khomenkova, R. Rizk, and L. Pavesi. Assessment of the main material issues for achieving an Er coupled to silicon nanoclusters infrared amplifier. Physica E,2009,41:1029-1033.
    [30]M. Fujii, K. Imakita, K. Watanabe, and S. Hayashi. Coexistence of two different energy transfer peocesses in SiO2 films containing Si nanocrystals and Er. Journal of Applied Physics,2004,95(1):272-280.
    [31]K. Imakita, M. Fujii, and S. Hayashi. The mechanism of energy transfer from Si nanocrystals to Er ions in SiO2. The European Physical Journal D,2005,34:161-163.
    [32]M. Wojdak, M. Klik, M. Forcales, O. B. Gusev, T. Gregokiewicz, and F. Iacona. Sensitization of Er luminescence by Si nanoclusters. Physical Review B,2004,69:233315.
    [33]R. A. Senter, C. Pantea, Y. Wang, H. Liu, T. W. Zerda, and J. L. Coffer. Structural influence of erbium centers on silicon nanocrystal phase transitions. Physical Review Letters,2004, 93(17):175502.
    [34]P. G Kik, M. L. Brongersma, and A. Polman. Strong exciton-erbium coupling in Si nanocrystal-doped SiO2. Applied Physics Letters,2000,76(17):2325-2327.
    [35]P. G Kik, and A. Polman. Exciton-erbium energy transfer in Si nanocrystal-doped SiO2. Materials Science and Engineering B,2001,81:3-8.
    [36]P. G. Kik, and A. Polman. Exciton-erbium interactions in Si nanocrystal-doped SO2. Journal of Applied Physics,2000,88(4):1992-1998.
    [37]P. G Kik, and A. Polman. Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2. Journal of Applied Physics,2002,91(1):534-536.
    [38]O. Savchyn, K. R. Coffey, and P. G Kik. Determination of optimum Si excess concentration in Er-doped Si-rich SiO2 for optical amplification at 1.54 μm. Applied Physics Letters,2010, 97:201107.
    [39]O. Savchyn, R. M. Todi, K. R. Coffey, and P. G Kik. High-temperature optical properties of sensitized Er3+in Si-rich SiO2-implications for gain performance. Optical Materials,2010, 32:1274-1278.
    [40]X. L. Wu, Y. F. Mei, G. G. Siu, K. L. Wong, K. Moulding, M. J. Stokes, C. L. Fu, and X. M. Bao. Spherical growth and surface-quasifree vibrations of Si nanocrystallites in Er-doped Si nanostructures. Physical Review Letters,2011,86(14):3000-3003.
    [41]S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G Elliman. On optical activity of Er3+ ions in Si-rich SiO2 waveguides. Applied Physics Lettters,2006,89:171908.
    [42]D. Comedi, O. H. Y. Zalloum, J. Wojcik, and P. Mascher. Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si diode composites based on PECVD-grown Si-rich Si oxide films. IEEE Journal of Selected Topics in Quantum Electronics,2006,12(6): 1561-1569.
    [43]T. Roschuk, P. R. J. Wilson, J. Li, O. H. Y. Zalloum, J. Wojcik, and P. Mascher. Structure and luminescence of rare earth-doped silicon oxides studied through their X-ray absorption near edge structure and X-ray excited optical luminescence. Phyisca Status Solidi B,2010, 247(2):248-253.
    [44]B. Garrido, C. Garcia, P. Pellegrino, D. Navarro-Urrios, N. Daldosso, L. Pavesi, F. Gourbilleau, and R. Rizk. Distance dependent interaction as the limiting factor for Si nanocluster to Er energy transfer in silica. Applied Physics Letters,2006,89:163103.
    [45]D. Navarro-Urrios, M. Melchiorri, N. Daldosso, L. Pavesi, C. Garcia, P. Pellegrino, B. Garrido, G Pucker, F. Gourbilleau, and R. Rizk. Optical losses and gain in silicon-rich silica waveguides containing Er ions.Journal of Luminescence,2006,121:249-255.
    [46]C. L. Heng, O. H. Y. Zalloum, T. Roschuk, D. Blakie, J. Wojcik, and P. Mascher. Photoluminescence study of an Er-doped Si-rich SiOx film. Electrochemical and Solid State Letters,2007,10(7):K20-K23.
    [47]C. L. Heng, O. H. Y. Zalloum, J. Wojcik, T. Roschuk, and P. Mascher. On the effects of double-step anneal treatments on light emission from Er-doped Si-rich silicon oxide. Journal of Applied Physics,2008,103:024309.
    [48]C. L. Heng, E. Chelomentsev, O. H. Y. Zalloum, J. Wojcik, and P. Mascher. Photoluminescence from Er-doped Si-rich silicon oxides deposited by magnetron sputtering in Ar or Ar+H2 plasmas. Journal of Vacuum Science & Technology A,2009,127(1): 101-108.
    [49]A, P, Knights, J. N. Milgram, J. Wojcik, P. Mascher, I. Crowe, B. Sherliker, M. P. Halsall,and R. M. Gwilliam. Observation of non-raditive de-excitation processes in silicon nanocrystals. Physica Status Solidi A,2009,206(5):969-972.
    [50]P. Pellegrino, B. Garrido, Y. Lebour, J. A. Moreno, C. Garcia, J. R. Morante, P. Bettotti, L. Pavesi, and M. Prassas. Luminescent properties of Er and Si co-implanted silicates. Optical Materials,2005,27:910-914.
    [51]K. Imakita, M. Fujii, and S. Hayashi. Spectrally resolved energy transfer from excitons in Si nanocrystals to Er ions. Physcal Review B,2005,71:193301.
    [52]I. Izeddin, T. Gregorkiewicz, and M. Fujii. Non-radiative sub-microsecond recombination of excited Er3+ions in SiO2 sensitized with Si nanocrystals. Physica E,2007,38:144-147.
    [53]I. Izeddin, D. Timmerman, T. Gregorkiewicz, A. S. moskalenko, A. A. Prokofiev, I. N. Yassievich, and M. Fujii. Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals. Physical Review B,2008,78:035327.
    [54]I. Izeddin, A. Z. Moskalenko,1. N. Yassievich, M. Fujii, and T. Gregorkiewicz. Nanosecond dynamics of the near-infrared photoluminescence of Er-doped SiO2 sensitized with Si nanocrystals. Physical Review Letters,2006,97:207401.
    [55]X. D. Pi, O. H. Y. Zalloum, J. Wojcik, A. P. Knights, P. Mascher, A. D. W. Todd, and P. J. Simpson. Formation and oxidation of Si nanoclusters in Er-doped Si-rich SiOx. Journal of Applied Physics,2005,97:096108.
    [56]X. D. Pi, O. H. Y. Zalloum, A. P. Knights, P. Mascher, and P. J. Simpson. Electrical conduction of silicon oxide containing silicon quantum dots. Journal of Physics:Condensed Matter,2006,18:9943-9950.
    [57]D. E. Blakie, O. H. Y. Zalloum, J. Wojcik, E. A. Irving, A. P. Knights, P. Mascher, and P. J. Simpson. Photoluminescence and position annihilation spectroscopy of MeV Si+ ion-irradiated SiyO1-y:Er (y=1/3) thin films. Journal of Applied Physics,2009,105:053517.
    [58]I. F. Crowe, R. J. Kashtiban, B. Sherliker, U. Bangert, M. P. Halsall, A. P. Knights, and R. M. Gwilliam. Spatially correlated erbium and Si nanocrystals in coimplanted SiO2 after a single high temperature anneal. Journal of Applied Physics,2010,107:044316.
    [59]L. Khomenkova, F. Gourbilleau, J. Cardin, O. Jambois, B. Garrido, and R. Rizk. Long lifetime and efficient emission from Er3+ ions coupled to Si nanoclusters in Si-rich SiO2 layers. Journal of Luminescence,2009,129:1519-1523.
    [60]B. Garrido, C. Garcia, S. Y. Seo, P. Pellegrino, D. Navaro-Urrios, N. Daldosso, L. Pavesi, F. Gourbilleau, and R. Rizk. Excitable Er fraction and quenching phenomena in Er-doped SiO2 layers containing Si nanoclusters. Physical Review B,2007,76:245308.
    [61]O. Savchyn, F. R. Ruhge, P. G. Kik, R. M. Todi, K. R. Coffey, H. Nukala, and H. Heinrich. Luminescence-center-mediated excitation as the dominant Er sensitization mechanism in Er-doped silicon-rich SiO2 films. Physical Review B,2007,76:195419.
    [62]O. Savchyn, P. G. Kik, R. M. Todi, and K. R. Coffey. Effect of hydrogen passivation on luminescence-center-mediated Er excitation in Si-rich SiO2 with and without Si nanocrystals. Physical Review B,2008,77:205438.
    [63]O. Savchyn, R. M. Todi, K. R. Coffey, and P. G. Kik. Observation of temperature-independent internal Er3+ relaxation efficiency in Si-rich SiO2 films. Applied Physics Letters,2009,94:241115.
    [64]A. Nazarov, J. M. Sun, W. Skorupa, R. A. Yankov, I. N. Osiyuk, I. P. Tjagulskii, and V. S. Lysenko. Light emission and charge trapping in Er-doped silicon dioxide films containing silicon nanocrystals. Applied Physics Letters,2005,86:151914.
    [65]F. Iacona, G. Franzo, M. Miritello, R. Lo Savio, E. F. Pecora, A. Irrera, and F. Priolo. Er-based materials for Si microphotonics. Optical Materials,2009,31:1269-1274.
    [66]F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzo, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica. Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices. Applied Physics Letters,2002,81(17):3242-3244.
    [67]A. Irrera, G. Franzo, F. Iacona, A. Canino, G. Di Stefano, D. Sanfilippo, A. Piana, P. G. Fallica, and F. Priolo. Light emitting devices based on silicon nanostructures. Physica E, 2007,38:181-187.
    [68]A. Irrera, F. Iacona, G. Franzo, M. Miritello, R. Lo Savio, M. E. Castagna, S. Coffa, and F. Priolo. Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices. Journal of Applied Physics,2010,107:054302.
    [69]G. Franzo, M. Miritello, S. Boninelli. R. Lo savio, M. G. Grimaldi, F. Priolo, F. Iacona, G. Nicotra, C. Spinella, and S. Coffa. Microstructural evolution of SiOx films and its effect on the luminescence on Si nanoclusters. Journal of Applied Physics,2008,104:094306.
    [70]K. Sun, W. J. Xu, B. Zhang, L. P. You, G. Z. Ran, and G. G. Qin. Strong enhancement of Er3+ 1.54 μm electroluminescence through amorphous Si nanoparticals. Nanotechnology,2008, 19:105708.
    [71]O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido. Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters. Optics Express,2010,18(3):2230-2235.
    [72]S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. Visible and 1.54 μm emission from amorphous silicon nitride films by reactive cosputtering. IEEE Journal of Selected topics in Quantum Electronics,2010,16(1):114-123.
    [73]S. Yerci, R. Li, and L. Dal Negro. Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes. Applied Physics Letters,2010,97:081109.
    [74]R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro. Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals. Applied Physics Letters,2008,93: 091119.
    [75]L. Dal Negro, R. Li, J. Warga, and S. N. Basu. Sensitized erbium emission from silicon-rich nitride/silicon superlattice structures. Applied Physics Letters,2008,92:101105.
    [76]I. Y. Kim, J. H. Shin, and K. J. Kim. Extending the nanocluster-Si/erbium sensitization distance in Er-doped silicon nitride:The role of Er-Er energy migration. Applied Physics Letters,2009,95:221101.
    [77]S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. Energy transfer and 1.54 μm emission in amorphous silicon nitride films. Applied Physics Letters, 2009,95:031107.
    [78]J. Warga, R. Li, S. N. Basu, and L. Dal Negro. Erbium-doped silicon/silicon nitride superlattice structures:light emission and energy transfer. Physica E,2009,41:1040-1043.
    [79]Y. Berencen, R. Wutzler, L. Rebohle, D. Hiller, J. M. Ramirez, J. A. Rodriguez, W. Skorupa, and B. Garrido. Intense green-yellow electroluminescence from Tb+-implanted silicon-rich silicon nitride/oxide light emitting devices. Applied Physics Letters,2013,103:111102.
    [80]R. Lo savio, M. Miritello, F. Priolo, A. M. Piro, M. G. Grimaldi, and F. Iacona. Thermal evolution of Er silicate thin films grown by rf magnetron sputtering. Journal of Physics: Condensed Matter,2008,20:454218.
    [81]X. J. Wang, T. nakajima, H. Isshiki, and T. Kimura. Fabrication and characterization of Er silicates on SiO2/Si substrates. Applied Physics Letters,2009,95:041906.
    [82]J. Zheng, W. C. Ding, C. L. Xue, Y. H. Yao, B. W. Cheng, J. Z. Yu, Q. M. Wang, G. L. Wang, and H. Q. Guo. Highly efficient photoluminescence of Er2SiO5 films grown by reactive magnetron sputtering method. Journal of Luminescence,2010,130:411-414.
    [83]R. Lo savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona. The influence of stoichiometry on the structural and on the optical emission of erbium silicate thin films. Applied Physics Letters,2008,93:021919.
    [84]Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang.1.53 μm photo-and electroluminescence from Er3+ in erbium silicate. Journal of Physics:Condenced Matter, 2009,21:012204.
    [85]Y. Yin, W. J. Xu, F. Wei, G Z. Ran, G. G Qin, Y. F. Shi, Q. G. Yao, and S. D. Yao. Room temperature Er3+ 1.54 μm electroluminescence from Si-rich erbium silicate deposited by magnetron sputtering. Journal of Physics D:Applied Physics,2010,43:335102.
    [86]T. Pan, C. Chen, W. W. Yeh, and S. Hou. Structural and electrical characteristics of thin erbium oxide gate dielectrics. Applied Physics Letters,2006,89:222912.
    [87]S. Prucnal, J. M. Sun, A. Muecklich, and W. Skorupa. Flash lamp annealing vs rapid thermal and furnace annealing for optimized metal-oxide-silicon-based light-emitting diodes. Electrochemical and Solid-stated letters,2007,10(2):H50-H52.
    [88]J. M. Zavada, S. X. Jin, N. Nepal, J. Y lin, H. X. Jiang, P. Chow, and B. Hertog. Electroluminescent properties of erbium-doped III-N light-emitting diodes. Applied Physics Letters,2004,84(7):1061-1063.
    [89]R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada.1.54 μm emitters based on erbium doped InGaN p-i-n junctions, Applied Physics Letters,2010,97:141109.
    [90]R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada. Near infrared photonic devices based on Er-doped GaN and InGaN. Optical Materials,2011,33:1066-1070.
    [91]S. Chen, B. Dierre, W. Lee, T. Sekiguchi, S. Tomita, H. Kudo, and K. Akimoto. Suppression of concentration quenching of Er-related luminescence in Er-doped GaN. Applied Physics Letters,2010,96:181901.
    [92]Y. Takagi, T. Suwa, H. Sekiguchi, H. Okada, and A. Wakahara. Effect of Mg codoping on Eu3+ luminescence in GaN grown by ammonia molecular beam epitaxy. Applied Physics Letters,2011,99:171905.
    [93]A. J. Steckl and R. Birkhahn. Visible emission from Er-doped GaN grown by solid source molecular beam epitaxy. Applied Physics Letters,1998,73(12):1700-1702.
    [94]R. Birkhahn and A. J. Steckl. Green emission from Er-doped GaN grown by molecular beam epitaxy on Si substrates. Applied Physics Letters,1998,73(15):2143-2145:
    [95]M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl. Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si. Applied Physics Letters,1999,74(2):182-184.
    [96]R. Birkhahn, M. Garter, and A. J. Steckl. Red light emission by photoluminescence and electroluminescence from Pr-doped GaN on Si substrates. Applied Physics Letters,1999, 74(15):2161-2163.
    [97]J. Heikenfeld, M. Garter, D. S. Lee, R. Birkhahn, and A. J. Steckl. Red light emission by photoluminescence and electroluminescence from Eu-doped GaN. Applied Physics Letters, 1999,75(9):1189-1191.
    [98]A. J. Steckl, M. Garter, D. S. Lee, J. Heikenfeld, and R. Birkhahn. Blue emission from Tm-doped GaN electroluminescent devices. Applied Physics Letters,1999,75(15): 2184-2186.
    [99]P. Chen, X. Ma, and D. Yang. Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices. Applied Physics Letters,2006,89:111112.
    [100]X. Ma, P. Chen, D. Li, and D. Yang. Electroluminescence from ZnO/n+-Si heterojunction. Solid State Phenomena,2008,131-133:625-628.
    [101]P. Chen, X. Ma, D. Li, Y. Zhang, and D. Yang. Bidirectional direct-current electroluminescence from i-MgxZn1-x/n-ZnO/SiOx double-barrier heterostructures on Si. Applied Physics Letters,2009,94:061110.
    [102]P. Chen, X. Ma, Y. Zhang, D. Li, and D. Yang. Defect-related white-light emission from ZnO in an n-Mgo.2Zno.80/n-ZnO/SiOx heterostructure on n-Si. Journal of Electronic Materials,2010,39(6):652-655.
    [103]P. Chen, X. Ma, and D. Yang. ZnO:Eu thin-films:sol-gel derivation and strong photoluminescence from 5D0→7F0 transition of Eu3+ ions. Journal of Alloys and Compounds,2007,431:317-320.
    [104]J. H. Yang, X. Li, J. H. Lang, L. L. Yang, M. Gao, X. Y. Liu, M. B. Wei, Y. Liu, and R. Wang. Effect of mineralizing agent on the morphologies and photoluminescence properties of Eu3+-doped ZnO nanomaterials. Journal of Alloys and Compounds,2011,509: 10025-10031.
    [105]J. H. Zheng, J. L. Song, Z. Zhao, Q. Jiang, and J. S. Lian. Optical and magnetic properties of Nd-doped ZnO nanoparticles. Crystal Research Technology,2012,47(7):713-718.
    [106]M. Subramanian, P. Thakur, S. Gautam, K. H. Chae, M. Tanemura, T. Hihara, S. Vijayalakshmi, T. Soga, S. S. Kim, K. Asokan, and R. Jayavel. Investigations on the structural, optical and electronic properties of Nd doped ZnO thin films. Journal of Physics D:Applied Physics,2009,42:105410.
    [107]J. Lang, X. Li, J. Yang, L. Yang, Y. Zhang, Y. Yan, Q. Han, M. Wei, M. Gao, X. Liu, and R. Wang. Rapid synthesis and luminescence of the Eu3+, Er3+ codoped ZnO quantum-dot chain via chemical precipitation method. Applied Surface Science,2011,257:9574-9577.
    [108]Y. R. Jang, K. H. Yoo, J. S. Ahn, C. Kim, and S. M. Park.1.54 μm emission mechanism of Er-doped zinc oxide thin films. Applied Surface Science,2011,257:2822-2824.
    [109]H. Song, and Y. J. Kim. Characterization of luminescence properties of ZnO:Er thin films prepared by rf magnetron sputtering. Journal of the European Ceramic Society,2007,27: 3745.3748.
    [110]J. S. Lee, and Y. J. Kim. Infra-red emission properties of ZnO:Er thin films prepared on the sapphire substrates. Ceramics International,2012,38S:S585-S588.
    [111]S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi. Highly erbium-doped zinc-oxide thin film prepared by laser ablation and its 1.54 μm emission dynamics. Journal of Applied Physics,2000,88(12):7129-7136.
    [112]S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi.1.54 μm emission dynamics of erbium-doped zinc-oxide thin films. Applied Physics Letters,2000, 76(26):3935-3937.
    [113]S. Harako, S. Yokoyama, K. Ide, X, Zhao, and S. Komoro. Visible and infrared electroluminescence from an Er-doped n-ZnO/p-Si light emitting diode. Physica Status SolidiA,2008,205(1):19-22.
    [114]E. F. Pecora, T. I. Murphy, and L. D. Negro. Rare earth doped Si-rich ZnO for multiband near-infrared light emitting devices. Applied Physics Letters,2012,101:191115.
    [115]Y. Pu, F. Xu, Z. Jiang, Z. Ma, F. Lu, and D. Chen. Enhanced broadband emission from Er-Tm codoped ZnO film due to energy transfer processes involving Si nanocrystals. Applied Physics Letters,2012,101:191903.
    [116]M. Kohls, M. Bonanni, and L. Spanhel. Green ErⅢ luminescence in fractal ZnO nanolattices. Applied Physics Letters,2002,81(20):3858-3860.
    [117]M. Kachi, W. Sakamoto, M. Ichida, T. Wada, H. Ando, and T. Yogo. Synthesis of Er-doped ZnO nanopartical/organic hybrid from metal-organics. Journal of Materials Science,2012, 47:5128-5133.
    [118]N. Mais, J. P. Rtithmaier, A. Forchel, M. Kohls, L. Spanel, and G. Muller. Er doped nanocrystalline ZnO planar waveguide structures for 1.55 μm amplifier applications. Applied Physics Letters,1999,75(14):2005-2007.
    [119]A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, and C. E. Bonner. Pulsed-laser deposited Er.ZnO films for 1.54 μm emission. Applied Physics Letters,2007, 90:072108.
    [120]S. Iwan, S. Bambang, J. L. Zhao, S. T. Tan, H. M. Fan, L. Sun, S. Zhang, H. H. Ryu, and X. W. Sun. Green electroluminescence from an n-ZnO:Er/p-Si heterostructured light-emitting diode. Physica B,2012,407:2721-2724.
    [121]S. Bachir, C. Sandouly, J. Kossanyi, and J. C. Ronfard-Haret. Rare earth-doped polycrystalline zinc oxide electroluminescence ceramics. Journal of Physics and Chemistry of Solids,1996,57(12):1869-1879.
    [122]J. C. Ronfard-Haret. Electric and luminescent properties of ZnO-based ceramics containing small amounts of Er and Mn oxide. Journal of Luminescence,2003,104:1-12.
    [123]W. Y. Jia, K. Monge, and F. Fernandez. Energy transfer from the host to Eu3+ in ZnO. Optical Materials,2003,23:27-32.
    [124]Z. Zhou, T. Komori, M. Yoshimo, M. Morinaga, N. Matsunami, A. Koizumi, and Y. Takeda. Enhanced 1.54 μm photoluminescence from Er-containing ZnO through nitrogen doping. Applied Physics Letters,2005,86:041107.
    [125]Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda. Li-and Er-codoped ZnO with enhanced 1.54 μm photoemission. Applied Physics Letters, 2005,87:091109.
    [126]H. L. Han, L. W. Yang, Y. X. Liu, Y. Y. Zhang, and Q. B. Yang. Up-conversion luminescence switching in Er-containing ZnO nanoparticles through Li+ co-doping. Optical Materials,2008,31:338-341.
    [127]S. A. M. Lima, and M. R. Davolos. Low-voltage electroluminescence of europium in zinc oxide thin films. Applied Physics Letters,2007,90:023503.
    [128]Y. X. Liu, Q. B. Yang, and C. F. Xu. Single-narrow-band red upconversion fluorescence of ZnO nanocrystals codoped with Er and Yb and its achieving mechanism. Journal of Applied Physics,2008,104:064701.
    [129]L. Chao, J. Huang, and C. Chang. Annealing effects on the properties of Nd containing ZnO nanoparticles prepared by sol-gel process. Physica B,2009,404:1301-1304.
    [130]Y. Zhang, X. Ma, P. Chen, D. Li, and D. Yang. Electroluminescence from TiO2/p+-Si heterostructure. Applied Physics Letters,2009,94:.061115.
    [131]Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman. Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2. Applied Physics Letters,2009,95:252102.
    [132]J. Zhang, X. Wang, W. Tao, X. Kong, Y. Sun, and X. Wang. Structure and luminescence properties of TiO2:Er3+nanocrystals annealed at different temperatures. Materials Letters, 2007,61:1658-1661.
    [133]P. Haro-Gonzalez, M. Pedroni, F. Piccinelli, L. L. Martin, S. Polizzi, M. Giarola, G Mariotto, A. Speghini, M. Bettinelli, and I. R. Martin. Synthesis, characterization and optical spectroscopy of Eu3+ doped titanate nanotubes. Journal of Luminescence,2011,131: 2473-2477.
    [134]K. L. Frindell, M. H. Bartl, M. R. Robinson, G C. Bazan, A. Popitsch, and G. D. Stucky. Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls. Journal of Solid State Chemistry,2003,172:81-88.
    [135]J. Li, X. Wang, H. Kamiyama, T. Ishigaki, and T. Sekiguchi. RF plasma processing of Er-doped TiO2 luminescent nanoparticals. Thin Solid Films,2006,506-507:292-296.
    [136]J. Li, X. Wang, C. Tang, T. Ishigaki, and S. Tabaka, Energy transfer enables 1.53 μm photoluminescence from erbium-doped TiO2 semiconductre nanocrystals synthesized by Ar/O2 radio-frequency thermal plasma. Journal of the American Chemical Society,2008, 91(6):2032-2035.
    [137]C. Fu, J. Liao, W. Luo, R. Li, and X. Chen. Emission of 1.53 μm originating from the lattice site of Er3+ions incorporated in TiO2 nanocrystals. Optics Letters,2008,33(9): 953-955.
    [138]M. Ishii, S. Komuro, and T. Morikawa. Study on atomic coordination around Er doped into anatase-and rutile-TiO2:Er-O clustering dependent on the host crystal phase. Journal of Applied Physics,2003,94(6):3823-3827.
    [139]S. Komuro, T. Katsumata, H. Kokai, and T. Morikawa. Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction. Applied Physics Letters, 2002,81(25):4733-4735.
    [140]S. Jeon, and P. V. Braun. Hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles. Chemistry of Materials,2003,15:1256-1263.
    [141]M. Ishii, B. Towlson, N. Poolton, S. Harako, X. W. Zhao, S. Komuro, and B. Hamilton. Effect of oxidization and deoxidization on charge-propagation dynamics in rare-earth-doped titanium dioxide with room-temperature luminescence. Journal of Applied Physics,2012, 111:053514.
    [142]C. W. Jia, E. Q. Xie, J. G. Zhao, Z. W. Sun, and A. H. Peng. Visible and near-infrared photoluminescence of europium-doped titania film. Journal of Applied Physics,2006,100: 023529.
    [143]C. W. Jia, E. Q. Xie, A. H. Peng, R. Jiang, F. Ye, H. F. Lin, and T. Xu. Photoluminescence and energy transfer of terbium doped titania film. Thin Solid Films,2006,496:555-559.
    [144]X. Feng, L. Yang, N. C. Zhang, and Y. L. Liu. A facile one-pot hydrothermal method to prepare europium-doped titania hollow phosphors and their sensitized luminescence properties. Journal of Alloys and Compounds,2010,506:728-733.
    [145]J. Yin, and X. Zhao. Facile synthesis and the sensitized luminescence of europium ions-doped titanate nanowires. Materials Chemistry and Physics,2009,114:561-568.
    [146]Q. G. Zeng, Z. J. Ding, and Z. M. Zhang. Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature. Journal of Luminescence,2006,118:301-307.
    [147]C. N. Zhang, T. Uchikoshi, J. G. Li, T. Watanabe, and T. Ishigaki. Influence of niobium doping on phase composition and defect-mediated photoluminescence properties of Eu3+-doped TiO2 nanopowders synthesized in Ar/O2 thermal plasma. Journal of Alloys and Compounds,2011,509:8944-8951.
    [148]A. Borkowska. Analysis of photoluminescence in TiO2 matrix doped with Eu and Nd.2007 International Students and Young Scientists Workshop, Photonics and Microsystems.
    [149]Q. G. Zeng, Z. M. Zhang, Z. J. Ding, Y. Wang, and Y. Q. Sheng. Strong photoluminescence emission of Eu:TiO2 nanotubes. Scripta Materialia,2007,57:897-900.
    [150]B. S. Cao, Y. Y. He, Z. Q. Feng, H. Z. Zhang, Z. S. Wei, and B. Dong. Color tuning by co-doping of Er doped TiO2 phosphors within a fixed Er concentration. Journal of Sol-Gel Science and Technology,2012,62:419-423.
    [151]R. Pandiyan, V. Micheli, D. Ristic, R. Bartali, G. Pepponi, M. Barozzi, G Gottardi, M. Ferrari, and N. Laidani. Structural and near-infrared luminescence properties of Nd-doped TiO2 films deposited by RF sputtering. Journal of Materials Chemistry,2012,22: 22424-22432.
    [152]G Franzo, F. Priolo, S. Coffa, A. Polman, and A. Camera. Room-temperature electroluminescence from Er-doped crystalline Si. Applied Physics Letters,1994,64(17): 2235-2237.
    [153]F. Priolo, G. Franzo, D. Pacifici, V. Vinciguerra, F. Iacona, and A. Irrera. Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals. Journal of Applied Physics,2001,89(1):264-272.
    [154]D. Kouyate, J. C. Ronfardharet, and J. Kossanyi. Photoluminescence and electroluminescence of rare earth-doped semiconducting zinc-oxide electrodes-emission from both the dopant and the support. Journal of Luminescence,1991,50(4):205-210.
    [155]M. Abdullah, T. morimoto, and K. Okuyama. Generating blue and red luminescence from ZnO/poly(ethylene glycol) nanocomposites prepared using an in-situ method. Advanced Functional Materials,2003,13(10):800-804.
    [156]U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc. A comprehensive review of ZnO materials and devices. Journal of Applied Physics,2005,98:041301.
    [157]H. K. Liang, S. F. Yu, and H. Y. Yang. ZnO random laser diode arrays for stable single-mode operation at high power. Applied Physics Letters,2010,97:241107.
    [158]J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park. UV electroluminescence emission from ZnO light-emitting diodes grown by high temperature radiofrequency sputtering. Advanced Materials,2006,18(20):2720-2724.
    [159]X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang, and D. R. Yang. Electrically pumped ZnO film ultraviolet random lasers on silicon substrate. Applied Physics Letters,2007,91: 251109.
    [160]X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang. Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si. Optical Express,2009,17(16):14426-14433.
    [161]Y. P. Li, X. Y. Ma, M. S. Xu, L. L. Xiang, and D. R. Yang. Remarkable decrease in threshold for electrically pumped random ultraviolet lasing from ZnO film by incorporation of Zn2Ti04 nanoparticals. Optics Express,2011,19(9):8662-8669.
    [162]O. Lupan, T. Pauporte, T. L. Bahers, B. Vianaa, and I. Ciofini. Wavelength-emission tuning of ZnO nanowire-based light-emitting diodes by Cu doping:experimental and computational insights. Advanced Functional Materials,2011,21(18):3564-3572.
    [163]P. D. Rack, and P. H. Holloway. The structure, device physics, and material properties of thin film electroluminescent displays. Materials Science & Engineering R-Reports,1998, 21(4):171-219.
    [164]A. J. Kenyon. Recent developments in rare-earth doped materials for optoelectronics. Progress in Quantum Electronics,2002,26(4-5):225-284.
    [165]T. F. Kent, S. D. Carnevale, and R. C. Myers. ZnO random laser diode arrays for stable single-mode operation at high power. Applied Physics Letters,2013,102:201114.
    [166]J. H. Kim, and P. H. Holloway. Near-infrared-electroluminescent light-emitting planar optical sources on gallium nitride doped with rare earths. Advanced Materials,2005,17(1): 91-96.
    [167]A. H. Steckl, J. C. Heikenfeld, D. S. Lee, M. J. Garter, C. C. Baker, Y. Q. Wang, and R. Jones. Rare-earth-doped GaN:Growth, properties, and fabrication of electroluminescent devices. IEEE Journal of Selected Topics in Quantum Electronics,2002,8(4):749-766.
    [168]A. H. Steckl, J. C. Heikenfeld, D. S. Lee, and M. J. Garter. Multiple color capability from rare earth-doped gallium nitride. Materials Science and engineering B-Solid State Materials for Advanced Technology,2001,81(1-3):97-101.
    [169]R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada. Electroluminescent properties of erbium-doped Ⅲ-N light-emitting diodes. Applied Physics Letters,2004,84:1061-1063.
    [170]A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara. Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection. Applied Physics Express,2009,2:071004.
    [171]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials,2005,4:42-46.
    [172]H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. H. Hou, and K. L. Choy. Low-threshold electrically pumped random lasers. Advanced Materials,2010,22(16):1877-1881.
    [173]S. Chu, G P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu. Electically pumped waveguide lasing from ZnO nanowires. Nature Nanotechnology,2011,6:506-510.
    [174]L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo. Optical gain in silicon nanocrystals. Nature,2000,408:440-444.
    [175]D. Pacifici, G Franzo, F. Priolo, F. Iacona, and L. Dal Negro. Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification. Physical Review B,2003, 67:245301.
    [176]J. G. Li, X. H. Wang, C. C. Tang, T. Ishigaki, and S. Tanaka. Energy transfer enabled 1.53 μm photoluminescence from erbium-doped TiO2 semiconductor nanocrystals synthesized by Ar/O2 RF thermal plasma. Journal of the American Ceramic Society,2008,91(6): 2032-2035.
    [177]C. Y. Fu, J. S. Liao, W. Q. Luo, R. F. Li, and X. Y. Chen. Emission of 1.53 um origination from the lattice site of Er3+ ions incorporated in TiO2 nanocrystals. Optics Letters,2008, 33(9):953-955.
    [178]J. Preclikova, P. Galar, F. Trojanek, S. Danis, B. Rezek, I. Gregora, Y. Nemcova, and P. Maly. Nanocrystalline titanium dioxide films:Influence of ambient conditions on surface-and volume-related photoluminescence. Journal of Applied Physics,2010,108:113502.
    [179]D. Mardare, and G I. Rusu. Structural and electrical properties of TiO2 RF sputtered thin films. Materials Science and Engineering B-Solid State Materials for Advanced Technology.2000,75(1):68-71.
    [180]E. M. Logothetis, and R. E. Hetrick. Oscillations in the electrical-resistivity of TiO2 induced by solid-gas interactions. Solid State Communications,1979,31(3):167-171.
    [181]R. Li, S. Yerci, and L. Dal Negro. Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions. Applied Physics Letters,2009,95:041111.
    [182]D. Zhao, C. Chen, Y. Wang, W. Ma, J. Zhao, T. Rajh, and L. Zang. Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(Ⅲ)-modified TiO2:structure, interaction, and interfacial electron transfer. Environmental Science & Technology,2008,42(1):308-314.
    [183]J. E. Lee, S. M. Oh, and D. W. Park. Synthesis of nano-sized Al doped TiO2 powders using thermal plasma. Thin Solid Films,2004,457(1):230-234.
    [184]S. S. Lin, and D. K. Wu. Effect of RF deposition power on the properties of Al-doped TiO2 thin films. Surface & Coatings Technology,2010,201(14):2202-2207.
    [185]C. T. M. Ribeiro, M. S. Li, and A. R. Zanatta. Spectroscopic study of Nd-doped amorphous SiN films. Journal of Applied Physics,2004,96(2):1068-1073.
    [186]A. Podhorodecki, M. Banski, J. Misiewicz, C. Lecerf, P. Marie, J. Cardin, and X. Portier. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films. Journal of Applied Physics,2010,108:063535.
    [187]S. Schmittrink, C. M. Varma, and A. F. J. Levi. Excitation mechanisms and optical-properties of rare-earth ions in semiconductors. Physical Review Letters,1991, 66(21):2782-2785.
    [188]D. Breard, F. Gourbilleau, A. Belarouci, C. Dufour, and R. Ria. Nd3+ photoluminescence study of Nd-doped Si-rich silica films obtained by reactive magnetron sputtering. Journal of Luminescence,2006,121(2):209-212.
    [189]O. Debieu, D. Breard, A. Podhorodecki, G. Zatryb, J. Misiewicz, C. Labbe, J. Cardin, and F. Gourbilleau. Effect of annealing and Nd concentration on the photoluminescence of Nd3+ ions coupled with silicon nanoparticles. Journal of Applied Physics,2010,108:113114.
    [190]A. N. MacDonald, A. Hryciw, Q. Li, and A. Meldrum. Luminescence of Nd-enriched silicon nanopartical glasses. Optical Materials,2006,28(6-7):820-824.
    [191]S. Y. Seo, M. J. Kim, and J. H. Shin. The Nd-nanocluster coupling strength and its effect in excitation of Nd3+ luminescence in Nd-doped silicon-rich silicon oxide. Applied Physics Letters,2003,83(14):2778-2780.
    [192]W. F. Lee, C. Y. Lee, M. L. Ho, C. T. Huang, C. H. Lai, H. Y. Hsieh, P. T. Chou, and L. J. Chen. Nd-doped silicon nanowires with room temperature ferromagnetism and infrared photoemission. Applied Physics Letters,2009,94:263117.
    [193]X. B. Chen, L. Liu, P. Y. Yu, and S. S. Mao. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science,2011,331(6018):746-750.
    [194]M. Taniguchi, H. Nakagome, and K. Takahei. Luminescence intensity and lifetime dependences on temperature for Nd-doped GaP and GaAs. Applied Physics Letters,1991, 58(25):2930-2932.
    [195]K. Takahei, and H. Nakagome. Photoluminescence characterization of Nd-doped GaP grown by metalorganic chemical vapor deposition. Journal of Applied Physics,1992,72(8): 3674-3680.
    [196]D. Kaczmarek, J. Domaradzki, A. Borkowska, A. Podhorodecki, J. Misiewicz, and K. Sieradzka. Optical emission from Eu, Tb, Nd luminescence centers in TiO2 prepared by magnetron sputtering. Optica Applicata,2007,37(4):433-438.
    [197]A. Ali, E. Yassitepe, I. Ruzybayev, S. I. Shah, and A. S. Bhatti. Improvement of (004) texturing by slow growth of Nd doped TiO2 films. Journal of Applied Physics,2012,112: 113505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700