用户名: 密码: 验证码:
可用于白光LED照明和可用于测温的荧光材料的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要研究内容可分为两个部分。第一部分是关于应用于白光LED照明的光谱转换荧光材料的研究,有关结果将在第3章中论述。第二部分研究内容是关于可用于荧光测温的荧光粉的制备及其温度依赖的光谱性能表征,主要内容和结论将在第4章中讨论。
     论文的第1章为绪论,简单介绍了本论文中涉及到的基本知识和背景,包括发光与发光材料的概念、发光的过程和机理,并粗略介绍了荧光材料的应用方向。也对人眼颜色感知的内容进行了简单的阐述。第2章介绍了我们在发光材料研究中所采用的主要样品制备方法及测试设备。
     在有关白光LED荧光粉的研究中,重点是关于紫外激发下的单基质白光发射荧光粉的研究。第3章首先简要介绍了荧光粉转换的照明用LED荧光灯的地位和现状,并列举了一些作为白光LED荧光灯必须满足的参数。然后介绍了一些常见的荧光粉材料及它们的荧光性质。最后提出了单基质白光荧光粉思路的来源以及对工作结果的期望。在第二到第四节中详细讨论了三种新型的紫外激发单基质白色发光荧光粉(Li, Ba, Sr)2Si04:Ce3+, Eu2+, Mn2+(BSLS)、NaSrPO4: Eu2+,Tb3+,Mn2+和KCaPO4:Eu2+, Tb3+, Mn2+O简要结果如下:
     1、利用高温固相法制备了(Li, Ba, Sr)2Si04:Ce3+, Eu2+, Mn2+单基质白光发射荧光粉,在345nm激发下观察到了分别来自Mn2+, Eu2+, Ce3+的红、绿、蓝发射,并组合成白色发光。工作进一步研究了改变激发波长和温度时荧光光谱的稳定性,结果表明在一定的温度和激发波长范围内,该荧光粉可基本满足应用于大功率紫外LED上的颜色稳定性要求。
     2、利用高温固相法制备了NaSrPO4:Eu2+, Tb3+, Mn2+单基质白光荧光粉。样品在260400nm波长的紫外光激发下均获得了白光发射,其光谱颜色随着激发光波长变动几乎不发生改变。从照明的角度考虑,该样品发射谱的能量分布比(Li, Ba, Sr)2Si04:Ce3+, Eu2+, Mn2+样品更合理。NaSrPO4:Eu2+, Tb3+, Mn2+单基质白光荧光粉的有效激发波长范围很广,适用于最近几年快速发展的近紫外大功率LED芯片。对该样品发光的荧光热稳定性仔细研究表明其光谱颜色在大功率LED芯片的工作温度范围内不发生明显的变化,但是发光强度的热猝灭现象比较严重。
     3、KCaPO4:Eu2+, Tb3+, Mn2+单基质白光荧光粉由高温固相法制备。实验讨论了掺杂离子浓度的变化对光谱的影响。样品在255-405nm波长的紫外光激发下均获得了白光发射,随着激发光波长改变,其光谱颜色只在纯净白光周围小范围波动。KCaPO4:Eu2+, Tb3+, Mn2+单基质白光荧光粉的有效激发波长范围覆盖近紫外波段,在395nm波长处的激发强度是激发谱峰值强度的92%。样品的吸收与近紫外大功率LED芯片的发射十分匹配,适用于与大功率近紫外LED荧光灯。样品的荧光热稳定性研究表明其光谱颜色在大功率LED芯片的工作温度范围保持在白光区域内,而且在该温度范围内样品的发光强度没有发生明显的热猝灭。
     第4章首先讨论了荧光温度性质及热猝灭,并指出在热猝灭显著的温度范围可以利用荧光衰减来测温。然后介绍了荧光温度探针的研究进展以及优势和意义,介绍了几类主要的荧光温度探针材料的研究方向和现状。并在最后对评价荧光探针性能的参数,比如相对灵敏度,进行了简单的说明。从4.2节开始讨论了两类Eu离子激活的荧光材料温度特性,分别是Eu3+激活的Y2Mo06:Eu3+和Eu2+激活的NaSrPO4:Eu2+与M2Si04:Ce3+, Eu2+(M=Ba, Sr)。主要结果如下:
     1、4.2节介绍了Y2MoO6:Eu3+荧光随温度变化的性质,并对其荧光热猝灭的物理机制进行了解释。随后测试样品20—500K的变温光谱和荧光寿命,并将导致荧光热猝灭的机制分解为三部分并分别讨论各部分对热猝灭的贡献。最后对样品荧光热猝灭的相对灵敏度进行了计算,得到500K左右7%K-1、荧光强度减半温度下2%K-1的相对灵敏度数值。该材料在无机荧光温度探针材料中具有较高的相对灵敏度。
     2、二价的Eu2+离子掺杂的NaSrPO4荧光粉由高温固相法合成。随着温度从室温上升到400K, Eu2+荧光的强度快速降低,荧光寿命缩短。相对灵敏度计算显示,NaSrPO4:Eu2+的荧光强度和荧光寿命对温度变化的相对灵敏度在室温到500K范围内分布比较均匀,约在0.6—0.9%K-1左右。
     3、样品Ba2Si04:Ce3+, Eu2+和BaSrSiO4:Ce3+, Eu2+由固相法合成。随着温度的上升,Eu2+离子的荧光发生明显的热猝灭现象,而Ce3+离子发光的热稳定性较好。由此,可以通过发射谱上Eu2+/Ce3+发光的部分波长积分面积比值作为测量值标定温度。这种方式比单纯用光强或者寿命变化来测量温度的方式更加方便,避免了重复定标初始温度的麻烦。对Ba2Si04:Ce3+样品,在积分波长范围为Ce3+:385—425nm,Eu2+:505—525nm时,获得最大相对灵敏度3%K-1;BaSrSiO4:Ce3+,Eu2+样品在积分波长范围Ce3+:393—433nm, Eu2+:515—535nm时,获得最大相对灵敏度2%K-1。M2Si04:Ce3+, Eu2+(M=Ba, Sr)有可能成为一种高灵敏度、抗失真的荧光测温材料。
The research content of this thesis mainly consists of two parts. The first part is the synthesis and characterization of single-host white light emitting phosphors for white LED (WLED) lighting, which is discussed in Chapter3. The other part is about the thermal properties of the luminescence of the related phosphors, in view of their application in temperature sensing, which is discussed in Chapter4.
     Chapter1is the general introduction about the basic knowledge and the research background. The basic concepts involved in the luminescent phenomenon and its physical mechanism are introduced, along with some important application directions of the luminescent materials. At the end of this chapter, the mechanism of color vision of human eye is briefly addressed. Chapter2presents the major sample preparation methods and the luminescence measurement equipments used in our research.
     In the part of WLED phosphors, the research is focused on preparing and characterization of ultraviolet exciting single-phase white phosphors. Firstly in Chapter3, the status and the current situation of phosphors converting LED lighting research is given. Some important characters of LED lighting phosphors are also discussed. Secondly, some famous lighting phosphors and their properties are introduced. Finally the expectations for single-phase white light emitting phosphors are proposed. In section3.2,3.3and3.4, three new single-phase white light emitting phosphors (Li, Ba, Sr)2Si04:Ce3+, Eu2+, Mn2+, NaSrPO4:Eu2+, Tb3+, Mn2+and KCaPO4:Eu2+, Tb3+, Mn2+are discussed in detail. The results are as following:
     1. The (Li, Ba, Sr)2SiO4:Ce3+, Eu2+, Mn2+powder samples were synthesized via high temperature solid-state reaction. The emission spectrum contains three bands:the370—470nm blue band, the470—570nm green band and the570—700nm red band, which arise from5d→4f transitions of Ce3+and Eu2+, and4T1→6A1transition of Mn2+, respectively. Under345nm excitation, white light emission is obtained from the tri-doped sample of appropriate doping concentration. The color of the sample emission keeps in white light region when the excitation wavelength shifts from310nm to370nm. Further investigation about the temperature dependent emission spectra shows that the color of the phosphor emission maintains white in a certain temperature range. However, the blue emission band locates in a violet-blue region where the human eye response falls off. Therefore, further studies are needed to achieving a better blue emission with wavelength near440nm.
     2. The NaSrPO4:Eu2+, Tb3+, Mn2+powder samples were synthesized via high temperature solid-state reaction. White light emitting was observed upon the excitation of a wide range of ultraviolet (UV) wavelengths. The color shift is insignificant when altering the excitation wavelength from260nm to400nm. This indicates that the phosphor could exhibit good color stability when used in combination with a near ultraviolet (NUV) LED. The energy distribution of the emission spectrum is better than (Li, Ba, Sr)SiO4:Ce3+, Eu2+, Mn2+phosphor. The emission color of the sample keeps in the white region below120℃, which is about the maxium working temperature limit of modern high power LED. However, the thermal quenching of NaSrPO4:Eu2+, Tb3+, Mn2+is observed.
     3. The KCaPO4:Eu2+, Tb3+, Mn2+powder samples were synthesized via high temperature solid-state reaction. The influence of doping concentration on spectrum is discussed. White light emission is obtained under the excitation of ultraviolet between255nm and405nm. The color is stable. The absorption of near ultraviolet is efficient for KCaPO4:7%Eu2+,7%Tb3+,2%Mn2+powder sample. The intensity of the excitation spectrum at395nm is about92%of the maxium. As a result, KCaPO4:7%Eu2+,7%Tb3+,2%Mn2+white light phosphor fits well with the emission of modern high power NUV LEDs. The thermal stability is studied in detail. The color of the sample KCaPO4:7%Eu2+,7%Tb3+,2%Mn2+keeps in white region with temperature below200℃. The quenching of the emission intensity is not very serious during the temperature range of a working LED.
     Chapter4focuses on the thermal quenching of the related phosphors. Although it requires good thermal stability for LED phosphors, it is better for a temperature sensing phosphor to be sensitive to temperature. The advances of luminescent temperature sensor are discussed with their advantages and significance. The research content of Chapter4mainly consists of two parts, including the trivalent Eu3+activated Y2MoO6:Eu3+and the divalent Eu2+activated NaSrPO4:Eu2+and M2Si04:Ce3+, Eu2+(M=Ba, Sr). The results are as follows:
     1. Temperature dependent emission spectra of Y2MOO6:20%Eu3+phosphor were investigated over a temperature range from20to500K, and the experimental results show that the emission intensity decreases dramatically with the temperature increasing. With the help of the Eu3+lifetimes, the possible mechanisms for the thermal quenching behavior of the Eu3+luminescence were discussed. The thermal quenching of Mo-O CTS and the quenching caused by transferring excitation energy to quenching centers during the energy migration among Eu3+ions and Mo-O CTS are proposed to be responsible for the thermal quenching of the emission intensity of the sample. The relative sensitivity of temperature can reach as high as7%K-1at500K, and is about2%K-1at367K. Considering the acute change of the emission intensity with temperature, Eu3+doped Y2MoO6could be a promising candidate for temperature sensors.
     2. Eu2+doped NaSrPO4phosphors were synthesized via high temperature solid-state reaction. The emission intensity and the lifetime of Eu2+decrease with temperature increasing from room temperature to400℃. The relative sensitivities of intensity or lifetime versus temperature are calculated. The relative sensitivities of NaSrPO4:Eu2+maintain among0.6—0.9%K-1in300—500K.
     3. Samples of Ba2Si04:Ce3+, Eu2+and BaSrSiO4:Ce3+, Eu2+were synthesized by solid state reaction. The emission intensity of Eu2+decreases quickly with temperature increases, while the emission of Ce3+quenches a little comparing with the thermal quenching of Eu2+emission. Therefore, the emission intensity ratio of Eu2+versus Ce3+could be a good indicate of temperature. Ratio monitoring is easier than the intensity or the lifetimes measurements, which requires repetitive temperature initializing, so Eu2+/Ce3+intensity ratio monitoring provides a better alternative for temperature sensing. With a integration interval of Ce3+:385—425nm, Eu2+:505—525nm, a maximum relative sensitivity of3%K-1can be reached for Ba2Si04:Ce3+, Eu2+. With a integration interval of Ce3+:393—433nm, Eu2+:515—535nm, a maximum relative sensitivity of2%K-1was observed for BaSrSiO4: Ce3+, Eu2+phosphor.
引文
[1]《固体发光》编写组.1976.固体发光[M].中国科学院,吉林物理所,中国科学技术大学.
    [2]李建宇.2003.稀土发光材料及其应用[M].北京.化学工业出版社.
    [3]GBlasse.1994. Luminescent materials [M]. Munchen.
    [4]Sole J. G., Bausa L. E., Jaque D..2005. An Introduction to the optical spectroscopy of Inorganic Solids [M]. Madrid. Wiley.
    [5]苏锵.1993.稀土化学[M].河南科学技术出版社.郑州.
    [6]楼立人,尹民,李清庭.2014.发光物理基础—固体光跃迁过程[M].合肥.中国科学技术大学出版社.
    [7]许少鸿.固体发光讲义[M].
    [8]郑子樵,李红英.2003.稀土功能材料[M].北京.化学工业出版社.
    [9]贡长生,张克立.2001.新型功能材料[M].北京.化学工业出版社.
    [10]韦先涛.2010.镱激活的红外下转换材料和铋铕共掺氧化钆的制备及发光性质表征[D]:[博士].合肥.中国科学技术大学.
    [11].邓楷模.2012.稀土掺杂的红外量子剪裁材料和WLED红光材料研究[D]:[博士].合肥.中国科学技术大学.
    [12]Zhou, J., Liu, Z., Li, F.2012. Upconversion nanophosphors for small-animal imaging [J].
    Chemical Society Reviews,41 (3):1323-1349.
    [13]Haase, M., Schafer, H.2011. Upconverting nanoparticles [J]. Source of the Document Angewandte Chemie-International Edition,50 (26):5808-5829.
    [14]Wang, F., Liu, X.2009. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Source of the Document Chemical Society Reviews,38 (4):976-989.
    [15]Vergeer. P, Vlugt. T. J. H., Kox. M. H. F., Den Hertog. M. I., Van Der Herden. J. P. J. M., Meijerink. A.2005. Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+[J]. Physical Review B-Condensed Matter and Materials Physics,71 (1):014119.
    [16]Wei X.T., Jiang G. C., Deng K. M., Duan C. K., Chen Y. H., Yin M..2012. Near-infrared downconversion through energy transfer from VO3-4 group to Yb3+in Yb3+doped YP0.9V0.1O4 [J]. Applied Physics B:Lasers and Optics,108 (2):463-467.
    [17]Wei X. T., Liu Y, Jiang G. C., Chen Y. H., Yin M., Xu W.2011. Energy transfer mechanisms in yb3+-doped GdVO4 near-infrared downconversion nanophosphor [J]. Source of the Document Journal of Nanoscience and Nanotechnology,11 (11):9556-9561.
    [18]Huang X., Han S.,2013. Huang, W., Liu, X. Enhancing solar cell efficiency:The search for luminescent materials as spectral converters [J]. Chemical Society Reviews,42 (1):173-201.
    [19]Shaoshuai Zhou, Kaimo Deng, Xiantao Wei, Guicheng Jiang, Changkui Duan, Yonghu Chen, Min Yin.2013. Upconversion luminescence of NaYF4:Yb3+, Er3+for temperature sensing [J]. Optics Communications,291:138-142.
    [20]Stefan Nagl and Otto S. Wolfbeis.2007. Optical multiple chemical sensing:status and current challenges [J]. Analyst,132:507-511.
    [21]Chu C., Lo Y, and Sung T.. Review on Recent Developments of Fluorescent Oxygen and Carbon Dioxide Optical Fiber Sensors [J]. Photonic Sensors,1(3):234-250.
    [22]李东光.2012.超长余辉发光漆生产工艺流程、制备方法、制备技术[M].北京.化学工业出版社.
    [23]Yan W. Z., Lin L., Chen Y H., Yin M.2008. New red long afterglow aluminate materials doped with Mn4+[J]. Chinese Journal of Luminescence:29:114-118.
    [24]王书颖,李洪秀.1991.色度学简介[J].大学物理:7:29-32.
    [1]Phillips J.M., Coltrin M.E., Crawford M.H., Fischer A.J., Krames M.R., Mueller-Mach R., Mueller GO., Ohno Y., Rohwer L.E.S., Simmons, J.A., Tsao, J.Y..2007. Research challenges to ultra-efficient inorganic solid-state lighting [J]. Source of the Document Laser and Photonics Reviews,1(4):307-333.
    [2]Chen L., Lin C.-C., Yeh C.-W., Liu R.-S..2010. Light converting inorganic phosphors for white light-emitting diodes [J]. Materials,3(3):2172-2195.
    [3]Smet P.F., Parmentier A.B., Poelman, D.2011. Selecting conversion phosphors for white light-emitting diodes [J]. Journal of the Electrochemical Society,158(6):R37-R54.
    [4]雷勇,范广涵,廖常俊,李述体,刘颂豪,黄琨.2006.大功率白光二极管的散热问题探讨[C].2006中国光电产业高层论坛
    [5]李勇,李鹏芳,曾志新.2010.大功率LED照明装置微热管散热方案分析[J].激光与光电子学进展.
    [6]《固体发光》编写组.1976.固体发光[M].中国科学院,吉林物理所,中国科学技术大学.
    [7]李建宇.2003.稀土发光材料及其应用[M].北京.化学工业出版社.
    [8]何维.1995.紫外光对人眼的危害[J].中国眼镜科技杂志,1.
    [9]牟同升,李莉,虞建栋.2008.LED在人居光环境应用中所面临的挑战与机遇[C].中国照明论坛——绿色照明与照明节能科技研讨会专题报告文集.
    [10]Zhang X., Tang X., Zhang J., Gong M.2010. An efficient and stable green phosphor SrBaSiO4:Eu2+for light-emitting diodes [J]. Journal of Luminescence,130(12):2288-2292.
    [11]Zhang M., Wang J., Zhang Q., Ding W., Su Q.2007. Optical properties of Ba2SiO4:Eu2+ phosphor for green light-emitting diode (LED) [J]. Materials Research Bulletin,42(1):33-39.
    [12]Guo C. F., Lin. L., Chen C. H., Huang D. X., Su Q.2008. Preparation of Y2O2S:Eu3+ phosphors by a novel decomposition method [J]. Materials Letters,62(4-5):600-602.
    [13]Kuang J. Y, Liu Y. L., Yuan D. S.2005. Preparation and Characterization of Y2O2S:Eu3+ Phosphor via One-Step Solvothermal Process [J]. Electrochemical and Solid-State Letters, 8(9):H72-H74.
    [14]谭宁会2007. Y2O2S Eu3+红色荧光粉的制备及表面包覆研究[D][硕士].广州.暨南大学.
    [15]W. H. Fonger, C. W. Struck.1970. Eu3+5D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl [J]. The Journal of Chemical Physics,52(12):6364-6372.
    [16]Yam F K, Hassan Z.2008. InGaN:An overview of the growth kinetics, physical properties and emission mechanisms [J]. Superlattices Microstruct.,43:1.
    [17]Uchida Y, Taguchi T.2005. Lighting theory and luminous characteristics of white light-emitting diodes [J]. Opt. Eng.,44:124003.
    [18]Lee S, Seo S.2002. Optimization of yttrium aluminum garnet:Ce3+phosphors for white light-emitting diodes by combinatorial chemistry method [J]. J. Electrochem. Soc.,149(11): J85.
    [19]Yasuo S, Naoto K.2004. Effect of ammonium chloride addition on spray pyrolysis synthesis of BaMgAl10O17:Eu2+phosphor without post-heating [J]. J. Electrochem. Soc.,151(8):H192.
    [20]Feng Z Y, Zhuang W D, Huang X W, Wen X F, Hu Y S.2010. Effect of MgF2-H3BO3 flux on the properties of (Ce,Tb)MgAl11O19 phosphor [J]. J. Rare Earths,28(3):351.
    [21]Deng K M, Gong T, Chen Y H, Duan C K, Yin M.2011. Efficient red-emitting phosphor for near-ultraviolet-based solid-state lighting [J]. Opt. Lett.,36(23):4470.
    [22]Yang C T, Xie L J, Xiao Q L, Liu G X, Peng W F, Meng J X.2012. Ba1-xSrxMgSiO4:Eu2+, Mn2+:A novel tunable single-matrix tricolor phosphor for W-LED [J]. J. Rare Earths,2012, 30(2):110.
    [23]Liu Y F, Zhang X, Hao Z D, Luo Y S, Wang X J, Zhang J H.2011. Generating yellow and red emissions by co-doping Mn2+to substitute for Ca2+and Sc3+sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications [J]. Mater. Chem.,21:16379.
    [24]Lu J, Du F P, Zhu R, Huang Y L, Seo H J.2011. Phase formations and tunable red luminescence of Na2CaMg1-xMnx(PO4)2 (x=0.05-1.0) [J]. J. Mater. Chem.,21:16398.
    [25]Orive J, Mesa J L, Balda R, Fernandez J, Fernandez J R, Rojo T, Arriortua M I.2011. Enhancement of the luminescent properties of a new red-emitting phosphor, Mn2(HPO3)F2, by Zn substitution [J]. Inorg. Chem.,50:12463.
    [26]Qu X F, Cao L X, Liu W, Su G, Xu C, Wang P P.2010. Preparation and properties of CdSiO3:Mn2+, Dy3+phosphor [J]. J. Alloys Compd.,494:196.
    [27]Guo N, Huang Y J, You H P, Yang M, Song Y H, Liu K, Zheng Y H.2010. Ca9Lu(PO4)7:Eu2+,Mn2+:A potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes [J]. Inorg. Chem.,49:10907.
    [28]Zhang X M, Zeng H P, Su Q.2007. Mn2+-doped Ba2ZnS3 phosphor as a potential luminescent material for white LEDs [J]. J. Alloys Compd.,441:259.
    [29]Poort S H M, Janssen W, Blasse G.1997. Optical properties of Eu2+-activated orthosilicates and orthophosphates [J]. J. Alloys Compd.,260:93.
    [30]Zhang X G, Gong M L.2011. Photoluminescence properties and energy-transfer of thermal-stable Ce3+,Mn2+-codoped barium strontium lithium silicate red phosphors [J]. J. Alloys Compd.,509:2850.
    [31]Kulshreshtha C, Sharma A K, Sohn K S.2009. Effect of Local Structures on the Luminescence of Li2(Sr, Ca, Ba)SiO4:Eu2+[J]. J. Electrochem. Soc.,156(3):J52.
    [32]Tanner PA, Duan C K.2010. Luminescent lanthanide complexes:Selection rules and design. Coord. Chem. Rev.,254:3026.
    [33]楼立人,尹民,李清庭.2014.发光物理基础—固体光跃迁过程[M].合肥.中国科学技术大学出版社.
    [34]许少鸿.固体发光讲义[M].
    [35]Lee S., Seo S. Y. J.2002. Optimization of Yttrium Aluminum Garnet:Ce3+Phosphors for White Light-Emitting Diodes by Combinatorial Chemistry Method [J]. Electrochem. Soc,149: J85-J88.
    [36]Zhang S., Nakai Y, Tsuboi T, Huang Y, Seo H.2011. The Thermal Stabilities of Luminescence and Microstructures of Eu2+-Doped KBaPO4 and NaSrPO4 with β-K2SO4 Type Structure [J]. J. Inorg. Chem,50:2897-2904.
    [37]Choi S., Yun Y. J., Jung H.-K.2012. Eu2+and Mn2+activated single phase white emitting phosphor Na(Sr, Ba)PO4 for phosphor converted-LEDs [J]. Mater. Lett.,75:186-188.
    [38]Sun J., Zhang X., Xia Z., Du H..2011. Luminescent Properties and Energy Transfer of Ce3+,Tb3+Co-Doped NaBaPO4 Phosphor [J]. J. Electrochem. Soc,158:J368-J371.
    [39]Sokolova E., Hawthorne F. C., Khomyakov A. P..2005. Refinement of the crystal structure and revision of the chemical formula of olgite:(Ba, Sr) (Na, Sr, Ree)2Na[Po4]2 [J]. Can. Mineral.,43:1521-1526.
    [40]Guo N., Huang Y, You H., Yang M., Song Y, Liu K., Zheng Y.2010. Ca9Lu(PO4)7:Eu2+,Mn2+:A Potential Single-Phased White-Light-Emitting Phosphor Suitable for White-Light-Emitting Diodes [J]. Inorg. Chem.,49:10907-10913.
    [41]Zhang X., Zeng H., Su Q.2007. Mn2+-doped Ba2ZnS3 phosphor as a potential luminescent material for white LEDs [J]. J. Alloys. Compd.,441:259-262.
    [42]Guo N., Song Y, You H., Jia G., Yang M., Liu K., Zheng Y, Huang Y, Zhang H..2010. Optical Properties and Energy Transfer of NaCaPO4:Ce3+, Tb3+Phosphors for Potential Application in Light-Emitting Diodes [J]. Eur. J. Inorg. Chem.:4636-4642.
    [43]Zhang S. Y, Huang Y L., Seo H. J..2010. The spectroscopy and structural sites of eu2+ions doped KCaPO4 phosphor [J] Journal of The Electrochemical Society,157(7):J261-J266.
    [1]Sridhar Thyageswaran.2012. Developments in Thermometry from 1984 to 2011:A Review [J]. Recent Patents on Mechanical Engineering,5:4-44.
    [2]Wang X. D., Wolfbeis O. S., Meier R. J..2013. Luminescent probes and sensors for temperature [J]. Chemical Society Reviews,42(19):7834-7869.
    [3]Brubach J., Pflitsch C., Dreizler A., Atakan B..2013. On surface temperature measurements with thermographic phosphors:A review [J]. Progress in Energy and Combustion Science, 39(1):37-60.
    [4]Fischer L. H., Harms G S., Wolfbeis O. S..2011. Upconverting nanoparticles for nanoscale thermometry [J]. Angewandte Chemie-International Edition,50(20):4546-4551.
    [5]Li J. L., Tang B., Yuan B., Sun L., Wang X.-G..2013. Document A review of optical imaging and therapy using nanosized graphene and graphene oxide [J]. Biomaterials,34(37): 9519-9534.
    [6]Zhou S. S., Deng K. M., Wei X. T., Jiang G. C., Duan C. K., Chen Y. H., Yin M..2013. Upconversion luminescence of NaYF4:Yb3+, Er3+for temperature sensing [J]. Optics Communications,291:138-142.
    [7]Hao, S., Chen, G, Yang, C.2013. Sensing using rare-earth-doped upconversion nano-particles [J]. Theranostics,3(5):331-345.
    [8]楼立人,尹民,李清庭.2014.发光物理基础—固体光跃迁过程[M].合肥.中国科学技术大学出版社.
    [9]J. Garcia Sole, L.E. Bausa and D. Jaque.2005. An Introduction to the optical spectroscopy of Inorganic Solids [M]. Madrid. Wiley.
    [10]J. C. Fister, D. Rank, J. M. Harris.1995. Delayed Fluorescence Optical Thermometry [J]. Anal. Chem.,67:4269-4275.
    [11]Y. Shiraishi, R. Miyarnoto, T. Hirai.2008. A hemicyanine-conjugated copolymer as a highly sensitive fluorescent thermometer [J]. Langmuir,24:4273-4279.
    [12]P. Michler.2009. Single semiconductor quantum dots [M], Springer, Berlin, Heidelberg.
    [13]G W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G Bawendi, D. G Nocera 2003. Quantum-dot optical temperature probes [J]. Appl. Phys. Lett.,83:3555-3557.
    [14]Helmut C. Y. Yu, Sergio G Leon-Saval, Alexander Argyros, Geoff W. Barton.2010. Temperature effects on emission of quantum dots embedded in polymethylmethacrylate [J]. Applied Optics,49(15):2749-2752.
    [15]Wang S. P., S. Westcott, Chen W..2002. Nanoparticle Luminescence Thermometry [J]. J. Phys. Chem. B,106(43):11203-11209.
    [16]Smet P.F., Parmentier A.B., Poelman, D.2011. Selecting conversion phosphors for white light-emitting diodes [J]. Journal of the Electrochemical Society,158(6):R37-R54.
    [17]雷勇,范广涵,廖常俊,李述体,刘颂豪,黄琨.2006.大功率白光二极管的散热问题探讨[C].2006中国光电产业高层论坛
    [18]李勇,李鹏芳,曾志新.2010.大功率LED照明装置微热管散热方案分析[J].激光与光电子学进展.
    [19]McLaurin E. J., Bradshaw L. R., Gamelin D. R..2013. Dual-Emitting Nanoscale Temperature Sensors [J]. Chemistry of Materials,25:1283-1292.
    [20]G. Liebsch, I. Klimant, O.S. Wolfbeis, Mech. Adv. Mater. Struc.11 (1999) 1296.
    [21]D. Jaque, L.M. Maestro, E. Escudero, E.M. Rodriguez, J.A. Capobianco, F. Vetrone, A. Juarranz De La Fuente, F. Sanz-Rodriguez, M.C. Iglesias-De La Cruz, C. Jacinto, U. Rocha, J. Garcia Sole,2013. Fluorescent nano-particles for multi-photon thermal sensing [J]. Journal of Luminescence,133:249.
    [22]Cai Z. P., Xiao L., Xu H. Y, Mortier M..2009. Point temperature sensor based on green decay in an Er:ZBLALiP microsphere [J]. Journal of Luminescence,129:1994.
    [23]Inman K., Wang X., Sangeorzan B..2010. Design of an optical thermal sensor for proton exchange membrane fuel cell temperature measurement using phosphor thermometry [J]. Journal of Power Sources,195:4753.
    [24]Peng H. S., Huang S. H., Wolfbeis O. S..2010. J. Nanopart. Res.,12:2729.
    [25]K.M. Deng, T. Gong, Y.H. Chen, C.K. Duan, M. Yin.2011. Efficient red-emitting phosphor for near-ultraviolet-based solid-state lighting [J]. Optics Letters,36:4470.
    [26]G. Blasse.1976. Structure and Bonding,26:43-79.
    [27]. Boruc Z., Kaczkan M., Fetlinski B., Turczynski S., Malinowski M..2012. Blue emissions in Dy3+doped Y4Al2O9 crystals for temperature sensing [J].Optics Letters,37:5214.
    [28]Qin C. X., Huang Y. L., Seo H. J..2013. The thermal stability and structural site-distribution of Eu3+ions in the red-emitting phosphors Ca9Eu2W4O24 and Sr9Eu2W4O24 [J]. J. Alloy. Compd.534 (2012) 86.
    [29]Zheng Y, Chen B., Zhong H., Sun J., Cheng L., Li X., Zhang J., Tian Y, Lu W., Wan J., Yu T., Huang L., Yu H., Lin H..2011. Optical Transition, Excitation State Absorption, and Energy Transfer Study of Er3+, Nd3+Single-Doped, and Er3+/Nd3+Codoped Tellurite Glasses for Mid-Infrared Laser Applications [J]. Journal of the American Ceramic Society,94:1766.
    [30]You H., Nogami M..2004. Optical Properties and Local Structure of Eu3+Ions in Sol-Gel TiO2-SiO2 Glasses [J]. J. Phys. Chem. B,108:12003.
    [31]Vijaya N., Babu P., Venkatramu V.,. Jayasankar C.K, Leon-Luis S.F., Rodriguez-Mendoza U.R., Martin I.R., Lavin V..2013. Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors [J]. Sensors and Actuators B:Chemical,186:156.
    [32]Alencar M. A. R. C., Maciel G. S., De Araujo C. B., Patra A..2004. Er 3+-doped BaTiO3 nanocrystals for thermometry:Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor [J]. Journal of Applied Physics,84:4753.
    [33]Aigouy L., Sadi E., Lalouat L., Labeguerie-Egea J., Mortier M., Low P., Bergaud C..2009. AC thermal imaging of a microwire with a fluorescent nanocrystal:Influence of the near field on the thermal contrast [J]. Journal of Applied Physics,106:074301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700