用户名: 密码: 验证码:
赤铁矿中重晶石型含硫杂质的脱除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着钢铁工业的快速发展,铁矿需求逐年上升,同时对钢铁质量的要求也越来越苛刻,世界各国钢铁厂都努力通过降低钢铁特别是铁矿石中硫含量的途径来提高钢铁的质量。铁矿资源的开发总是遵循着先富后贫、先易后难的原则,在经过多年开采后,可供利用的富矿资源已经很少,目前我国可利用的铁矿资源日益趋向于贫、细、杂。含硫超微细低品位铁矿脱硫是一个世界性难题,尤其是当铁矿石中的硫以硫酸盐(BaSO4)的形式存在时,脱硫更加困难,国内外至今仍无系统的研究。
     本课题针对含重晶石型赤铁矿的脱硫分选工艺问题,采用单因素试验方法对重晶石和赤铁矿单矿物进行浮选试验,同时借助表面电性、红外光谱、吸附量和接触角测量等测试,对赤铁矿和重晶石的可浮性机理进行了研究。
     单矿物浮选试验结果表明:用油酸钠、氧化石蜡皂和十二烷基硫酸钠做赤铁矿和重晶石的捕收剂,油酸钠做捕收剂赤铁矿和重晶石产率最大,氧化石蜡皂在pH值超过6时几乎不能使赤铁矿上浮。用腐殖酸钠、羧甲基纤维素和淀粉为赤铁矿和重晶石的抑制剂,三种抑制剂对赤铁矿的抑制顺序为:腐殖酸钠>羧甲基纤维素>淀粉;随用量的不同,三种抑制剂对重晶石的抑制能力不同,在用量超过2g/t时腐殖酸钠对重晶石的抑制能力反而比羧甲基纤维素和淀粉弱。
     赤铁矿和重晶石接触角测量结果表明:pH值对赤铁矿和重晶石接触角无明显的影响,赤铁矿和重晶石的接触角随随pH值的变化没有明显的差异。重晶石接触角随捕收剂用量的增加逐渐增加,油酸钠对重晶石接触角的影响最为显著;赤铁矿接触角随抑制剂用量的增加而减小,腐殖酸钠能使赤铁矿接触角明显减小。其它的浮选药剂均不同程度地增加或减小了重晶石或赤铁矿的接触角。
     矿物表面动电位测试结果表明:试验所用赤铁矿的“零电点”对应的pH=3.5左右,重晶石“零电点”对应的pH=5左右;除淀粉添加使赤铁矿的动电位略有升高外,其它各种抑制剂或捕收剂的添加均不同程度地降低了赤铁矿和重晶石表面的动电位,抑制剂腐殖酸钠的添加在很大程度上降低了赤铁矿表面的动电位。赤铁矿的浮选在中性或弱碱性下进行时,各种抑制剂使赤铁矿表面动电位降低的顺序为:腐殖酸钠>羧甲基纤维素>淀粉。在碱性条件下,各种捕收剂使重晶石表面动电位下降的顺序为:油酸钠>733>十二烷基硫酸钠。
     吸附量测量结果表明:腐殖酸钠和淀粉抑制剂在赤铁矿表面均有一定量的吸附,在抑制剂用量超过2mg/L时,腐殖酸钠在赤铁矿表面的吸附量比淀粉要大得多,捕收剂油酸钠在重晶石表面的吸附量比氧化石蜡皂要大。
     红外光谱结果表明:赤铁矿或重晶石与药剂作用后的红外光谱图中,除了显示了矿物原子基团的特征振动吸收峰外,还出现了药剂的某些振动吸收峰,并发生了位移,表明各种抑制剂与捕收剂分别在赤铁矿与重晶石表面发生了不同程度的化学吸附或物理吸附。
     通过单矿物浮选试验可以得到以下结论:捕收剂为733,抑制剂为腐殖酸钠的药剂制度对含重晶石型赤铁矿具有良好反浮选脱硫效果。
     进行实际矿石的分选试验,获得了较好的脱硫指标。闭路试验中,原矿含铁50.13%,含硫1.38%,铁精矿含铁60.03%,含硫0.45%,铁回收率68.08%,进入铁精矿的硫回收率仅有18.54%。
As the fast development of iron and steel industry, the demand for iron ore is rising year by year,meanwhile the quality request to the steel is also getting more and harsher. steel companys of Various countries reduce Sulfur content in the steel diligently specially iron ore enhances the steel quality. According to the follows principle:The rich iron ore resource is always used firstly.The last is poor,after undergoing many years mining,the high-grade ore resources can be developed is very few, at present the iron ore resources our country is tend to be poor thin and mixed day by day. Desulphurization the sulfur Included in ultrafine low-grade iron ore is a worldwide difficult problem,particularly as the sulfur Included in iron ore by the way of sulfate (BaSO4),the desulphurization is much more difficult,domestic and foreign still have not system's research until now.
     This topic focused on the problem of desulphurization separation process of hematite contained barite, conducted flotation tests of hematite and barite single mineral adopting single-factor experimental method, meanwhile, researched the floatability mechanism of hematite and barite by means of superficial electric properties, infrared spectrum, adsorptive capacity, angle of contact and so on.
     The single mineral flotation results indicated:Sodium oleate,oxidized paraffin soap or lauryl sodium sulfate was used as collector in hematite or barite flotation, the yield of hematite and barite is biggest when sodium oleate was used, the oxidized paraffin soap nearly couln't float hematite when the pH was above 6. Humic acid sodium, carboxymethylcellulose or starch was used as depressant in hematite and barite flotation, the depressive effect of the three depressants to hematite was as follows:Humic acid sodium>carboxymethylcellulose>starch. The depressive effect was different with the different dosages, the depressive effect of humic acid sodium was weaker than carboxymet-hylcellulose and starch when the dosage exceeded 2g/t.
     The results of contact angle measurement of hematite and barite showed that: The pH value has no obvious influence on the contact angle of hematite and barite, the contact angle of hematite and barite has no obvious diference with the variation of pH value. The contact angle of barite increases gradually along with the increment of the collector dosage, the sodium oleate has the most remarkable influence on the contact angle of barite; the contact angle of hematite decreased as the dosage of depressants increased, the humic acid sodium could reduce the contact angle of hematite obviously. Other flotation reagents could increase or decrease the contact angle of barite or hematite in varying degrees.
     The test results of Zeta potential measurement illustrated that the PH value corresponding to the "zero point" of hematite and barite was about 3.5 and 5.0 respectively; starch could increase the electrokinetic potential of hematite slightly, but other depressants or collectors all reduced the electrokinetic potential of hematite and barite in varying degrees, humic acid sodium reduced the electrokinetic potential of hematite largely. The flotation process of hematite was usually conducted in the neutral or weakly alkaline pulp, the decreasing order of Zeta potential measurement on the surface of hematite treated by various depressants was as follows:Humic acid sodium>carboxymethylcellulose>starch. Under the alkaline condition, the decreasing order of Zeta potential measurement on the surface of barite treated by various collectors was as follows:Sodium oleate>733>lauryl sodium sulfate.
     The results of adsorption measurements showed that humic acid sodium or starch had a certain adsorption to the surface of hematite, when the dosage of depressant surpassed 2mg/L, the adsorption capacity of humic acid sodium was much bigger than starch, the adsorption capacity of sodium oleate to the surface of barite was much more than oxidized paraffin soap.
     The FT-IR results showed that there not only found many characteristic vibratory absorption peaks of mineral atom groups but also appeared some of reagents, and the absorption peaks took place in slight displacement. This reflected that the depressants and collectors occurred some degree of chemical aborption and physical abortion to the surface of hematite and barite.
     According to the single mineral flotation tests, the following conclusions can be obtained:good targets could be obtained when the collector was 733, the depressant was humic acid sodium for the reverse flotation of the hematite(barite type).
     The real ore separation experiments were conducted, a good desulphurization target was obtained. In the close circuit experiment, the run-of-mine ore contained 1.38% sulfur and 50.13% iron, the concentrate of 60.03% iron and 0.45% sulfur, and the iron recovery of 60.08% was obtained, the recovery of sulfur entered the concentrate was merely 18.54%.
引文
[1]刘亚学,石绍海,张作金等.铁矿资源回收与尾矿综合利用[J].山东冶金.2004(6):6.
    [2]中国矿业网,中国矿产资源,铁矿.
    [3]USGS Minerai commodity summaries,2005.
    [4]肖克炎,邹伟,丁建华等,中国铁矿床品位-吨位模型[J].矿床地质,2008,27(6):782-790.
    [5]谢承祥,李厚民,王瑞江等,中国已查明的铁矿资源的结构特征[J].地质通报,2009,28(1):80-84.
    [6]邹健.我国铁矿资源形式与可持续供给的对策建议[J].矿业工程,2003(1):1-4.
    [7]汪国栋,宋雄等,世纪之交的我国铁矿资源与利用分析[J].冶金地矿经济,1998(1):39-43.
    [8]SantosM.L., Study on economical iron content in iron concentrate[J]. Materials research bulletion,1996 (4):89~96.
    [9]张寿荣.21世纪的钢铁工业及对我国钢铁工业的挑战[J].天津冶金,2001,(1):5-9.
    [10]Yu Zhang and Mamoun Muhammed. The Removal of Phosphorus from Iron Ore by Leaching with Nitric Acid[J]. Hydrometallurgy,1998(21):255~275. Fuertenau D.W., Intern Miner.Proe Congr MeetIng-7[J].1977,10(6):55~57.
    [11]陈甲斌,贾文龙.低品位铁矿资源开发经济分析模型与应用研究[J].地质学刊.2008(4):324-331.
    [12]WarkI W.. Soultione quilibria in analytical chernistry[J]. Gandin Memorial,1986,1.
    [13]Fuertenau D.W.. Intern Miner.ProeCongr MeetIng-7[J].1977,10(6):55~57.
    [14]道林.E.C.等.用浮选柱反浮选铁矿的研究[J].国外金属矿选矿,2000,37(2):33-36.
    [15]Uwadiale G.G.O.O.. Flotation of iron oxides and quartz[J]. A review Mineral Proeessing and Extractive Metallurgy Revie,1992,11((3).129~161.
    [16]刘家样.青海某微细粒嵌布磁铁矿选矿试验研究.金属矿山,2009(6):52-55.
    [17]盛放.磁选设备和固液分离设备的使用现状与发展前景,2005(5):36-37.
    [18]Chen, DL, KW., Clements E. J., Robertsand E.J. Foreeating Steel Demand in China[J]. Reso urces Policy. SePtember,1991.
    [19]NatarajnK.A, etal. Role of bacterial interaction and bioreagents inironore flotationn[J]. Int. Miner Proeess,2001(9):62~143.
    [20]袁致涛,韩跃新,李艳军等.铁矿选矿技术进展及发展方向[J].有色矿冶,2006,22(5):10-13.
    [21]张强.采用混合捕收剂选别东鞍山难选铁矿石的研究[J].金属矿山,1992(6):43-48.
    [22]易平贵,俞庆森.黄铁矿化学脱硫的热力学分析[J].煤炭转化,1998(1):47-51.
    [23]魏祥松,硫铁矿烧渣选铁除硫的措施[J].化工矿山技术.1994(6):58-60.
    [24]杨蓓德等.浮选法脱除硫铁矿烧渣硫[J].矿业研究与开发.2006(2):52-54.
    [25]吴德礼等.黄铁矿烧渣的综合利用途径与问题分析[J].冶金环境保护.2006(1):56-60.
    [26]姚素玲等,狐堰山矽卡岩型铁矿化学脱硫工艺的探讨[J].太原理工大学学报.2007(4):436-437.
    [27]周传华,李国勋.黄铁矿氧化焙烧过程的热分析[J].有色金属.1997(1):78-81.
    [28]洪德贵,夏水炉.含磁硫铁矿尾矿回收铁精粉的研究与实践[J].矿业安全与环保.2007(3):26-27.
    [29]李浩然,冯雅丽.微生物氧化硫铁矿烧渣脱硫的研究[J],有色金属.2003(1):92-95.
    [30]刘德洪.微生物法脱除大石桥硫铁矿烧渣中硫的研究[J].工业安全与环保.2006(8):10-11
    [31]Arnold R.G.Range in composition and structure of 82 natural terrestrial pyrrhotites[J]. Can. Miner,1967(9):31-50.
    [32]Miller J.D.,Li J.,Davidtz J.C.,Vos F..A review of pyrrhotite flotation chemistry in the processing of PGM ores[J].Minerals Engineering,2005(18),855-865.
    [33]辛杰莫娃B.A.磁铁矿矿石选矿流程中的浮选工艺[J],国外金属选矿,2008,(2):11-12.
    [34]杨菊,吴熙群,李成必.难选磁黄铁矿浮选工艺研究[J].有色金属(选矿部分),2002,(4):11-13.
    [35]梁冬云,何国伟,邹觅.磁黄铁矿的同质多象变体及其选别性质差异[J].广东有色金属学报,1997年,7(1):1-4.
    [36]Nicholson R.V.,Scharer J.M..Environmental Geochemistry of sulfide oxidation[J]. Washing-ton DC:AmericanChemicalSociety,1994.14-30.
    [37]西北大学地质系矿物教研室.矿物学[M].北京:地质出版社,1981.
    [38]Laskowski J.S..Energy barrier in particle-to-bubble attachment on flotation kinetics[J]. Mines & carrieres. Les techniques,1992,95-100.
    [39]石贵明,肖庆飞等.提高镍铜回收率及降低精矿氧化镁含量工艺的试验研究[J].矿山机械,2007,(10):59~61.
    [40]Goncalves K.L.C., Andrade V.L.L., Peres A.E.C.The effect of grinding conditions on the flotation of a sulphide copper ore [J].Minerals Engineering,2003(16):1213-1216.
    [41]Rao S.R., Moon K.S., Leja J.1976.Effect of grinding media on the surface reactions and flotati-on of heavy metal sulphides[J]. In:Fuerstenau, M.C. (Ed.), Flotation A.M. Gaudin Memor-ial Volume. vol.1.AIME, New York, pp.509-527.
    [42]唐敏,张文彬.流程结构的选择对微细粒铜镍硫化矿的浮选影响[J].矿冶2008,17(3):3-4.
    [43]廖瑞虎,蔡正安.采用MHH-1活化铁矿粉中磁黄铁矿的生产实践[J].化工矿物与加工,2008,(10):9-10.
    [44]Khan.A., Kelebe S.2004. Electrochemical aspects of pyrrhotite and pen-tlandite in relati-on to their flotation with xanthate[J]. Part Ⅰ:Cyclic voltam-metry and rest potential measure-ment. J. Appl.Electrochem., pp.1-8.
    [45]Buswell A.M., Nicol M.J.Some aspects of the electrochemistry of the flotation of pyrrhotite [J] Journal of Applied Electrochemistry,2002 (32):1321-1329.
    [46]高洪山,杨奉兰.磁黄铁矿与磁铁矿的浮选分离实践[J].矿产保护与利用,1997,(4):34-35.
    [47]张业清,张清河,李伟.山东牟平某尾矿选铁工艺研究[J].矿业快报,2006,452(12):44-45.
    [48]孙炳泉.影响磁黄铁矿可浮性因素的探讨[J].安徽冶金,1991,(1):32-33.
    [49]张锦瑞.含硫磁铁矿石的选矿试验研究[J].矿业快报,2000,340(10):2-3.
    [450]乌明森A.A.W.Isa磨机-Jameson浮选槽回路可提供快速无铁污染浮选工艺[J].国外金属矿选矿,2006,(11):24-44.
    [51]安尼马杜A.K.等.超细磨技术在南非英美铂业集团公司的开发应用[J].国外金属矿选矿,2007,(6):14-15.
    [52]邵伟华,杨波,戈保梁.某铜铁矿厂降低铁精矿含硫的试验研究[J].矿冶工程,2006(2):49-52.
    [53]彭会清,李禄宏,徐林.某铁精矿浮选脱硫试验研究[J].金属矿山,2005,(12):36-37.
    [54]李金伟.用丁胺黑药浮选磁黄铁矿的工业实践[J].江苏冶金,1998,(1):62-63.
    [55]黄开国,陈万雄,彭先淦,曾晓晰.一种低品位镍矿石的浮选工艺[J].中国有色金属学报,1999,(9):601-604.
    [56]王全亮,周虎强,代奕华.广西某硫酸烧渣脱硫选矿工艺研究[J].矿冶工程,2008 28(5):46-50.
    [57]郑伟.我国浮选起泡剂的研究进展[J].有色金属(选矿部分),2004,(1):155.
    [58]克里姆帕尔R.R.硫化矿物浮选捕收剂实践评述[J].国外金属矿选矿,2001(9):6-7.
    [59]赵春艳,余克峰.多金属硫化矿的选硫技术改进[J].有色矿冶,2008,24(1):18.
    [60]饶峰,童雄,黄宇林,姬云波.云南文山某铁精矿脱硫的试验研究[J].云南冶金2007,36(5):14.
    [61]李亮,徐修生.新型活化剂MHH-1在分离磁黄铁矿与磁铁矿中的应用[J].矿业快报,2004,420(6):50-51.
    [62]崔金祥.寿王坟铜矿铁精矿降硫工艺研究,金属矿山[J].1998,269(11):44-46.
    [63]任金菊等.低品位磁铁矿石选铁除硫试验研究[J].矿产保护与利用.2006(2):30-33.
    [64]姜圣才等.生物浸出磁黄铁矿的研究概况[J].矿冶.2006(1):53-56.
    [65]张军,张宗华.云南细粒红铁矿的选别工艺[J].金属矿山.2007(7):33-35.
    [66]吴德礼等,化学法处理黄铁矿烧渣的新工艺[J].矿产综合利用.2005(1):34-37.
    [67]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1994.
    [68]FuerstenauMC.浮选(上册)[M].北京:冶金工业出版社,1981:47-49.
    [69]大连理工大学分析中心教研室.光波谱分析在有机化学中的应用[M].大连:大连理工大学教材,1982:66-69.
    [70]陈允魁.红外吸收光谱及其应用[M].上海:上海交通大学出版社,1993.
    [71]周名成.紫外与可见光光度分析法[M].北京:化学工业出版社,1986.
    [72]Sikora F.J., Stevenson F.J. Silver complecation by humic substances:conditional stability constants and nature of reactive site[J]. Geoderma 1988 (42):353~363.
    [73]王英梅.腐殖酸钠在铜硫矿石浮选中的作用机理,武汉科技大学学报(自然科学版)[J]. 2002,25(4):342-344.
    [74]Baljee.S.R,Iwasaki.Trans.AIME.1969(4):401~406.
    [75]Pavlovic. S., Brandao. P.R.G., Adsorption of starch. Amylase.amylopectin and glucose monomer and their effect on the flotation of hematite and quartz. Minerals Enginering [J]. 2003(16):1117~1121.
    [76]RAGHAVAN. S. andFUERSTENAU. D.W.'On thewettability and flotation concentration of submicron h-ematite particles with octylhydroxamate as collector'[J], (eds. P. Somasundar-an and R. B. Grieves), Advances inInterfacial Phenomena of Particulate/Solution/GasSyste ms:Application to Flotation Research, AIChE S-ymposium Series,1975,59~67.
    [77]SOMASUNDARAN.P., Flotation mechanism based on Ion-molecular complexes[J]. Journal of Central South Institute of Mining and Metallurgy,1983,8(S2):59~68.
    [78]J. Shibata, Fuerstenau.D.W. Flocculation and flotation characteristics of fine hematite with sodium oleate[J].Int. J. Miner. Process.2003(72) 25-32.
    [79]Cooke,S.R.B.and Nummela,W.. Fatty and resin acids as collectors for iron oxides, U.S.Bureau of Mines Report of I Nnvestigations 5498,1959, pp,1~24.
    [80]Stauter.J.C. Active mechanisms in the flotation of hematite with fatty acids amine-s, Ph.D.thesis. Uniersity of Utah,1970.
    [81]Iwasaki.I. Flotation characteristics of hematite,goethite and activated quartz with 18-carbon aliphatic acids and related compounds, Trans. AIME.1960,217,237~244.
    [82]Bian fang Bai, In Situ Mechanistic Study of SDS Adsorption on Hematite for Optimized Froth Flotatio, Ind. Eng. Chem. Res.2004,43,5326~5338.
    [83]Quast, K. B. A Review of Hematite Flotation Using 12-Carbon Chain Collectors. Miner. Eng. 2000,13 (13),1361~1376.
    [84]Senesi N, Sposito G, Martin J P. Sci[J]. Total Environ,1986,55:351.
    [85]Schnitzer, Flotation of hematite using C6-C18 saturated fatty acids, Minerals Engineering 19 (2006) 582~597.
    [86]A·A·阿布拉莫夫,盐类矿物的疏水规律和浮选,国外金属选矿,2000,11,30-32.
    [87]Kulkarni. R.D.,Somasundaran.P., Flotation chemistry of hematite/oleate system.Colloids and Surfaces,1983,8(2):103~119.
    [88]胡熙庚,黄和慰,毛锯凡.浮选理论与工艺[M].湖南:中南工业大学出版社,1991.
    [89]Fuerstenau,D.W.,HealyTWandSomasundaran P.Trans. AIME,1964,229~321.
    [90]Sonmeza. I., Y. Cebeci, A study on spherical oil agglomeration of barite suspensions, Int. Miner. Process [J].2003(71):219~232.
    [91]卢涌泉,邓振华,实用红外光谱解析[M].电子工业出版社,1989,45-95.
    [92]Weissenborn. P.K., Behaviour of amylopectin and amylose components of starch in the selec- tive flocculation of ultrafine of iron ore[J]. International Journal of Mineral Processi ng,1996 (47):197~211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700