用户名: 密码: 验证码:
织金新华磷矿稀土赋存状态及其在浮选、酸解过程中的行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
织金新华磷矿位于贵州省织金县,是一个超大型伴生稀土的中低品位磷矿床,P205品位平均为17.51%, IREO品位为0.05%-0.13%,已探明磷矿石储量13.34亿t,占贵州省磷矿储量的一半,稀土氧化物储量144.6万t,其中重稀土氧化钇占32.18%,在全国磷资源和稀土资源中均占有重要的地位。织金新华磷矿稀土储量大,但由于稀土品位低,且稀土以类质同象形式赋存于胶磷矿中,使在开发利用磷资源时,为稀土的有效回收造成了很大困难。本文所研究的织金新华磷矿,是按照工业大规模开采的方式进行取样的,具有很好的代表性。针对所取矿样,从磷矿稀土的赋存状态、浮选过程稀土的富集行为和酸解过程稀土的酸解行为等进行了系统的研究,并对磷矿酸解过程稀土的反应机理进行了深入分析,为该矿的综合开发利用提供理论依据。
     通过织金新华磷矿稀土的赋存状态研究表明,矿石中稀土主要以钇(Y2O3)、镧(La2O3)、钕(Nd2O3)、铈(CeO2)四种元素为主,占稀土总量的81.20%。轻稀土含量稍微高于重稀土含量,占稀土总量分别为55.90%和42.15%;其中稀土钇(Y2O3)占稀土总量的32.18%,占重稀土总量的76.29%。并且矿石中稀土与磷成正相关关系,稀土总量与磷含量的相关系数为0.98191。胶磷矿单体矿物中除存在稀土的独立矿物独居石外,还新发现了稀土的独立矿物方铈石,但稀土的独立矿物数量极微,没有发现稀土钇的独立矿物,稀土元素主要以类质同象形式赋存于胶磷矿中。这种结构导致稀土极不易从磷矿中单独选取。
     通过织金新华磷矿浮选过程稀土的行为研究表明,稀土主要富集在磷精矿中,并且WF-01是织金新华磷矿反浮选工艺中白云石矿物的有效捕收剂,采用磷酸作为抑制剂和矿浆pH值调整剂,在控制适宜的浮选条件下,磷精矿中∑REO的回收率达到90%,富集比达到1.50。本文利用一级浮选速率模型ε=ε∞(1-e-kt)推导出了反浮选速率模型ε=ε∞+(100-ε∞)e-k(t+θ),该模型可以很好地描述织金新华磷矿反浮选过程中浮选槽内产品含稀土磷矿物(以∑REO表示)和脉石矿物(以MgO表示)回收率随时间的变化规律,并以修正的浮选速率常数kmod和选择性指数SI来衡量含稀土磷矿物和脉石矿物分选效果的好坏。通过浮选正交动力学实验研究,捕收剂WF-01用量是影响∑REO修正速率常数kmod最主要的因素,而抑制剂H3P04用量是影响选择性指数SI最主要的因素。采用三维表面图和等高线线图对两种药剂组合方式下∑REO的浮选动力学参数变化进行表征时表明,磷矿反浮选时,如捕收剂WF-01用量为0.8 kg/t,为获得较好的含稀土磷矿物与白云石矿物的分选效果,可适当增加抑制剂H3P04用量。
     通过织金新华磷矿酸解过程稀土的行为研究表明,溶液的酸度是影响稀土分布规律的主要因素。增加溶液中硫酸浓度或磷酸浓度均可使磷矿中∑REO进入溶液中的分布比例降到5%以下。织金新华磷矿中∑REO的酸解动力学可以用包含了自阻化因素的德罗兹多夫方程来很好的描述,拟合曲线的相关系数均在0.99以上。根据Arrenius方程对织金新华磷矿酸解过程P2O5的反应表观活化能计算,表明硫酸分解织金新华磷矿的主要反应为固态膜扩散控制过程,而对于磷矿中稀土的反应,也属于固态膜扩散控制过程。织金新华磷矿酸解过程稀土的反应机理研究表明,稀土与酸的反应包括四个主要过程:一是反应体系的氢离子(H+)、阴离子(SO42-、PO43-、H2PO4等)以及分子(H2SO4或H3PO4)等反应物向颗粒界面扩散的过程;二是磷矿颗粒界面稀土元素与反应物发生化学反应过程,反应物S042-或H2SO4浓度高,生成RE2(SO4)3的几率增加,PO43-、H2PO4或H3P04浓度高,生成REPO4或REH2PO42+的几率增加;三是生成物向反应主体系的扩散过程,生成的不溶性的REPO4沉积在颗粒表面硫酸钙结晶物形成的固体膜层中,生成的可溶性RE2(SO4)3、或REH2PO42+等通过扩散层扩散进入反应主体系。RE2(SO4)3的溶解度随温度的升高而显著下降,过饱和的RE2(SO4)3将生成结晶物沉积在固体膜层中;四是稀土被硫酸钙晶体包裹现象,磷矿颗粒界面硫酸钙的核晶速度很快,颗粒内部反应的稀土来不及通过扩散层,便被包裹进了硫酸钙晶体中,这也是造成稀土在磷石膏中的分布比例大于磷酸中分布比例的主要原因。
     通过本文的研究,织金新华磷矿用于生产湿法磷酸,可以在磷矿酸解过程中采取增加溶液酸度的方法,能够使矿石中90%以上的稀土元素进入磷石膏,然后探寻从磷石膏中回收稀土的经济、合理有效的方法。
Xinhua phosphorite in Zhijin County of Guizhou is one of the super large-scale REE-bearing medium-low grade phosphorite deposits in Southwest of China. The proved up reserve of phosphorite ores was 13.34×108t, which accounts for about 50% of total phosphorite reserve of Guizhou Province. Previous investigations have revealed that the total reserve of REE oxide comes up to 140×104t, among which yttrium oxide accounts for 32.18% of the total REE oxide. The average contents of P2O5 in phosphorite was 17.51%, and the contents of EREO (which stands for the total REE oxides) ranges from 0.05% to 0.13%. This phosphorite is noted for its greatly abundant reserve of REE but considerably low contents of REE. Moreover, it is very difficult to recovery REE from ores due to the isomorphous substitution of REE for the lattices of calcium ion in collophanite. Nevertherless, the studying on recovering REE is still necessary at present. In this paper, the samples derived from mined ores in the big scale of industrial explotation. Hence, the samples were better representative for the studing on Zhijin Xinhua phosphorite ores. Based on the samples, the existing state of REE in ores, the enrichment rule of REE by flotation, the behavior and reacting mechaniism of REE disoluted by acid were systematiclly and deeply investigated in this paper. This research will provide the valuable reference for the development and utilization of Zhijin REE-bearing phosphorite deposits.
     The exiting state of REE in Zhijin Xinhua phosphorite ores were investigated systematically. The results showed that Y2O3, La2O3, Nd2O3 and CeO2 were main four rare earth elements in ore, which accounted for 81.20%of∑REO. The contents of∑LREO (which stands for the total light rare earth oxides) were slishtly higher than those of∑HREO (which stands for the total heavy rare earth oxides), accounting for 55.90%and 42.15%of∑REO, respectively. Among∑REO, Y2O3 was most abundant, accounting for 32.18%of∑REO and 76.29%of∑HREO. Remarkably, there existed good positive correlationship between REE and phosphorus, and the correlation coefficient was 0.98191. There existed independent minerals of REE in single collophanite mineral, such as cerianite and monazite, moreove, cerianite was found first time, but the amount of them was extremely little. No independent mineral of yttrium has been found in this investigation. Therefore, REE were mainly present in the form of ions in the lattices of collophanite, which leaded to it extremely difficult to extract REE from phosphorites.
     The enrichment rule of REE by flotation was investigated for Zhijin Xinhua phosphorite ores. The results indicated that REE can be.mainly enriched in concentrate by reverse flotation technology. Moreover, it has been found that a high flotation efficiency and excellent selectivity could be achieved when collector WF-01 was used to effectively collect dolomite minerals and other gangue minerals and phosphoric acid was used as phosphate minerals depressant and pH adjustment of pulp. The∑REO recovery rate of flotation concentrates came up to 90% and the enrichment ratio of∑REO in concentrates was up to 1.50. In addition, based on the classical first-order rate model ofε=ε∞(1-e-kt), the reverse flotation rate model ofε=ε∞+(100-ε∞)e-k(t+θ) was obtained, which could fit the data very well to describe the effect of flotation time on recovery rate of EREO and MgO in concentrate. Furthermore, a modified flotation rate constant kmod defined as theproduct ofε∞and k, i.e., kmod=ε∞·k and selectivity index SI defined as the ratio of the modifiedrate constant of valuables to the modified rate constant of gangue, i.e., SI=kmod1/kmod2, were also used to better measure the separability between bearing-REE phosphoric mineral and gangue mineral. The kinetics based on flotation Orthogonal experiment showed that the collector WF-01 dose was the most significant variable affecting kmod for∑REO, while depressant H3PO4 dosage affected the SI significantly. In order to further analyzed the effect of compounding reagents with WF-01 and H3PO4 on parameters kmod and SI, the response surface graphs and the contour graphs were drawn for kmod of∑REO, kmod of MgO and SI. The result indicated that the excellent separation between∑REO and MgO could be obtained by increasing depressant H3PO4 dosage in the condition of collector WF-01 dosage of 0.8 kg/t when reverse flotation were carried out for Zhijin Xinhua phosphorite ores.
     The behaviors and reacting mechanisms of REE dissoluted by acid were studied deeply for Zhijin Xinhua phosphorite ores. It was found that the acidic value of solution was the main effect factor on the distribution of REE in products. The distribution proportions of∑REO in phosphoric acid solution could be decreased to lower than 5% by increasing sulphuric acid or phosphoric acid concentration in reacting solution. The kinetics of ores dissoluted by acid showed that the Drozdov equation , which taked into account the self-impeding effect, could describe the dissolution progress of∑REO of ore quite well. The correlation coefficient fitting experimental data was more than 0.99.The reaction apparent activation energy of P2O5 calculated by Arrenius equation indicated that the main reaction of Zhijin Xinhua phosphorite ores dissoluted by sulphuric acid was a diffusion control process, as well as for REE. In addition, the studing on the reacting mechanisms of REE dissoluted by acid showed that the reactions included four main processes. One was the reactants, such as ions of H+、SO42-、PO43- or H2PO4-, and molecule of H2SO4 or H3PO4, diffusing toward the particle interface of ore. Another was REE reacting with reactants in particle interface. RE2(SO4)3 would be obtained when there were high SO42- ion or H2SO4 molecule concentration, while REPO4 or REH2PO42+ would be obtained when there were high PO43-, H2PO4- or H3PO4 concentration. The third was the resultants diffusing toward the solution main system, in which the insoluble REPO4 or part of RE2(SO4)3 would be precipitated in the solid film formed by calcium sulphate crystal, while the soluble RE2(SO4)3 or REH2PO42+ diffusing toward the solution main system through diffusion layer. In addition, the phenomenon of REE being enwraped by calcium sulphate crystal was happened due to the fact that the speed of calcium sulphate crystalizing was faster than that of REE diffusing through solid film, which was the main reason that the distribution proportions of∑REO in phosphogypsum was more than that in phosphoric acid.
     Based on the studying in this paper, The distribution proportions of IREO in phosphogypsum could come up to 90% by increasing solution acidic value in wet-phosphoric acid process. Then, economical and reasonable method will be seeked to recovery REE from phosphogypsum.
引文
[1]吴初国.我国磷矿资源优势与可持续供应的对策建议[J].化肥工业,2004,(4):3-5
    [2]张卫峰,马文奇,张福锁等.中国、美国、摩洛哥磷矿资源优势及开发战略比较分析[J].自然资源学报,2005,20(3):378-386
    [3]尹丽文.我国磷矿资源开发利用现状及对有关问题的建议[J].国土资源情报,2004,(10):37-39
    [4]刘颐华.我国与世界磷资源及开发利用现状[J].磷肥与复肥,2005,20(5):1-5
    [5]鲁如坤.我国的磷矿资源和磷肥生产消费[J].土壤,2004,36(1):1-4
    [6]张卫峰.中国磷矿资源开发利用及其对磷肥产业竞争力的影响[J].北京,中国农业大学(博士学位论文),2005
    [7]霍丹群等.我国磷矿资源特点与制富过磷酸钙技术的发展[J].化肥工业,23(5):13-16
    [8]邵绪新等.国际磷矿工业发展趋势[J].化工矿物与加工,2001,(11):1-4
    [9]刘代俊.我国磷矿资源贫化趋势与对策探讨[J].磷肥与复肥,2005,20(1):7-9
    [10]中国化学矿业协会.我国磷矿供需形势分析及对策建议[J].化工矿物与加工,2004,(5):1-2
    [11]尹迪信.贵州省磷资源、土壤含磷状况及磷肥的应用[J].贵州农业科学,1993,(3)
    [12]高志炜.贵州省磷化工现状及发展前景[J].贵州化工,1995,(2):8-10
    [13]汤德元等.磷、磷肥和磷酸盐生产工艺[M].贵阳:贵州科技出版社.1990
    [14]薛理辉.稀土氧化物和稀土矿物的谱学研究[D].武汉,武汉理工大学(博士学位论文),2003
    [15]地质科学研究院地质矿产所稀有组.稀土矿物鉴定手册[M].地质出版社,北京,1973
    [16]张培善.中国稀土矿物学[M].北京:科学出版社,1998
    [17]曾繁瑞.磷矿中的稀土回收探讨[J].云南化工,1998,(2):59-61
    [18]白鸽.世界稀土资源分析[C].中国稀土学会第四届学术年会,18-21
    [19]刘光华.稀土固体材料学[M].北京:机械工业出版社.1997
    [20]阮永丰,许强,林林.蓝绿光波段激光技术与材料的研究进展[J].人工晶体学报,2002,31(3):266-276
    [21]徐光宪,倪嘉缵.神奇之土—稀土科学基础研究[M].长沙:湖南科学技术出版社,1995
    [22]徐光宪.稀土(上)[M].北京:冶金工业出版社,2002
    [23]贾继奎.从磷灰石中提取稀土的工艺综述[J].有色金属与稀土应用.2001,(4):25-29
    [24]王明译.波兰从磷灰石中提取稀土[J].国外动态,1996:19
    [25]俞集良译.俄罗斯从磷酸盐中回收稀土[J].世界有色金属,1993,(5):34-35
    [26]许孙曲摘译.从磷酸副产品中制取氧化钕[J].国外动态,1997:17
    [27]许孙曲摘译.从磷酸副产品中制取氧化铕[J].国外动态,1997:21
    [28]J.S.Preston, P.M.Cole, et.al.The recovery of rare earth oxides from a phosphoric acid by-product. Part 1:Leaching of rare earth values and recovery of a mixed rare earth oxide by solvent extraction[J]. Hydrmetallurgy,1996, No.41:1-19
    [29]J.S.Preston, P.M.Cole, et.al.The recovery of rare earth oxides from a phosphoric acid by-product. Part 2:The preparation of high-purity cerium dioxide and recovery of a heavy rare earth oxide concentrate[J]. Hydrmetallurgy,1996, No.41:21-44
    [30]J.S.Preston, P.M.Cole, et.al.The recovery of rare earth oxides from a phosphoric acid by-product. Part 3:The separation of the middle and light rare earth fractions and the preparation of pure europium oxide[J]. Hydrmetallurgy,1996, No.42:131-149
    [31]J.S.Preston, P.M.Cole, et.al.The recovery of rare earth oxides from a phosphoric acid by-product. Part 4:The preparation of magnet-grade neodymium oxide from the light rare earth fraction[J]. Hydrmetallurgy,1996,No.42:151-167
    [32]Andrianov, etal. Influence of the process essential parameters on the effectiveness of the sulfuric acid leaching of rare earths from phosphogypsum[J]. Zh. Prikl. Khim.,49(1976):636-638
    [33]Andrianov, A.M., etal.Production of ammonium sulfate, calcium oxide and rare earth concetrate from phosphogypsum[J]. Zh. Prikl. Khim.,51(1978):1441-1444
    [34]Clur, D.A, etal.Rare earth recovery from phosphogypsum[p]. South African patent ZA8005.318(1981)
    [35]金士威,欧阳贻德.磷酸生产技术及其发展方向[J].化工纵横,2003,17(2):18-20
    [36]Kijkowska, etal.Recovering rare-earth elements from kola apatite and Moroccan phosphate rock[J]. Phosphate research.1980(2):407-423
    [37]Zielinski, etal.Recovery of lanthanides from kola apatite in phosphoric acid manufacture[J]. J.Chem. Tech. Biotechnol,56(1993):355-360
    [38]R.Kijkowska, D.Pawlowska-Kozinska, et.al. Wet-process phosphoric acid obtained from Kola apatite. Purification from sulphates, fluorine, and metals[J]. Separation and purification technology, 2002, (28):197-205
    [39]Monir M.Aly, Nabawia A, et.al. Recovery of lanthanides from Abu Tartur phosphate rock, Egypt[J]. Hydrometallurgy,1999, (52):199-206
    [40]Milanova, etal. Purification of rare earth oxide mixtures from a concentrate obtained during the processing of apatite[J]. Hydrometallurgy,26(1991):369-378
    [41]熊家林.磷化工概论[M].北京:化学工业出版社,1994
    [42]乔军,柳召刚.包头稀土矿添加25%碳酸钠焙烧反应动力学研究.[J]稀土,2000,21(1):651
    [43]乔军,柳召刚.包头矿碳酸钠焙烧反应动力学研究[J].中国稀土学报,1999,17(1):861
    [44]李良才.铈的氧化方法[J].稀土,1980,(1):272-321
    [45]选矿手册第三卷第二分册[M].北京:冶金工业出版社,1999
    [46]陈甘棠.化学反应工程[M].北京:化学工业出版社.1990
    [47]胡熙庚.浮选理论与工艺[M].长沙:中南工业大学出版社,1991
    [48]胡为柏.浮选[M].北京:冶金工业出版社,1982
    [49]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1987
    [50]Kelsall, D.F.,1961. Application of probability in the assessment of flotation systems[C]. Transactions of the Institution of Mining and Metallurgy 70,191-204
    [51]Dowling, E.C., Klimpel, R.R., Aplan, F.F.. Model discrimination in the flotation of a porphyry copper ore[J]. Minerals and Metallurgical Processing 2,1985,87-101
    [52]Arbiter, N., Weiss, N.L.,1970. Design of Flotation Cells and Circuits[C]. Society of Mining Engineers, Preprint 70-B-89, AIME Annual Meeting, Feb.1970.
    [53]Arbiter, N., Harris, C.C., Yap, R.F.. Hydrodynamics of Flotation Cells[J]. Society of Mining Engineers, Transactions,1969,244:134-148
    [54]Arnold, B.J., Aplan, F.F.. A practical view of rate and residence time in industrial coal froth flotation circuits[C]. Processing Fifth Annual International, Pittsburgh Coal Conference, Pittsburgh, PA,1988, September 12-16:328-341.
    [55]Rastogi, R.C., Aplan, F.F.. Coal flotation as a rate process[J]. Minerals and Metallurgical Processing,1985, (2):137-146.
    [56]Klimpel, R.R.. In:Mular, A.L., Bhappu, R.B. (Eds.), Selection of Chemical Reagents for Flotation Mineral[C]. Processing Plant Design,2nd edn. AIME, New York,1980:930-934
    [57]R. Sripriya, P.V.T. Rao, B. Roy Choudhury. Optimisation of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques[J]. International Journal of Mineral Processing,2003, (68):109-127
    [58]M. Uc,urum, O. Bayat. Effects of operating variables on modified flotation parameters in the mineral separation[J].Separation and Purification Technology.2007 55:173-181
    [59]E.C. Cilek. Estimation of flotation kinetic parameters by considering interactions of the operating variable[J]. Minerals Engineering 2004,17:81-85
    [60]吴佩芝.湿法磷酸[M].北京,化学工业出版社,1987
    [61]王建华等.化学反应工程基本原理[M].成都:成都科技大学出版社,1997
    [62]陈欣.计算机三维图象和数据库技术在磷矿弱酸脱镁动力学中的应用[D].成都,四川大学(博士学位论文),2001
    [63]S. M. Janikowski, N. Robinson and W. F. Sheldrick, Fert. Soc. Eng.Proc.,1964,81
    [64]姜志新.湿法冶金分离工程[M].北京:原子能出版社,1993
    [65]蒋汉瀛.湿法冶金物理化学[M].北京:冶金工业出版社,1984
    [66]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1997
    [67]赵俊学,张丹力,马杰等.冶金原理[M].西北工业大学出版社,2002
    [68]黄兴无.有色冶金原理[M].北京:冶金工业出版社,1993
    [69]熊家林,刘钊杰,贡长生.磷化工概论[M].北京,化学工业出版社,1994
    [70]Van der sluis S, etc. The digestion of phosphate ore in phosphoric acid[J].Ind Engchem Res.1987, 26(12):1-5
    [71]Ma Sanjian. Dissolution kinetics os phosphate ore in acidic solution[J]. Chinese J Ind Engchem Res, 1990,29:2389
    [72]吕莉.汉源磷钾矿特性与制复肥反应过程机理研究[D].成都,四川大学(博士学位论文),2004
    [73]刘代俊,钟本和,张允湘.磷酸中铁铝镁杂质对开阳磷矿分解速率的影响[J].四川大学学报(工程科学版),2001,33(3):41-45
    [74]刘代俊,钟本和,张允湘.晓峰林矿反应动力学及表面微结构影响的研究[J].硫磷设计.1999,(3):42-45
    [75]刘代俊,钟本和,张允湘.金河磷矿中磷,铁,铝和镁的酸解动力学研究[J].磷肥与复肥,2000,15(4):9-13
    [76]李成蓉,钟本和,张允湘.金河磷矿在硫、磷混酸中的溶解动力学[J].化工学报,1998,49(3):335-341
    [77]张太明,黄隐华,张允湘.金河磷矿在磷酸中的溶解动力学[J].四川联合大学学报(工程科学版), 1997,1(3):27-32
    [78]余静.利用低品位磷矿生产湿法磷酸的新工艺及动力学研究[D].成都,四川大学(硕士学位论文),2005
    [79]傅崇说.冶金溶液热力学原理与计算[M].北京:冶金工业出版社,1989
    [80]王敏,孙晓明,马名扬.黔西新华大型磷矿磷块岩稀土元素地球化学及其成因意义[J].矿床地质2004,23(4):484-493
    [81]Wang M, Sun X M, Ma M Y. Rare Earth Elements Compositions and Genesis of Xinhua Large-scale Phosphorite Deposit in Western Guizhou, China [J]. Journal of Rare Earths,2005, 23(3):323-330.
    [82]刘家仁.试谈织金磷矿的综合利用问题[J].贵州地质,1999,16(3):253-258.
    [83]施春花,胡瑞忠,王国芝.贵州织金磷矿岩稀土元素地球化学特征研究[J].矿物岩石,2004,24(4):71-75.
    [84]Yang R D, Gao H, Wang Q, et al. REE Enrichment in Early Cambrian Gezhongwu Formation Phosphorou Rock Series in Sanjia, Zhijin County, Guizhou Province, China [J]. Journal of Rare Earths,2005,23(6):760-767
    [85]张杰,张覃,陈代良.贵州织金新华含稀土磷矿床稀土元素地球化学及生物成矿基本特征[J].矿物岩石,2003,23(3):35-38
    [86]金会心,王华,李军旗.新华戈仲伍组含稀土磷块岩矿石性质研究[J].稀有金属,2007,31(3):377-383
    [87]张杰,陈代良.贵州织金新华含稀土磷矿床扫描电镜研究[J].矿物岩石,2000,20(3):59-64
    [88]张覃,张杰,陈肖虎,等.贵州织金含稀土磷矿石选别工艺的选择[J].金属矿山,2003,(3):23-25
    [89]韦德科,崔湘玲.贵州某地含重稀土磷块岩矿工艺特性的研究[J].矿产保护与利用,2003,(2):38-40
    [90]张小敏,沈静,辜国杰等.含稀土磷块岩选矿工艺研究[J].化工矿物与加工,2004,33(11):12-1.
    [91]贵州有色金属研究所.贵州省织金县新华磷矿综合利用选矿实验报告[R].1971-07-10
    [92]贵州省冶金设计研究院.贵州织金含重稀土磷块岩矿石选矿实验报告[R].1991-11-21
    [93]张杰,孙传敏,龚美菱等.贵州织金含稀土生物屑磷块岩稀土元素赋存状态研究[J].稀土, 2007,28(1):75-79
    [94]陈吉艳.贵州织金新华含稀土磷矿床稀土元素赋存状态研究[D].贵阳,贵州大学(硕士学位论 文),2005
    [95]郭梦熊.浮选[M].北京:中国矿大出版社,1989
    [96]丘继存.选矿学[M].北京:冶金工业出版社,1987
    [97]Sis H, Chander S. Reagents Used in the Flotation of Phosphate Ores:A Critical Review [J]. Miner. Eng.,2003,16:577-585.
    [98]Sis H.磷酸盐矿石浮选药剂评述[J].李长根,崔洪山,译.国外金属矿选矿,2003,(10):8-13
    [99]Tanaka, Y., Katayama, N., Arai, S.. Reagents in phosphate flotation[C]. In:Somasundaran, P.,
    Moudgil, B.M. (Eds.), Reagents in Mineral Technology. Marcel Dekker, New York,1988,645-661.
    [100]华萍,罗廉明.磷矿物的溶解与浮磷药剂的选择[J].化工矿山技术,1995,24(1):49-51
    [101]韩英,钟康年,唐亚飞,等.对磷酸类抑制剂的探索[J].中国矿业,1998,7(5):51-53
    [102]朱元保.电化学数据手册.长沙:湖南科学技术出版社,1985
    [103]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用.长沙:中南工业大学出版社,1986
    [104]Mcphail D.C.. Thermodynamic properties of aqueous tellurium species between 25 and 350℃. Geochimica et Cosmochimica Acta.1995,59(5):851-866
    [105]谢克强.高铁硫化锌精矿和多金属复杂硫化矿加压浸出工艺及理论研究.昆明,昆明理工大学(博士学位论文),2006
    [106]钟竹前.湿法冶金过程.长沙:中南工业大学出版社,1988
    [107]胡显智.高镁矿石酸浸降镁及浸出液综合利用研究.昆明,昆明理工大学(博士学位论文),2001
    [108]喻正军.从镍转炉渣中回收钴镍铜的理论与技术研究.长沙:中南大学(博士学位论文),2006
    [109]《浸矿技术》编委会.浸矿技术.北京:原子能出版社,1994
    [110]严采华,刘期崇,夏代宽.磷酸分解磷矿石的动力学[J].高校化学工程学报,1998,3(12):265-270
    [111]侯长军,霍丹群.硫酸和磷酸的混合酸分解马边磷矿的反应过程动力学特性[J].磷肥与复肥,1999,(3):16-18
    [112]涂敏瑞,周进.硫酸和磷酸的混合酸分解磷矿反应动力学研究[J].化学工程,1995,23(1):62-66
    [113]马三剑,蒋京东,奇兵.磷矿粉在酸性水溶液中宏观溶解动力学方程[J].苏州城建环保学侥学报,1994,7(1):65-73
    [114]谷守玉,王光龙.硫酸分解磷矿第一阶段反应动力学研究[J].化工矿物与加工,2005,(7):15-17
    [115]张勇,张宝林,侯翠红活化疏松剂作用下酸解磷矿反应动力学实验研究[J].河南大学学报(自然科学版),2000,30(4):55-65
    [136]M.Bayramoglu, N.Demircilolu, et.al. Dissolution kinetics of Mazidagi phosphate rock in HNO3 solution [J]. Mineral processing,1995,43:249-254
    [117]Emmanuel M.Papamichael. Dissolution of the carbonate minerals of phosphate ores:catalysis by carbonic anhydrase Ⅱ, from Bovine erythrocytes, in acid solutions[J]. Journal of colloid and interface science,2002,251:143-150
    [118]Evangelos D.Economou.The kinetics of dissolution of the carbonate minerals of phosphate ores using dilute acetic acid solutions:the case of PH range from 3.96 to 6.40[J]. Journal of colloid and interface science,2002,245:133-141
    [119]Evangelos D.Economou. Kinetics of dissolution of the carbonate minerals of phosphate ores using dilute acetic acid solutions[J]. Journal of colloid and interface science,1998,201:164-171
    [120]F.I.C.C.Pais. A mathematical model for non-catalytic liquid-solid reversible reactions[J].Computrs chem..Engng vol.22(2):459-474

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700