用户名: 密码: 验证码:
基于单框控制力矩陀螺的敏捷小卫星姿态机动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
敏捷小卫星具有比常规小卫星至少高一个数量级的快速机动能力,该敏捷机动能力是很多军事或商业任务如空间监视、高精度对地观测的要求,为了实现该类小卫星的大角度快速机动,单框架控制力矩陀螺(SGCMG)系统因具有力矩放大能力和低功耗等优点而成为其姿态控制系统(ACS)执行机构的理想选择。但是SGCMG的框架转动将使得卫星惯性矩阵随之变化,给ACS建模增加了难度,同时SGCMG系统固有的奇异问题在像金字塔这样的安装构型中表现尤为严重,为使执行机构良好地跟踪控制输入既需要设计有效的SGCMG系统操纵律以克服其奇异问题,也需要设计高效的卫星机动控制律以克服快速机动带来的控制输入过大等问题,本论文对这些问题均做了深入的研究:
     (1)论述了卫星姿态描述与姿态运动学方程,通过详细推导,建立了更精确而实用的ACS动力学模型以及SGCMG力矩放大倍数公式,研究了SGCMG大小选型问题;本文与现有很多文献处理方法不同,对于卫星整星惯性矩阵中SGCMG系统相对于其自身质心的惯性矩阵部分没有全部使用或全部忽略,而是分离了其中的非零常值分量与零均值周期分量,分别提出处理方法。
     (2)针对SGCMG系统奇异问题,建立了系统各个奇异量之间的关系,并基于代数与微分几何的思想和方法,研究了系统角动量奇异面以及框架角空间奇异面,推导角动量奇异面的几何特征量表达式,同时在前人研究的基础上,完整推导了系统奇异时框架角速率空间之子空间的基,利用系统雅可比矩阵零空间基研究了基于零运动的系统奇异状态可脱离性,归纳了可脱离的两个必要条件。通过以三平行构型SGCMG系统为例验证了诸多理论结果。
     (3)对现有SGCMG操纵律作了简要分类归纳,研究了典型的框架角速率操纵律并分析了其中存在的缺点与问题,为克服操纵律中存在的框架“锁死”,基于奇异值分解(SVD)理论提出了一种新的改进奇异方向回避(SDA)操纵律,并研究了其参数整定方法,仿真结果显示了该操纵律的有效性。
     (4)以再定向大角度机动为例,研究了传统的四元数反馈机动控制律,发现其普遍存在控制力矩指令峰值过大、系统后半段收敛缓慢等缺点,为克服这些缺点,基于反步法(Backstepping Design),应用变增益控制等思想,设计了一种新的非线性反步机动控制律,并针对其参数较多的问题提出了参数整定方法,ACS闭环仿真显示应用该控制律能大幅抑制控制力矩指令峰值,同时保证控制律的光滑性、稳定性。
The agile small satellite has rapid maneuver capability with at least an order of magnitude greater than conventional microsatellite, and this rapid maneuver capability is required for many military or commercial missions, for example, space surveillance, high-precision earth observation. In order to achieve a large angle rapid maneuvers of such small satellites, the Single Gimbal Control Moment Gyro (SGCMG) systems are the ideal candidate for the actuators of its’Attitude Control Systems (ACS) for the reasons of possessing the capability of torque amplification and lower power consumption. However, the difficulty of the mathematical modeling of ACS is increased for which the inertia matrix of the satellite is varied with the rotation of the gimbal of SGCMG, meanwhile, the inherent singular problem of SGCMG is particularly serious in the installation configuration such as pyramid. In order to make the actuator tracking the control input well, not only an effective SGCMG system steering law is needed to design to overcome its singularity problem, but also a high efficient attitude maneuver control law is required to design to overcome the problems such as excessive control input bought by the rapid maneuvers. All these problems are lucubrated in this thesis.
     (1) Attitude representation & kinematic equations of the satellite are summarized, and a more accurate but practical dynamic model of ACS as well as the SGCMG torque magnification formula are established, and the selection problem of the size of SGCMG is also studied. In this paper, the methods different from the existing literature are used in dealing with the of inertia matrix of SGCMG system with respect to its own center of mass which is part of the inertia matrix of the entire satellite. This part is not all of use or all of neglect, while the non-zero components and the cycle components with zero-mean are separated and treated respectively.
     (2) Aimed at singular problems of SGCMG system, the relationships between each singular parameter of system are established. the angular moment singular surfaces as well as the singular surfaces in gimbal configuration space are investigated, and the geometric characteristic expressions of the angular moment singular surfaces are also derived based on the ideas and methods of the algebra and differential geometry. Meanwhile, based on previous research, the bases of the subspaces in the gimbal angle tangent space at the singular states are fully derived,and Escapability at the singular state of system is also studied through the used of null space bases of the system’s Jacobian matrix; Two necessary conditions of the Escapability are summarized. Many theoretical results are verified through an example of three SGCMGs with parallel gimbal axes.
     (3) The existing SGCMG system steering laws are briefly summarize and classified. The typical gimal angular rate steering laws are analyzed as well as the problems and their shortcomings. To overcome the gimbal“lock”phenomenon existed in those steering laws, an improved singular direction avoidance (SDA) steering law is proposed based on the singular value decomposition (SVD ) Theory, and its parameters tuning method is also investigated. Effectiveness of the new steering law is showed by some simulation results.
     (4) Trough the example of large angle re-orientation maneuver, the traditional quaternion feedback control law for maneuvers are studied, found some shortcomings that the peak of control torque command is too large,and convergence of the second half phase of the system is also slow and so on. To overcome those shortcomings, a new nonlinear backstepping control law is proposed based on the backstepping design method as well as the application of ideas such as variable gain control, and its parameters tuning method is also proposed aimed at the problem of too many parameters. The ACS closed-loop simulation results shows that the control law can be applied significantly inhibited the peak of control torque command, while ensuring the smooth of control law and stability of the system.
引文
[1]田战省.航天百科[M].西安:陕西科学技术出版社,2006.
    [2]林兴来.小卫星技术的发展和应用前景[J].中国航天,2006(11):43-47.
    [3]余金培,杨根庆,梁旭文.现代小卫星技术与应用[M].上海:上海科学普及出版社,2004:224-225.
    [4]谷松,贾继强,金光.快速机动小卫星执行机构研究[J].光学精密工程.2008,16(8):1540~1545.
    [5] Lappas V J, Steyn W H, Underwood C I. Attitude Control for Small Satellites Using Control Moment Gyros[J]. Acta Astronautica. 2002, Vol.51,No.1-9: 101-111.
    [6]中国科学技术协会主编.航天科学技术学科发展报告[M].北京:中国科学技术出版社,2008.
    [7] Defendini A, Morand J, Faucheux P, et al. Control Moment Gyroscope (CMG) Solutions For Small, Agile Satellites[J]. Advances in the Astronautical Sciences. 2005, SUPPL, Vol. 121: 49-65.
    [8] Yoon H. Spacecraft Attitude and Power Control Using Variable Speed Control Moment Gyros[D]. Georgia: Georgia Institute of Technology, 2004.
    [9] Richie D J, Lappas V J, Prassinos G. Rapid Multi-target Pointing and High Accuracy Attitude Control Steering Law of Variable Speed Control Moment Gyroscopes[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit Honolulu, Hawaii. Aug. 2008.
    [10] Richie D J, Lappas V J, Wei B. Practical Steering Law for Small Satellite Energy Storage and Attitude Control[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6): 1898-1901.
    [11] Coon T R, Irby, J E. Skylab Attitude Control System[J]. IBM Journal of Research Development, 1976: 58-66.
    [12] Belew L F, Stuhlinger E. EP-107 Skylab: A Guidebook (Chapter IV: Skylab Design and Operation) [EB/OL]. [2011-6-7]. http://history.nasa.gov/EP-107/ch4.htm.
    [13] Wei B. Space Vehicle Dynamics and Control[M]. Virginia: AIAA Education Series, 1998: 419-421.
    [14]刘刚.应用控制力矩陀螺的卫星姿态机动控制研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009: 6.
    [15]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社, 1998:293-296.
    [16]屠善澄主编.卫星姿态动力学与控制(2)[M].北京:中国宇航出版社,1999.
    [17] How Mir was built. [EB/OL] [2011-6-7] http://www.russianspaceweb.com/ mir.html.
    [18] Branets V N, Vainberg D M, Vereshchagin V P, et al. Development experience of the attitude control system using single-axis control moment gyros for long-term orbiting space stations[C]. 38th Congress of the International Astronoutical Federation, Brighton, England. Oct. 1987.
    [19] Honeywell Space Systems. Space Systems Momentum Control. Honeywell Space Systems leaflet, Phoenix, Arizona, 1997.
    [20] Salenc C, Roser X. AOCS for Agile Scientific Spacecraft With Mini-CMG's[C]. Proceedings 4th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, ESTEC, Noordwijk, The Netherlands. October 1999.
    [21] CNES. Pleiades High Resolution Satellite[EB/OL]. (2006-12-5)[2011-6-6]. http://smsc.cnes.fr/PLEIADES/GP_satellite.htm .
    [22] CNES. Pleiades-HR (High-Resolution Optical Imaging Constellation of CNES). [2011-6-6]. https://directory.eoportal.org/get_announce.php?an_id=8932 .
    [23] Baudoin A, Boussarie E, Damilano P, et al. Pléiades: A multi mission and multi co-operative program[J]. Acta Astronautica,2002, Vol. 51, No. 1-9, pp. 317-327.
    [24]北京天目创新科技有限公司. WorldView1卫星系统介绍[EB/OL]. (2009-8-20) [2011-6-7].http://www.bsei.com.cn/html/yingxiangchanpin/WorldViewsshujuchanpin/weixi/20090824/20.html.
    [25]曲宏松,金光,张叶.“NextView计划”与光学遥感卫星的发展趋势[J].中国光学与应用光学, 2009, 2(6):467-476.
    [26]子力.萨里卫星技术有限公司简介(上)[J].中国航天,2007(3):11-14
    [27] Lappas V J, Oosthuizen P, Madle P, et al. Design, Analysis and In-orbit Performance of the BILSAT-1 Microsatellite Twin Control Moment Gyroscope Experimental Cluster[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, Aug. 2004.
    [28] Bradford A, Gomes L M, Sweeting M. BILSAT-1: A low-cost, agile, earth observation microsatellite for Turkey[J]. Acta Astronautica, 2003, 53: 761-769.
    [29]王海霞编写.微小卫星技术概述[J].中国科学院国家科学图书馆:科学研究动态监测快报,2008(1).
    [30] University Nanosat Program (UNP) [EB/OL]. (2010-3-26)[2011-6-8] http://www.vs.afrl.af.mil/UNP/About.html.
    [31] Gersh J, Peck M. Violet: A High-Agility Nanosatellite for Demonstrating Small Control-Moment Gyroscope Prototypes and Steering Laws[C]. AIAA Guidance, Navigation, and Control Conference, August 2009, Chicago, Illinois. 2009.
    [32]崔维桥.采用SGCMG的敏捷卫星姿态机动控制研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:2-3.
    [33] Lappas V J. A CMG Based ACS system for Agile Small Satellites[D]. PhD Dissertation, University of Surrey, October 2002.
    [34] Cao X B, Zhang S. J. Initial High-Tech Demonstration Results of Ts-1 Micro-Satellite[C]. 5th IAA Conference, Sep 2003, Noordwijk, Netherlands. 2003.
    [35]何梁何利基金.房建成[EB/OL]. [2011-6-8]. http://www.hlhl.org.cn/news/findnews/showsub.asp?id=837 .
    [36]中国科学技术协会主编.航天科学技术学科发展报告[M].北京:中国科学技术出版社,2008.
    [37] Jacot A D, Liska D J. Control Moment Gyros in Attitude Control. Journal of Spacecrafts and Rockets[J], 1966, 3(9):1313–1320.
    [38] Margulies G, Aubrun J N. Geometric Theory of Single-Gimbal Control Moment Gyro System[J]. Journal of the Astronautical Sciences, 1978, 26(2):159-191.
    [39] Tokar E N. Problems of Gyroscopic Stabilizer Control[J]. Cosmic Research, 1978: 141–147. Translated from Kosmicheskie Issledovaniya, 1978, 16(2): 179–187.
    [40] Tokar E N. Efficient Design of Powered Gyrostabilizer Systems[J]. Cosmic Research, 1978: 16–23. Translated from Kosmicheskie Issledovaniya, 1978, 16(1): 22–30.
    [41] Tokar E N. Singular Surfaces in Unsupported Gyrodyne Systems[J]. Cosmic Research, 1979: 547-555. Translated from Kosmicheskie Issledovaniya, 1978, 16(5): 675-685.
    [42] Tokar E N. Effect of Limiting Supports on Gyro Stabilizer[J]. Cosmic Research, 1979: pp. 413–420. Translated from Kosmicheskie Issledovaniya, 1978, 16(4):505-513
    [43] Bedrossian N S. Steering Law Design For Redundant Single Gimbal Control Moment Gyro Systems[D]. Charles Stark Draper Laboratory, 1987.
    [44] Bedrossian N S, Paradis J, Bergmann E V. Redundant single gimbal control moment gyroscope singularity analysis[J]. AIAA J. Guidance, 1990, 13(6): 1096-1101.
    [45] Kurokawa H. A geometry study of single gimbal control moment gyros: Singularity Problems and Steering Law[D]. University of Tokyo, Report of Mechanical Engineering Laboratory, 1998.
    [46] Kurokawa H. Constrained Steering Law of Pyramid-Type Control Moment Gyros and Ground Tests[J]. Journal of Guidance, Control, and Dynamics, 1997, Vol. 20, No. 3: 445–449.
    [47] Kurokawa H. Survey of Theory and Steering Laws of Single-Gimbal Control Moment Gyros[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1331–1340. ?
    [48] Wie B. Singularity analysis and visualization of single-gimbal control moment gyro systems[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Texas.2003:3~9
    [49] Wie B. Singularity analysis and visualization for single gimbal control moment gyro systems[J]. Journal of Guidance, Control, and Dynamics. 2004, 27(2): 271~282
    [50]吴忠,吴宏鑫.单框架控制力矩陀螺系统的构形分析[J].航天控制,1998,(1):19-27
    [51]吴忠,吴宏鑫,丑胜武. SGCMG系统运动奇异机理及研究进展[J].中国空间科学技术,2000(3):31-42.
    [52]吴忠,丑胜武.单框架控制力矩陀螺系统的运动奇异及回避[J].北京航空航天大学学报,2003, 29(7):579-582.
    [53] Wu Z. Wu H X. Existence Of Nonsingular Steering In Redundant Single Gimbal Control Moment Gyroscope Systems[C]. AIAA Guidance, Navigation, and Control Conference, Aug. 1998.
    [54]张锦江. SGCMG系统的奇异状态脱离性判定方法研究[J].中国空间科学技术, 2001(4):25-30.
    [55] Cornick D E. Singularity Avoidance Control Laws for Single Gimbal Control Moment Gyros[J]. AIAA Paper 79-1698, 1979: 20–33.
    [56] Hefner R D, McKenzie C H. A Technique for Maximizing the Torque Capability of Control Moment Gyro Systems[J]. Astrodynamics 1983, Vol. 54, No. AAS 83-387 :905–920
    [57] Nakamura Y, and Hanafusa H. Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control[J]. Journal of Dynamic Systems, Measurement, and Control, 1986, 108(3): 163–171.
    [58] Wie B, Bailey D, Heiberg C. Singularity robust steering logic for redundant single-gimbal control moment gyros[C]. AIAA Guidance, Navigation and Control Conference, Denver, Colorado,A ugust 2000.
    [59] Wie B, Bailey D, Heiberg C J. Singularity Robust Steering Logic for Redundant Single-Gimbal Control Moment Gyros[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(5): 865–872.
    [60] Wie B. Singularity Escape/Avoidance Steering Logic for Control Moment Gyro Systems[J]. Journal of Guidance, Control, and Dynamics,2005, 28(5): 948–956.
    [61] Pechev A N. Feedback based steering law for control moment gyros, Journal of Guidance, Control,and Dynamics[J] .2007,30(3):848~855
    [62] Paradiso J A. Global Steering of Single Gimballed Control Moment Gyroscopes Using a Directed Search[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(5): 1236–1244. ?
    [63] Ali I. Spacecraft nonlinear attitude control with bounded control input [D]. Glasgow, Scotland, UK: PhD thesis, University of Glasgow, 2009.
    [64] Vadali S R, Oh H S, Walker S R. Preferred Gimbal Angles for Single Gimbal Control Moment Gyros[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(6) :1090–1095.
    [65] Leve F A, Fitz-Coy N G. Hybrid Steering Logic for Single-Gimbal Control Moment Gyroscopes[J]. Journal Of Guidance, Control, and Dynamics, 2010, 33(4):1202-1212.
    [66] Takada K, Kojima H, Matsuda N. Control Moment Gyro Singularity-Avoidance Steering Control Based on Singular-Surface Cost Function[J]. AIAA Journal of Guidance, Control, and Dynamics, 2010, 33(5):1442-1450.
    [67]吴忠.参数不确定SGCMG系统的自适应操纵律设计[J].控制理论与应用,2006,23(1):143-147.
    [68]吴忠,丑胜武.考虑框架伺服特性时SGCMG系统操纵律设计[J].北京航空航天大学学报, 2004, 30(6):489-492.
    [69]张锦瑞.基于奇异值分解的SGCMG操纵律分析[J].应用数学和力学,2008,29(8): 918-926
    [70] Jin J, Zhang J, Liu Z. Output-torque error analysis and steering law design of SGCMGs Based on SVD Theory[C]. AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois, 2009.
    [71] Scrivener S L, Thompson R C. Survey of Time-Optimal Attitude Maneuvers[J]. AIAA Journal of Guidance, Control, and Dynamics, 1994, 17(2):225-233.
    [72] Bilimoria K D, Wie B. Time-Optimal Three-Axis Reorientation of a Rigid Spacecraft[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(3):446-452.
    [73] Fleming A, Sekhavat P, Ross I M. Minimum-Time Reorientation of a Rigid Body[J]. AIAA Journal of Guidance, Control, and Dynamics, 2010, 33(1):160-170
    [74] Creamer G, Delahunt P, Gates S, et al. Attitude Determination and Control of Clementine during Lunar Mapping[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 505–511.
    [75] Junkins J L, Turner J D. Optimal Continuous Torque Attitude Maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1980, 3(3): 210–217.
    [76] Wie B, Barba P M. Quaternion Feedback for Spacecraft large angle manwuvers[J]. AIAA Journal of Guidance, Control, and Dynamics,1985,8(3):360~365.
    [77] Wie B, Weiss H, Arapostathis A. A Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations[J]. AIAA Journal of Guidance, Control, and Dynamics, 1989, 12(3):375–380
    [78] Wie B, Lu J. Feedback Control Logic for Spacecraft Eigenaxis Rotations Under Slew Rate and Control Constraints[J]. Journal of Guidance, Control, and Dynamics, ?1995, 18(6): 1372–1379.
    [79] Wie B, Heiberg C J, Bailey D. Rapid Multi-Target Acquisition and Pointing Control of Agile Spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1):96–104.
    [80] Bang H, Tahk M, Choi H. Large angle attitude control of spacecraft with actuator saturation[J], Control Engineering Practice. 2003,11:989~997.
    [81] Junkins J L, Akella M R, Robinett R D. Nonlinear Adaptive Control of Spacecraft Maneuvers[J]. AIAA Journal of Guidance, Control, and Dynamics, 1997, 20(6): 1104-1110.
    [82] M. Abdelrahman, M. Tantawy, M. Bayoumi. Adaptive Neuro-Fuzzy Control Approach for Spacecraft Maneuvers[J]. ACSE Journal, 2006, 6(2): 49-56.
    [83] Khalil H K. Nonlinear Systems[M]. 3rd Ed. Upper Saddle River, New Jersey: Prentice–Hall. 2002: Chap. 14.
    [84] Kristiansen R, Nicklasson P J, Gravdahl J T. Satellite Attitude Control by Quaternion-Based Backstepping[J]. IEEE Transactions on Control Systems Technology, 2009, 17(1):227-232
    [85] Kim K, Kim Y. Robust Backstepping Control for Slew Maneuver Using Nonlinear Tracking Function[J]. IEEE Transactions on Control Systems Technology, 2003, 11(6):822-829.
    [86] Ali I, Radice G, Kim J. Backstepping Control Design with Actuator Torque Bound for Spacecraft Attitude Manuever[J]. Journal of Guidance, Control and Dynamics, 2010, 33(1): 254-259.
    [87] Slotine J E, Li W. Applied Nonlinear Control[M]. Englewood Cliffs, New Jersey: Prentice–Hall,1991.
    [88] Thomas A W, Dwyer III, Hebertt S. R.. Variable-Structure Control of Spacecraft Attitude Maneuvers[J]. AIAA J. Guidance, 1988, 11(3): 262-270.
    [89] Bo?kovi? J D, Li S, Mehra R K. Robust Adaptive Variable Structure Control of Spacecraft under Control Input Saturation[J]. Journal of Guidance, Control and Dynamics. 2001, 24(1): 14-22
    [90]马克茂,董志远.空间飞行器大角度机动飞行的变结构姿态控制[J].飞行力学, 2004, 22(2): 45-48
    [91]孙兆伟,曹喜滨.小卫星大角度姿态机动的变结构控制方法[J].哈尔滨工业大学学报, 2001,33(5):677-680
    [92]屠善澄主编.卫星姿态动力学与控制[M].北京:中国宇航出版社,1999.
    [93] Sidi M J.Spacecraft Dynamics and Control[M]. Cambridge: Cambridge University Press.1997: 318-327.
    [94] Phillips W F. Review of Attitude Representations Used for Aircraft Kinematics[J]. AIAA Journal of Aircraft, 2001,38(4):718-737.
    [95] Shuster M D. A Survey of Attitude Representations[J]. Journal of the Astronautical Sciences, 2003, 14(4): 439–517.
    [96]哈尔滨工业大学理论力学教研室.理论力学(II)[M].第六版.北京:高等教育出版社,2002: 109-110
    [97]刘延柱.高等动力学[M].北京:高等教育出版社,2000.
    [98] Oh H S. Vadali S R. Feedback Control and Steering Laws for Spacecraft Using Single Gimbal Control Moment Gyro[C]. AIAA 89-3457-CP, 1989: 420-430
    [99] Ford K A. Hall C D. Singular Direction Avoidance Steering for Control Moment Gyros[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(4): 648–656.
    [100]Jung D, Tsiotras P. An Experimental Comparison of CMG Steering Control Laws[J]. AIAA Paper 2004-5294, 2004:1128–1144.
    [101]Romano M, Agrawal B N. Attitude Dynamics_Control of Dual-Body Spacecraft with Variable-Speed Control Moment Gyros[J]. Journal of Guidance, Control, and Dynamics, 2004,27(4): 513-525.
    [102]Lappas V J, Steyn W H, Underwood C I. Torque Amplification of Control Moment Gyros[J]. IEEE Electronics Letters, 2002, 38(15):837-839
    [103]Berner R. Control Moment Gyro Actuator for Small Satellite Applications[D]. Matieland, South Africa: Master Degree Thesis, University of Stellenbosch, 2005.
    [104]于灵慧,房建成.磁悬浮控制力矩陀螺框架伺服系统扰动力矩分析与抑制[J].宇航学报,2007,28(2):287-291
    [105]梅向明,黄敬之.微分几何[M].第三版.北京:高等教育出版社. 2003:109-113
    [106]吴忠,吴宏鑫,丑武胜.一类单框架控制力矩陀螺系统奇点的有限性[J].中国空间科学技术, 2000, 4:15-21 ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700