用户名: 密码: 验证码:
有限时间收敛寻的导引律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反导导弹通过精确制导实现与目标直接碰撞,利用动能将目标彻底摧毁。在很大的相遇速度下,留给精确制导的时间只限于几秒,这就提出了有限时间收敛高精度制导技术的需求。本文以直接侧向力与气动力复合控制导弹拦截高速机动弹道导弹目标为背景,研究有限时间收敛寻的导引律。
     论文首先基于非线性控制系统有限时间稳定性理论,提出了可保证制导系统视线角速率有限时间收敛的充分条件,设计了使视线角速率有限时间收敛到零或零附近边界层内的导引律,理论证明了所提有限时间收敛导引律在三维耦合制导模型下仍是能保证视线角速率有限时间收敛至零。合理调整有限时间收敛导引律的导引参数,可获得不同的使视线角速率收敛到零的速度和制导性能,能在提高制导系统鲁棒性的同时降低制导系统抖动,使得视线角速率在末制导结束前收敛至零,从而确保高制导精度。
     考虑到在大气层内飞行的导弹自动驾驶仪都存在动态延迟特性,应用非奇异终端滑模控制和常规滑模控制方法,设计了两种滑模导引律。理论证明了两种导引律都可保证制导系统状态有限时间收敛至滑模面,基于非奇异终端滑模的导引律在滑动模态上视线角速率有限时间收敛至零,基于常规滑模的导引律在滑动模态上视线角速率以指数形式收敛至零。理论分析和仿真结果表明,在不考虑导引头测量噪声的情况下,两种导引律都能有效补偿导弹自动驾驶仪动特性和克服目标机动加速度的影响。
     基于平面内弹-目相对运动方程下得到的真比例导引、增广比例导引和滑模变结构导引已得到了广泛的应用,本文通过构造Lyapunov函数证明了其在三维空间耦合制导模型下仍可保证视线角速率渐近收敛至零。进一步考虑导弹自动驾驶仪一阶动态延迟特性,应用非线性反步设计法,针对目标非机动、目标机动加速度可获取和目标机动加速度不可获取的三种情形分别设计了三种三维非线性导引律。在反步设计的过程中,不需要消去三维制导动力学方程中的非线性耦合项,使得导引规律的最终表达形式得以极大简化。所提三维非线性导引律都能有效克服导弹自动驾驶仪的动态延迟特性对制导精度的影响,且导引律中所需控制量都是实际制导过程中可直接测量的量,便于工程应用。
     为了提高导弹拦截的杀伤效果,讨论了目标机动下的攻击角度约束导引律设计问题。在不考虑导弹自动驾驶仪动特性下设计了两种攻击角度约束滑模导引律;理论证明了两种导引律都能有限时间收敛到滑动模态,进入滑动模态后第一种滑模导引律可保证视线角以指数形式收敛至期望值和视线角速率以指数形式收敛至零,第二种滑模导引律可保证攻击角度收敛到期望值且终端脱靶量收敛至零。进一步应用非线性反步设计法把上述两种导引律推广到导弹自动驾驶仪存在一阶动态延迟特性的情形;在目标做大机动逃逸,导弹自动驾驶仪存在大滞后下,所设计的导引律都可以期望的攻击角度精确击中目标。
     最后,考虑到复合控制导弹直接侧向力具有离散的工作特性,应用离散滑模变结构控制理论,系统设计了三种离散滑模导引律。先推导出了一种不需要获取目标机动加速度信息只需要其界限的离散滑模导引律;为了有效降低制导系统抖动,又提出了只需要知道目标加速度在两个采样周期之间变化界限的离散滑模导引律;由于该导引律在导引头存在测量噪声时容易引起制导系统发散,进一步设计了一种能有效克服测量噪声和目标高机动影响的离散滑模导引律;从理论上证明了上述三种离散滑模导引律都能保证视线角速率有限时间收敛至零的特性;探讨了离散滑模导引律的准滑动模态和导弹停控后脱靶量计算方法,阐述了离散滑模导引律的终端脱靶量满足的范围。
Anti-missile missiles achieve direct collision with targets by precision guidance, and destroy the targets using kinetic energy. Since the relative velocity between the missile and target is great, only a few seconds are available for the precision guidance process. This requires a high precision guidance technique with finite time convergence. In this dissertation, under the background of a blended-controlled missile with tail fins and attitude thrusters intercepting a high speed maneuvering ballistic missile, we designed homing guidance laws with finite time convergence.
     First of all, based on nonlinear control system finite time stability theory, we proposed sufficient conditions for finite time convergence of the line-of-sight angular rate and design guidance laws which ensure the line-of-sight angular rates converge to zero or a small neighborhood of zero before the final time of the guidance process. Theoretically, such guidance laws guarantee the LOS angular rates converge to zero in finite time in both the planar and three-dimensional environments. Reasonable adjust the parameters of the guidance law, we can obtain different convergence speeds and performances and improve the robustness of the guidance system while alleviate the chattering, therefore we can make the LOS angular rates converge to zero before the final time to ensure high guidance precision.
     In consideration of the lag of the autopilot of endoatmospheric missiles, two guidance laws based on the non-singular terminal sliding mode control and regular sliding mode control are designed sequentially. Theoretically, both of them guarantee the variables in guidance system converge to sliding surface in finite time, furthermore, the former guarantees the LOS angular rates converge to zero in finite time on the sliding surface while the later guarantees the convergence at an exponential rate. Theoretical analysis and simulation results show that the proposed guidance laws are robust against target maneuvers and are able to compensate the lag of autopilot.
     The true proportional navigation guidance law, the augmented proportional navigation guidance law and the adaptive sliding-mode guidance law designed based on the planar target-to-missile relative motion dynamics have been widely used. By a proper construction of a Lyapunov function for the line-of-sight angular rates in the three dimensional guidance dynamics, it is shown that the three guidance laws presented are able to ensure the asymptotic convergence of the angular rates as they are directly applied to the three-dimensional guidance environment. Furthermore, considering the missile autopilot dynamics as a first order lag, we design three dimensional nonlinear guidance laws by using the backstepping technique for three cases: (1) the target does not maneuver; (2) the information of target acceleration can be acquired; and (5) the target acceleration is not available but its bound is known a priori. In the first step of the backstepping design of the control law, there is no need to cancel the nonlinear coupling terms in the three-dimensional guidance dynamics in such way that the final expressions of the proposed guidance laws are significantly simplified. The proposed three dimensional guidance laws are able to effectively compensate the lag of autopilot; moreover, the control inputs are directly measurable thus can be implemented conveniently.
     The problem of intercepting maneuvering targets with impact angle constrained flight trajectories is discussed to enhance the hitting precision. First, supposing the missile has an ideal autopilot, we designed two terminal guidance laws with impact angle constrained trajectories. Theoretically, both of them guarantee the LOS angles and LOS angular rates converge to sliding surface in finite time, and one guidance law guarantees the LOS angles converge to expected value and the LOS angular rates converge to zero in finite time at an exponential rate on the sliding surface while the other guarantees the LOS angles converge to expected value and the final miss distance converge to zero. Furthermore, considering the dynamics of missile autopilot as a first order lag, we extended the two guidance laws with autopilot lag. Simulation results showed that the guidance laws with autopilot lag are able to guide a missile to impact either a maneuvering target or a non maneuvering target with a desired angle and a small miss distance.
     Finally, considering of the discrete-time dynamical character of lateral thrusters on blended-controlled missile, three discrete sliding-mode guidance laws are proposed by using discrete siding-mode control theory. First, a discrete sliding-mode guidance law which needs not the bound of target acceleration is deduced. The second discrete sliding-mode law is designed with just knowing the possible variation range of target acceleration between two adjacent sampling instants rather than the target acceleration bound. Since the variations of target-to-missile range and the target acceleration are both small variable between two adjacent sampling instants, in the design of the third discrete sliding-mode guidance law all historical missile seeker’s measurements are used to estimate the target acceleration, such that the noises in seeker measurements are effectively smoothen. It is theoretically proved that the proposed discrete sliding-mode guidance laws are finite time convergent. Quasi sliding-mode bands of the discrete sliding-mode guidance laws are discussed, and formulas to calculate the terminal miss distances of discrete sliding-mode guidance laws are presented.
引文
1徐品高.新一代防空导弹提高制导控制精度的需求与技术途径.战术导弹技术. 2002, (5): 1-8
    2郭建国,周军,周凤岐.直接力/气动力复合控制技术分析.航空兵器. 2004, (4): 12-15
    3李玉林,万自明.直接力/气动力复合控制拦截弹末制导精度研究.现代防御技术. 2008, 36(3): 55-60
    4张巍,王敏,徐世录.美国导弹防御系统的发展动向分析.现代防御技术. 2007, 35(4): 25-31
    5 T.C. Anthony, B. Wie. Pulse-Modulated Control Synthesis for a Flexible Spacecraft. Journal of Guidance, Control and Dynamics. 1996, 13(5): 1014-1022
    6邹晖,陈万春,王鹏,殷兴良.敏捷导弹气动力侧向推力复合控制特性分析研究.北京航空航天大学学报. 2004, 30(5): 193-197
    7 S.W. Thurman, H. Flashener. Robust Digital Autopilot Design for Spacecraft Equipped with Pulse-operated Thrusters. Journal of Guidance, Control and Dynamics. 1996, 19(4): 1047-1055
    8 J. Shinar, Y. Oshman, V. Turetsky, J. Evers. On the Need for Integrated stimation/Guidance Design for Hit-to-kill Accuracy. Proceedings of the American Control Conference. 2003: 402-407
    9钱杏芳,林瑞雄,赵亚男.导弹飞行力学.北京,北京理工大学出版社, 2000: 2-64, 90-134
    10吴义明,齐欢.地空导弹追踪法的改进.武器装备自动化. 2004, 23(5): 19-20
    11 M.R. Becan. Fuzzy Pursuit Guidance for Homing Missiles. ICCI 2004, International Conference on Computational Intelligence, Istanbul. 2004: 266-269
    12赵文成,那岚,金学英.准平行接近法导引律的研究与实现.测控技术. 2009, 28(5): 92-95
    13朱卫兵,张耀良.战术导弹三点法导引遥控制导弹道方程的解析解.弹箭与制导学报. 2006, 26(1): 245-247
    14徐奕航,原超,童幼堂,张中南.三点法导引法导引舰空导弹弹道研究.战术导弹控制技术. 2006, 55(3): 34-37
    15关为群,张靖.运用“状态最优预报”原理修正三点法导引弹道.兵工学报.2002, 23(1):86-89
    16杨林华.前置量导引法中前置角的选择方法.导引与导信. 1984, (2): 13-15
    17刘惠明,薛林,黄玲雅.基于变系数的变前置角导引律设计.现代防御技术. 2005, 33(4): 16-18
    18郭鹏飞,任章.一种攻击大机动目标的组合导引律.宇航学报. 2005, 26(1): 104-106
    19 M. Guelman. A Qualitative Study of Proportional Navigation. IEEE Transactions on Aerospace and Electronic Systems. 1971, 7(3) : 638-643
    20 M. Guelman. The Closed-Form Solution of Pure Proportional Navigation. IEEE Transactions on Aerospace and Electronic Systems. 1976, 12(7) : 526-532
    21 M. Guelman. Optimal Guidance Law in the Plane. Journal of Guidance, Control and Dynamics. 1984, 7(3): 471-476
    22 P. R. Mahapatra and U. S. Shukla. Accurate Solution of Pure Proportional Navigation for Maneuvering Targets. IEEE Transactions on Aerospace and Electronic Systems. 1989, 25(1): 81-89
    23 S. N. Ghaw and D. Ghose. Pure Proportional Navigation against Time-varying Target Manoeuvres. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1336-1346
    24 P. J. Yuan and J. S. Chern. Ideal Proportiongal Navigation. Journal of Guidance, Control and Dynamics. 1992, 15(4): 1161-1165
    25 S. A. Murtaugh, and H. E. Criel. Fundamentals of Proportional Navigation. IEEE Spectrun. 1966, 3(5): 75-85
    26 M. Guelman. The Closed-Form Solution of True Proportional Navigation. IEEE Transactions on Aerospace and Electronic systems. 1976, 12(3): 472-482.
    27 P. J. Yuan and J. S. Chern. Solution of True Proportiongal Navigation for Maneuvering and Nonmaneuvering Target. Journal of Guidance, Control and Dynamics. 1992. 15(1): 268-271
    28 P. J. Yuan. Closed-form Solution of Generalized Proportiongal Navigation. Journal of Guidance, Control and Dynamics. 1993, 16(4): 963-965
    29 P. J. Yuan and S. S. Sun. Solution of Generalized Proportiongal Navigation with Maneuvering and Nonmaneuvering Target. IEEE Transactions on Aerospace andElectronic Systems, 1995, 31(7): 469-474
    30 S. Vathsal and M. N. Rao. Analysis of Generalized Guidance Laws for Homing Missiles. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 514-521
    31 M. Guelman. A Qualitative Study of Proportional Navigation. IEEE Transactions on Aerospace and Electronic Systems. 1971, 7(3): 638-643
    32 C.D. Yang, C.C. Yang. A Unified Approach to Proportional Navigation. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(2): 557-567
    33 P. Zarchan. Tactical and Strategic Missile Guidance. American Institute of Aeronautics and Astronautics. Third Edition. 1997: 11-33, 130-134
    34 F.H. Kishi, and T.S Bettwy. Optimal and Suboptimal Design of Proportional Navigation. Symposium on Recent Advances in Optimization Techniques , Pittsburgh. 1966: 519-540
    35 L.A. Stockum, F.C. Weimer. Optimal and Suboptimal Guidance for a Short Range Homing Missile. IEEE Transactions on Aerospace and Electronic Systems. 1976, 3(4): 355-360
    36韩京清.最优导引律.航空学报, 1987, 29(3): 76-79.
    37 F. Imado, T. Kuroda, S. Miwa. Optimal Midcourse Guidance for Medium-Range Air-to-Air Missiles. Journal of Guidance, Control and Dynamics. 1990, 13(3): 603-608
    38 R. R. Kumar, H. Seyward, E. M. Cliff. Near-Optimal Three-Dimensional Air-to-Air Missiles Guidance Against Maneuvering Target. Journal of Guidance, Control and Dynamics. 1995, 18(5): 457-464
    39李登峰.微分对策及其应用.北京,国防工业出版社, 2000: 1-14, 180-190
    40 G. Leitmann, J. Showronski. Avoidance Control. Journal of Optimization Theory and Applications. 1977, 23(3): 581-591.
    41 G. Leitmann. Guaranteed Avoidance Strategies. Journal of Optimization Theory and Applications. 1980, 32(3): 569-576.
    42汤善同.微分对策制导规律与改进的比例导引制导规律性能比较.宇航学报. 2002, 23(5): 38-42
    43胡云安,张新立,李晓东,范作娥.基于微分对策的导弹最优突防策略.海军航空工程学院学报. 2007, 22(1): 169-172
    44周卿吉,许诚,周文松,彭绍雄,沈如松.微分对策制导律研究的现状及展望.系统工程与电子技术. 1997, 19(1): 40-45
    45方绍琨,李登峰.微分对策及其在军事领域的研究进展.指挥控制与仿真, 2008, 30(1): 40-45.
    46李君龙,江涌. Endgame概念研究.现代防御技术. 2001, 29(1): 41-45
    47 A. Isidori.非线性控制系统(第三版).王奔,庄圣贤译.电子工业出版社. 2005: 107-127
    48 I.J. Ha, S. Chong. Design of a CLOS Guidance Law via Feedback Linearization. IEEE Transactions on Aerospace and Electronic Systems. 1992, 28(1): 51-62
    49 S. Bezick, I. Rusnak, W.S. Gray. Guidance of a Homing Missile via Nonlinear Geometric Control Methods. AIAA Journal of Guidance, Control and Dynamics, 1995, 18(5): 441-448
    50李君龙,胡恒章.一种基于反馈精确线性化的空间拦截末制导律.宇航学报. 1997, 18(3): 13-17
    51李君龙,陈杰,胡恒章.目标机动时的一种非线性末制导律.宇航学报. 1998, 19(1): 37-42
    52 J. Huang and C. F. Lin. A Modified CLOS Guidance Law via Right Inversion. IEEE Transactions on Aerospace and Electronic Systems. 1995, 31(1): 491–495
    53 G. Leng. Missile Guidance Algorithm Design using Inverse Kinematics and Fuzzy logic. Fuzzy Sets and Systems. 1996, 79(5): 287-295
    54 G. Leng. Guidance Algorithm Design: A Nonlinear Inverse Approach. AIAA Journal of Guidance, Control and Dynamics. 1998, 21(4): 742-746
    55 F. Imado, T. Kuroda, S. Miwa. Optimal Midcourse Guidance for Medium-Range Air-to-Air Missiles. Journal of Guidance, Control and Dynamics, 1990, 13(3): 603-608
    56 I. Rusnak, L. Meir. Optimal Guidance for High-Order and Acceleration Constrained Missile. Journal of Guidance, Control and Dynamics, 1991, 14(5): 589-596
    57张友安,胡云安.导弹控制和制导的非线性设计方法.国防工业出版社. 2003: 134-166
    58 O. Ariff, R. Zbikowski, A. Tsourdos and B. A. White. Differential Geometric Guidance Based on the Involute of the Target’s Trajectory. Journal of Guidance, Control and Dynamics. 2005, 28 (4): 990- 996
    59李超勇,齐治国,荆武兴.平面微分几何制导律应用研究.哈尔滨工业大学学报. 2007, 39(7): 1031-1035
    60李超勇,齐治国,荆武兴,王辉.空间微分几何制导律应用研究.宇航学报,2007, 28(4): 1235-1240
    61 K.M. Zhou, J.C. Doyle, K. Glover.鲁棒与最优控制.毛剑琴,钟宜生,林岩等译.国防工业出版社. 2002: 245-263, 464-516
    62 C.D. Yang, H.Y. Chen. Nonlinear H∞Robust Guidance Law for Homing Missiles. Journal of Guidance, Control and Dynamics. 1998, 21(5): 882-890
    63 C.D. Yang, H.Y. Chen. H∞Guidance Law with Maneuvering Targets. Journal of Control Systems and Technology, 1998, 6(5): 205-214
    64 B.S. Chen, Y.Y. Chen, and C.L. Lin. Nonlinear Fuzzy H∞Guidance Law with Saturation of Actuators Against Manoeuvring Targets. IEEE Transactions on Control Systems and Technology. 2002, 10(5): 769-779
    65李新国,毛承元,陈红英. H∞制导律的统计性能.西北工业大学学报. 2004, 22(1): 21-24
    66耿峰,祝小平.高速攻击型无人机非线性鲁棒制导律研究.宇航学报. 2008,
    29(5): 922-927
    67 D. Van, A.J. Schaft. L2-Gain Analysis of Nonlinear Systems and Nonlinear State Feedback H∞Control. IEEE Transactions on Automatic Control. 1992, 37(5): 770-784
    68 D. Zhou, C.D. Mu, and T.L. Shen. Robust Guidance Law with L2 Gain Performance. Transactions on the Japan Society for Aeronautical and Space Sciences. 2001, 44(144): 82-88
    69周荻.寻的导弹新型导引规律.北京,国防工业出版社, 2002: 1-26, 68-94
    70 N. Lechevin, C.A. Rabbath. Lyapunov-Based Nonlinear Missile Guidance. Journal of Guidance, Control and Dynamics. 2004, 27(5): 1096-1102.
    71 S.D. Brierly, R. Longchamp. Application of Sliding Mode Control to Air-Air Interception Problem. IEEE Transactions on Aerospace and Electronic Systems. 1990, 26(2): 306-325
    72 K.R. Babu, I.G. Sarma, K. N. Swamy. Switched Bias Proportional Navigation for Homing Guidance Against Highly Maneuvering Target. Journal of Guidance, Control and Dynamics. 1994, 17(5): 1357-1363.
    73 D. Zhou, C.D. Mu and W.L. Xu. Adaptive Sliding-Mode Guidance of a HomingMissile. Journal of Guidance, Control and Dynamics. 1999, 22(3): 589-594
    74周荻,慕春棣,徐文立.空间拦截智能自适应变结构导引规律研究.宇航学报, 1999, 20(3): 60-65
    75 D. Zhou, C.D. Mu and W.L. Xu. Fuzzy Adaptive Variable Structure Guidance for Space Interception. Tsinghua Science and Technology. 1999, 4(3): 1610-1614
    76 J. Moon, K. Kim, Y. Kim. Design of Missile Guidance Law via Variable Structure Control. Journal of Guidance, Control and Dynamics. 2001, 24(3): 659 -664
    77顾文锦,赵红超,杨智勇.变结构控制在导弹制导中的应用综述.飞行力学. 2005, 23(1): 1-4
    78 V.T. Haimo. Finite Time Controllers. SIAM J. Control and Optimization. 1986, 24(3): 760-770
    79 S. Bhat, D.S. Bernstein. Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators. IEEE Transactions on Automatic Control. 1998, 43 (4): 678-682
    80 S. Bhat, D.S. Bernstein. Finite Time Stability and Continuous Autonomous Systems. SIAM J. Control and Optimization. 2000, 38(5): 751-766.
    81 Y.G. Hong, J. Huang, Y.S. Xu. On an output feedback finite-time stabilization problem. IEEE Transactions on Automatic Control. 2001, 46(2): 305-309
    82 Y.G. Hong. Finite Time Stabilization and Stabilizability of a Class of Controllable Systems. Systems & Control Letters. 2002, 46(2): 231-236
    83洪奕光,程代展.非线性系统的分析与控制.北京,科学出版社, 2005: 225-228
    84 Y. Orlov. Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems. SIAM J. Control and Optimization. 2005, 43(3): 1253-1271
    85 Y.G. Hong, J.K. Wang, D.Z. Chen. Adaptive Finite-Time Control of Nonlinear Systems with Parametric Uncertainty. IEEE Transactions on Automatic Control. 2006, 51(4): 858-862
    86 I. Levant. Universal Single-Input–Single-Output (SISO) Sliding-Mode Controllers with Finite-Time Convergence. IEEE Transactions on Automatic Control. 2001, 46(9): 1447-1451
    87 T. Yu. Terminal Sliding Mode Control for Rigid Robots. Automatica. 1998, 34(1): 51-56
    88 Y Feng. X. Yu, Z. Man. Non-Singular Terminal Sliding Mode Control of RigidManipulators. Automatica. 2002, 38(5): 2159-2167
    89 P. Gurfil, M. Jodorkovsky, M. Guelman. Finite Time Stability Approach to Proportional Navigation Systems Analysis. Journal of Guidance, Control and Dynamics. 1998, 21(5): 853-861
    90乌日娜,季海波,张保利.导弹有限时间三维非线性导引律.电光与控制. 2009, 16(3): 22-24
    91 I.A. Shkolnikov, Y.B. Shtessel, D. Lianos. Integrated Guidance-Control System of Homing Interceptor: Sliding Modes Approach. Proceedings of AIAA Guidance, Navigation, and Control Conference. AIAA 2001-4218
    92 I.A. Shkolnikov, Y.B. Shtessel. Integrated Guidance and Control of Advanced Interceptors Using Second Order Sliding Modes. Proceedings of the 42th IEEE Conference on Decision and Control. IEEE, Maui, Hawaii, 2003: 4587-4592.
    93 G.M. Marks, Y.B. Shtessel. H. Gratt. Effects of High Order Sliding Mode Guidance and Observers on Hit-to-Kill Interceptions. Proceedings of AIAA Guidance, Navigation, and Control Conference, AIAA 2005-5967
    94 F. Imado, Some Aspects of a Realistic Three-Dimensional Pursuit-Evasion Game. Journal of Guidance, Control and Dynamics. 1993, 16(2): 289-293
    95 S.H. Song, I.J. Ha. A Lyapunov-Like Approach to Performance Analysis of 3-Dimensional Pure PNG Laws. IEEE Transactions on Aerospace and Electronic systems. 1994, 30(1): 238-247
    96 J.H. Oh, I.J. Ha. Capturability of the 3-Dimensional Pure PNG Law. IEEE Transactions on Aerospace and Electronic systems. 1999, 35(2): 491-503
    97 C.D. Yang, C.C. Yang. Analytical Solution of Three-Dimensional Realistic True Proportional Navigation,”Journal of Guidance, Control, and Dynamics. 1996, 19(2): 569-577
    98 C.D. Yang, C.C. Yang. Analytical Solution of Generalized Three-Dimensional Proportional Navigation. Journal of Guidance, Control and Dynamics. 1996, 19(5): 721-724
    99 C.D. Yang, C.C. Yang. Analytical Solution of 3D True Proportional Navigation,”IEEE Transactions on Aerospace and Electronic systems. 1996, 32(3): 1509-1522.
    100王婷,周军.三维理想比例导引律的捕获区域分析.西北工业大学学报. 2007, 25(1): 83-86
    101张友安,杨华东,胡云安.机动目标三维空间导引运动建模及导引律研究.飞行力学. 2003, 21(2): 41-44
    102佘文学,周凤岐.三维非线性变结构寻的制导律.宇航学报.2004, 25(5): 681-685
    103武立军.三维末制导律的鲁棒动态逆设计方法研究.系统工程与电子技术. 2007, 29(8): 1331-1333
    104孙未蒙,骆振,郑志强.一种多约束条件下高超声速导弹对地攻击的三维最优变结构制导律.国防科技大学学报. 2007, 29(5): 126-130
    105孙未蒙,郑志强.一种多约束条件下的三维变结构制导律.宇航学报. 2007, 28(2): 344-349
    106 I. Rusnak. and L. Meirt. Modern Guidance Law for High-order Autopilot. Journal of Guidance, Control and Dynamics. 1991, 14(4): 1056-1058
    107 T. R. Blackburn. Method for Improving Autopilot Lag Compensation in Intercept Guidance. Journal of Guidance, Control, and Dynamics. 1996, 19(5): 724-726
    108 R.K. Aggrawal, C.R. Moore. Terminal Guidance Algorithmfor Ramjet-Powered Missiles. Journal of Guidance, Control, and Dynamics. 1998, 21(5): 862-866
    109 T.S. No, J.C. Jr, EG. Kim. Bank-to-Turn Guidance Law Using Lyapunov Function and Nonzero Effort Miss. Journal of Guidance, Control, and Dynamics. 2001, 24(2): 255-260
    110 D.Y. Chwa, J.Y. Choil. Adaptive Nonlinear Guidance Law Considering Control Loop Dynamics. IEEE Transactions on Aerospace and Electronic systems. 39(3): 1134-1143
    111 D.Y. Chwa, J.Y. Choi, S.G. Anavatti. Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics. IEEE Transactions on Control Systems Technology. 2006, 14(1): 112-123
    112佘文学,周军,周凤岐.一种考虑自动驾驶仪动态特性的自适应变结构制导律.宇航学报, 2003, 24(5): 245-249
    113佘文学,周凤岐,周军.考虑自动驾驶仪动态鲁棒自适应变结构制导律.系统工程与电子技术. 2003, 25(12): 1513-1516
    114梁冰,徐殿国,段广仁.导弹俯仰通道带有落角约束的制导与控制一体化设计.科学技术与工程. 2008, 8(1): 70-75
    115 M.Z. Hou, G.R. Duan. Integrated Guidance and Control of Homing Missiles Against Ground Fixed Targets. Chinese Journal of Aeronautics. 2008, 21(1): 162-168
    116梁卓,薛晓中,王航,马伟. SINS/GPS制导炸弹俯仰平面制导控制一体化设计.飞行力学, 2009, 27(5): 32-35
    117 M. Xin, S. N. Balakrishnan, E. J. Ohlmeyer. Integrated Guidance and Control of Missiles Withθ?DMethod. IEEE Transactions on Control Systems Technology. 2006, 14(5): 981-992
    118 T. Shima, M. Idan, O.M. Golan. Sliding-Mode Control for Integrated Missile Autopilot Guidance. Journal of Guidance, Control, and Dynamics. 2006, 29(2): 250-260
    119 M. Idan, T. Shima, O.M. Golan. Integrated Sliding-Mode Autopilot-Guidance for Dual-Control Missile. Journal of Guidance, Control, and Dynamics. 2007, 30(3): 1081-1089
    120 A. Koren, M. Idan, O.M. Golan. Integrated Sliding Mode Guidance and Control for a Missile with On–Off Actuators. Journal of Guidance, Control, and Dynamics. 2008, 31(1): 204-214
    121 M. Kim, K.V. Grider. Terminal Guidance for Impact Attitude Angle Constrained Flight Trajectories. IEEE Transactions on Aerospace and Electronic Systems. 1973, 9(5): 852-859
    122陈克俊,赵汉元.一种适用于攻击地面固定目标的最优再人机动制导律.宇航学报. 1994, 15(1): 1-7
    123 T.L. Song, S.J. Shin, Time-Optimal Impact Angle Control for Vertical Plane Engagements. IEEE Transactions on Aerospace and Electronic Systems. 1999, 35(2): 738-742
    124 I. R. Manchester, A.V. Savkin. Circular Navigation Missile Guidance with Incomplete Information and Uncertain Autopilot Model. Journal of Guidance, Control, and Dynamics. 2004, 27(5): 1078-1083
    125 I.R. Manchester, A.V. Savkin. Circular-Navigation-Guidance Law for Precision Missile/Target Engagements. Journal of Guidance, Control, and Dynamics. 2006, 29(2): 314-320
    126 C.K. Ryoo, H. Cho, M.J. Tahk. Optimal Guidance Laws with Terminal Impact Angle Constraint. Journal of Guidance, Control, and Dynamics. 2005, 28(3): 724 -732
    127 I.S. Jeon, J.I. Lee, M.J. Tahk. Impact-Time-Control Guidance Law for Anti-Ship Missiles. IEEE Transactions on Control Systems Technology. 2006, 14(2): 260-266
    128 J.I. Lee, I.S. Jeon, M.J. Tahk. Guidance Law to Control Impact Time and Angle.IEEE Transactions on Aerospace and Electronic Systems. 2007, 43(1): 301-310
    129糜玉林,施建洪,张友安.带有攻击角度控制的三维制导.海军航空工程学院学报. 2008, 23(5): 293-296
    130 A. Ratnoo, and D. Ghose. Impact Angle Constrained Interception of Stationary Targets,”Journal of Guidance, Control, and Dynamics. 2008, 31(5): 1816-1821
    131 B.S. Kim, J.G. Lee, H.S. Han. Biased PNC Law for Impact with Angular Constraint. IEEE Transactions on Aerospace and Electronic Systems. 1998, 34(1): 277-288.
    132曹邦武,姜长生,关世义,陈谋.电视指令制导空地导弹垂直命中目标的末制导系统研究.宇航学报. 2004, 25(3): 393-397
    133 M. Idan. O. M. Golan, M. Guelman. Optimal Planar Interception with Terminal Constraintso. Journal of Guidance, Control, and Dynamics. 1995, 18(5): 1078-1083
    134 T. L. Song, S. J. Shin, H. Cho. Impact Angle Control for Planar Engagements. IEEE Transactions on Aerospace and Electronic Systems. 1999, 35(3): 1439-1444
    135 J.M. Song, T.Q. Zhang. Passive Homing Missile’s Variable Structure Proportional Navigation with Terminal Angular Constraint. Chinese Journal of Aeronautics. 2001, 14(2): 83-87
    136林波,孟秀云,刘藻珍.具有末端角约束的鲁棒制导律设计.系统工程与电子技术. 2005, 27(11): 1943-1945
    137 D.V. Stallard, Discrete Optimal Terminal Control with Application to Missile Guidance,”IEEE Transactions on Automatic Control. 1973, 18(3): 373-377.
    138 I. Rusnak. Discrete Optimal Guidance for Hight-Order Missile and Manervering Target. IEEE Transactions on Aerospace and Electronic Systems. 1991, 27(5): 870-872
    139 R. Gitizadeh, I. Yaesh, J.Z. Ben-Asher. Discrete-Time Optimal Guidance. Journal of Guidance, Control and Dynamics. 1999, 22(1): 171-174
    140 I.R. Rafael. Optimal Guidance Laws with Uncertain Time-of-Flight. IEEE Transactions on Aerospace and Electronic Systems. 2000, 36(2): 721-725
    141 I. Rusnak. Multiple Model-Based Terminal Guidance Law. Journal of Guidance, Control and Dynamics. vol. 2000, 23(3): 742-746
    142杨林,刘文君,卢少丁.一种可实现的离散时间最优末制导律.海军航空工程学院学报, 2009, 24(4): 559-562
    143李君龙,胡恒章.一种离散非线性末制导律.宇航学报, 1998, 19(1): 28-34
    144李兆强,周德云,顾潮琪.基于模型参考的无抖振离散变结构导引律研究.系统工程与电子技术. 2009, 31(10): 2426-2428
    145 M. Krstic, I. Kanellakopoulos, P. Kokotovic. Nonlinear and Adatpive Control Design, Springer, VA, 1995: 29-58
    146 C. Milosavljevic. General Conditions for the Existence of a Quasi Sliding Mode on the Switching Hyperplane in Discrete Variable Structure Systems. Automation and Remote Control. 1985, 46(5): 307-314
    147 S.Z. Sarpturk, Y. Istefanopulos, O. Kaynak. On the Stability of Discrete of Discrete-time Sliding Mode Control System. IEEE Transactions on Automatic Control. 1987, 32(10): 930-932
    148 K. Furuta Sliding mode control of a descrete system. Systems & Control Letter. 1990, 14(2): 145-152
    149高为炳.离散时间系统的变结构控制.自动化学报. 1995, 21(2): 154-161
    150 W.B. Gao, Y.F. Wang, H. Abdollah. Discrete-Time Variable Structure Control Systems. IEEE Transactions on Industrial Electronics. 1995, 42(2): 117-122
    151 A. Bartoszewicz. Discrete-time Quasi-sliding Mode Control Strategies. IEEE Transactions on Industrial Electronics. 1998, 45(3): 633-637
    152宋立忠,温洪,姚琼荟.离散变结构控制系统的变速趋近律.海军工程学院学报, 1999, 88(5): 16-21
    153翟长连,吴智铭.不确定离散时间系统的变结构控制设计.自动化学报. 2000, 26(2): 184-191
    154 A.J. Koshkouer, A.I. Zinober. Sliding Mode Control of Discrete-time Systems. Journal of Dynamic Systems, Measurement, and Control. 2000, 122(3): 793-802
    155 X. K. Chen. Adaptive Sliding Mode Control for Discrete-time Multiinput Multi-Output Systems. Automatica. 2006, 42(5): 427-435
    156 S. Janardhanan, B. Bandyopadhyay. Multirate Output Feedback based Robust Quasi-sliding Mode Control of discrete-time systems. IEEE Transactions on Automatic Control. 2007, 52(5): 499-503

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700