用户名: 密码: 验证码:
冬小麦和夏玉米气孔阻力与冠层阻力监测与估算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气孔阻力和冠层阻力均是研究作物蒸发蒸腾的重要参数,两者既有区别又有联系,气孔阻力是水汽进出植物气孔的阻力,是研究植株尺度蒸腾量的依据;而冠层阻力是研究农田尺度蒸发蒸腾的基本参数,其基本出发点是将作物冠层概化为一张“大叶”,依据“大叶理论”,冠层阻力是各叶片气孔阻力和土壤阻力的综合。气孔阻力和冠层阻力的变化规律是否相同,能否通过建立二者之间的关系进行不同尺度间的转换,是目前国内外广泛关注的研究热点和难点。本论文以大量田间实测数据为基础,分析了冬小麦和夏玉米气孔阻力的日内及生育期内变化过程,研究了环境因子对气孔阻力的影响,对比了利用Penman-Monteith公式反推作物冠层阻力和利用气孔阻力计算冠层阻力的方法,得出以下研究结果:
     1.不同作物气孔阻力的日变化不尽相同。冬小麦气孔阻力的日变化表现为“W”型,气孔阻力在早、中、晚时刻高,只有在土壤水分供应充足或生育早期温度较低时中午的峰值较小或无峰,日变化呈“U”型;夏玉米气孔阻力的日变化基本呈“U”型变化的,以早晚最高。
     2.冬小麦的气孔阻力在整个生育期的变化是多峰型的。在生育前期较高(以返青后为起点),转入旺盛生长期后阻力值有所减小,在抽穗灌浆期常会出现一个阻力升高点,而后又减小,随着作物的衰老,叶片功能的衰退气孔阻力又逐渐增大,总体上是呈多峰型变化的;夏玉米的气孔阻力在整个生育期内的变化基本上是平缓增加的。
     3.影响气孔阻力大小变化的环境因子不同的作物不尽相同。冬小麦最重要的影响因子依次为相对湿度、温度、蒸腾和冠气温差,而影响夏玉米气孔阻力重要的环境因子是净辐射、温度和相对湿度。
     4.冠层阻力可以通过不同的方法推算,但不同的方法对不同作物的吻合程度不相同。气孔阻力结合叶面积指数计算出的冠层阻力在日内的变化趋势同所测的气孔阻力基本一样,只是数值上要小些。在植株及小区尺度上这种方法算的冠层阻力是比较准确的;利用PM公式反推的中等尺度上的冠层阻力,由于是中等尺度,反推出的日变化趋势比较简单。冬小麦反推出冠层阻力同利用气孔阻力计算出的数值差别普遍较大。夏玉米两种方法计算的冠层阻力相关性则较好,在数值大小和趋势上均吻合较好。
Stomatal resistance and canopy resistance are important parameters of crop evapotranspiration study. They are different and related. Stomatal resistance is the resistance of water vapor in and out of plant stomata, which is the basis for the evapotranspiration on the plant scale. Canopy resistance is the basic parameter of evaporation and transpiration on the field scale, the basic starting point is generalized crop canopy into a "big leaf".According to the "big leaf theory" canopy resistance is the integrated of leaf stomatal resistance and soil resistance. Whether there is the same variation between stomatal resistance and canopy resistance, or through the establishment of the relationship between them to do conversion between different scales is a widespread concern topic at home and abroad. In this thesis, based on the large number of field measured data, we analyzed the changing process of stomatal resistance of winter wheat and summer maize growth on days and growth season, studied the effects of environmental factors on stomatal resistance, and compared the method of using Penman-Monteith equation inversed crop canopy resistance and using stomatal resistance calculated canopy resistance, the main results as follows:
     1.The diurnal variations of stomatal resistance of different crops are various. Diurnal variation of stomatal resistance of winter wheat is on the performance of "W-type". Stomatal resistance is higher in the early, middle and late time in daytime, the peak would be less or disappearance and likes as the "U-type"if the supply of soil moisture is adequate, or the temperature is low on the early growth stage. The diurnal variations of stomatal resistance of summer maize like as "U-type" in all measurement days with the higher values in the morning and evening time.
     2.Stomatal resistance of winter wheat change as multiple peaks curve throughout the growth period. It is higher (to start after turning green period) at the early growth stage then tune to less with plant vigorous growth, and a resistance increase point often is seen on heading and filling stage, then decreases again, stomatal resistance increases gradually with the crop aging and declining of leaf functional. On the whole the stomatal resistance of winter wheat in the whole growth season shows as a multiple peaks curve. While the stomatal resistance of summer maize are basically gentle rise in the whole growth period.
     3.Factors determine stomatal resistances on different crops are not the same. The most important factors affecting stomatal resistance on winter wheat are in the order of relative humidity, temperature, transpiration and canopy-air temperature difference.The most important environmental factors on summer maize are net radiation, temperature and relative humidity.
     4.Canopy resistance can be calculated in different ways, but different methods for different crops are in different degree of agreement. Using stomatal resistance combined of leaf area index to calculated canopy resistance has the same trends in the days with the measured stomatal resistance, but the value is less.Calculated canopy resistance in plant and cell scale in this method is more accurate. The diurnal variation of canopy resistance shows a simple trend by using PM formula promoted on the medium scale.Canopy stomatal resistance values calculated with the two methods are larger different. Correlation of summer maize canopy resistance calculated by those two methods is good, both are in good agreement in numerical size and trends.
引文
1.储长树,卢显富,青吉铭.Penman-Monteith公式中冠层阻抗的合成方法[J].南京气象学院学报.1995,18(4):494-499.
    2.龚元石.Penmam-Monteith公式与FAO-PPP-17Penman修正式计算参考作物蒸散量的比较[J].北京农业大学学报.1995,1:68~75.
    3.胡继超,张佳宝,赵炳梓等.冬小麦冠层阻力日变化的估算[J].灌溉排水学报.2005,4:1~4.
    4.黄树亭,胡昌浩,周关印.玉米叶片气孔导度、蒸腾和光合特性研究[J].玉米科学.1993,1(2):41~46.
    5.荆家海,马书尚.大田玉米、高粱、芝麻、虹豆叶片水势、蒸腾速率、气孔阻力对环境因素的反应[J].西北植物学报.1990,10(1):8~16.
    6.梁宗锁,李新有,康绍忠.节水灌溉条件下夏玉米气孔导度与光合速度的关系[J].干旱地区农业研究.1996,14(1):101~105.
    7.刘国水.作物蒸散量测定与计算方法研究[D].河北农业大学,硕士学位论文.2008.
    8.刘萱,王天铎.田间小麦叶片对环境因子响应的模拟及叶片水分平衡的计算[J].植物生理学报.1998,14(2):136~144.
    9.刘萱.麦田冠层气孔导度的分层研究[J].植物学报.1990,32(5):390~396.
    10.刘钰,蔡林根.参照腾发量的新定义及计算方法对比[J].农业工程学报.2000,5:26~30.
    11.卢振民.小麦和玉米叶片两面气孔导性的差异及其与环境因素的关系[J].生态学杂志.1990,9(5):19~21.
    12.卢振民.田间小麦群体内叶片气孔阻力垂直差异研究[J].应用生态学报.1990,1(1):30~34.
    13.莫兴国,项月琴,刘苏峡.冬小麦群体叶片气孔导度差异性分析[J].植物学报.1996,38(6):467~474.
    14.莫兴国.冠层表面阻力与环境因子关系模型及其在蒸散估算中的应用[J].地理研究.1997,16(2):82~88.
    15.莫兴国.土壤-植被-大气系统水分能量传输模拟和验证[J].气象学报.1998,56(3):323~332.
    16.彭世彰,徐俊增,丁加丽.控制灌溉水稻气孔导度变化规律试验研究[J].农业工程学报.2005,21(3):1~5.
    17.强小嫚,蔡焕杰,周新国等.参考条件下苜蓿冠层阻力变化规律试验研究[J].干 旱地区农业研究.2009,27(5):107~111.
    18.强小嫚.ET0计算公式适用性评价及作物生理指标与蒸发蒸腾量关系的研究[D].西北农林科技大学,硕士学位论文,2008,21~27.
    19.申双和,徐为根.作物冠层气孔阻力与土壤水势关系的研究[J].气象科学.2002,22(2):218~222.
    20.石培华,冷石林,梅旭荣.气孔导度、表面温度的环境响应模型研究[J].中国农业气象.1995,16(5):51~55.
    21.史宝成,刘钰,蔡甲冰.冠层温度指导冬小麦灌溉的试验研究[J].节水灌溉.2008,4,11~14.
    22.苏春宏,陈亚新,王亚东等.ET0计算模型及其主要因子的影响分析评估[J].灌溉排水学报.2006,1:14~19.
    23.苏春宏,陈亚新,张富仓等.ET0计算公式设定条件下冠层阻力的实验率定研究[J].水利学报,2007,10(增刊):269~275.
    24.苏春宏.参考作物蒸发蒸腾量ET0的初步检验实验及输入因子的响应分析研究[D].西北农林科技大学,博士学位论文,2006,72~79.
    25.孙景生.夏玉米叶片气孔阻力与冠层阻力估算模型的研究[J].灌溉排水.1996,15(3):16~2.
    26.王笑影.李丽光.谢艳兵等.植被~大气相互作用中的气孔导度及其尺度转换[J].生态学杂志.2008,27(3):454~459.
    27.王玉辉,何兴元,周广胜.羊草叶片气孔导度特征及数值模拟[J].应用生态学报.2001,12(4):517~521.
    28.王玉辉,周广胜.羊草叶片气孔导度对环境因子的响应模拟[J],植物生态学报.2000,24(6):739~743.
    29.王珍,武志海,徐克章.玉米群体冠层光合速率与叶面积指数关系的初步研究[J].吉林农业大学学报.2001,23(2):9~12,16.
    30.吴文勇,刘洪禄,杨培岭,张超品.温室滴灌条件下甜瓜气孔阻力变化规律研究[J].中国农村水利水电.2002,12:28~30.
    31.杨启良,张富仓,李志军.用高压流速仪测定植物的水分传导[J].灌溉排水学报.2007,26(4):53~56.
    32.杨树栋.叶片导度对环境水分状况响应的模拟[J].植物学报.1990,32(9):686~694.
    33.于强,刘建栋,罗毅.几个气孔模型在自然条件下的适用性[J].植物学报.2000,42(2):203~206.
    34.于强,谢贤,孙菽芬等.植物光合生产力与冠层蒸散模拟研究进展[J].生态学报.1999,19(5):744~753.
    35.于强.农田生态过程与模型.北京:科学出版社,2007.1~14.
    36.袁国富,罗毅,唐登银等.冬小麦不同生育期最小冠层阻力的估算[J].生态学报.2002,22(6):930~934.
    37.张旭东,蔡焕杰,付玉娟等.黄土区夏玉米叶面积指数变化规律的研究[J].干旱地区农业研究.2006,24(2):25~29.
    38.赵明,李少昆,王美云.田间不同条件下玉米叶片的气孔阻力及与光合、蒸腾作用的关系[J].应用生态学报.1997,8(5):481~485.
    39.郑凤英,彭少麟.不同尺度上植物叶气孔导度对升高CO2的响应[J].生态学杂志.2003,22(1):26~30.
    40.郑有飞,颜景义,张卫国.小麦气孔阻力对气象条件的响应[J].中国农业气象.1999,16(3)9~13.
    41.Allen. R. G, Pereira. L. S,Raes. D.et al. Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements.United Nations Food and Agriculture Organization. Irrigation and Drainage Paper 56.Rome, Italy,1998.300.
    42.Allen. R. G,William O.Pruitt, James L. et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56Penman-Monteith method. Agricultural Water Management.2006.81; 1-22.
    43.AS.CE-EWRI.The ASCE Standardized Reference Evapotranspiration Equation. Technical Committee report to the Environmental and Water Resources Institute of the American Society of Civil Engineers from the Task Committee on Standardization of Reference Evapotranspiration. ASCE-EWRI,1801 Alexander Bell Drive, Reston, VA 2005.20191-4400,173.
    44.Bailey W G, Davies JA. Bulk stomatal resistance control on evaporation [J]. Boundary Layer Meteorol,20(1981):401-415.
    45.Baozhong Zhang, Shaozhong Kang, Fusheng Li, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China. Agricultural and forest meteorology. 148(2008)1629-1640.
    46.A. S. Thom, H.R. Oliver. On Penman's equation for estimating regional evaporation Quart. J. R. Met. SOC.103(1977),345-357.
    47.Esmaiel. Malek, Gail. E. Bingham, Greg. D.Mccurady. Continuous measurement of aerodynamic and alfalfa canopy resistances using the Bowen ratio energy balance and Penman-Monteith method. Boundary-Layer Meteorology,59(1992):187-194.
    48.F.J. Villalobos, L. Testi, M.F. Moreno-Perez. Evaporation and canopy conductance of citrus orchards. Agricultural water management (2008):1-9.
    49.J.S.Wallace. Calculating evaporation:resistance to factors.Agricultural and Forest Meteorology.73(1995); 353-366.
    50.Jean-Paul Lhomm.The concept of canopy resistance:historical survey and comparison of different approaches Agricultural and Forest Meteorology,54 (1991) 227-240.
    51.Joon Kim, Shashi B.Verma. Modeling canopy stomatal conductance in a temperate grassland ecosystem Agricultural and Forest Meteorology,55 (1991) 149-166.
    52.Kazuho Matsumoto, Takeshi Ohta, Taro Nakai et al. Responses of surface conductance to forest environments in the Far East. Agricultural and forest meteorology,148(2008):1926-1940.
    53.L. Menzel. Modeling canopy resistance and transpiration of grassland. Phys. Chem. Earth.1996.21(3);123-129.
    54. Leiming Zhang, Michael D.Moran, Jeffrey R. Brook. A comparison of models to estimate in-canopy photosynthetically active radiation and their influence on canopy stomatal resistance.Atmospheric Environment.35 (2001):4463-4470.
    55.Lu Zhang, R. Lemeur, J. P. Goutorbe.A one-layer resistance model for estimating regional evapotranspiration using remote sensing data. Agricultural and Forest Meteorology.77(1995) 241-261.
    56.P. Rochette,E.Pattey,R.L. Desjardins et al. Estimation of maize (Zea mays L.) canopy conductance by scaling up leaf stomatal conductance Agricultural and Forest Meteorology,54(1991)241-261.
    57.P.M. Cox, C. Huntingford, R.J. Harding. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology.212-213(1998) 79-94.
    58.Paulo C. Sentelhas, Terry J. Gillespie, Mark L. Gleason et al, Evaluation of a Penman-Monteith approach to provide "reference" and crop canopy leaf wetness duration estimates. Agricultural and Forest Meteorology 141 (2006) 105-117.
    59. Ricardo K. Sakai, David R. Fitzjarrald, Kathleen E. Moore.Detecting leaf area and surface resistance during transition seasons.Agricultural and Forest Meteorology. 184(1997):273-284.
    60.S.Garrigues, N.V. Shabanov, K. Swanson et al. Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands.Agricultural and forest meteorology. 148(2008):1193-1209.
    61.S.Irmak, D. Mutiibwa, A. Irmak et al. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density. Agricultural and forest meteorology.148(2008):1034-1044:
    62.S.Lecina, A. Marti'nez-Cob, P.J. Pe'rez et al. Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions.Agricultural Water Management 60 (2003): 181-198.
    63.Samuel Orlando Ortega-Farias, A. Olioso, S.Fuentes et al. Latent heat flux over a furrow-irrigated tomato crop using Penman-Monteith equation with a variable surface canopy resistance. Agricultural Water Management.82 (2006):421-432.
    64.Szeicz. G, Long. I. F. Surface resistance of crop canopies. Water Resource. Res. J. 5(1969),622-633.
    65.Tomo'omi Kumagai, Makiko Tateishi, Takanori Shimizu et al. Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed agricultural and forest meteorology.148(2008):1444-1455.
    66.Victoria J. Stokes, Michael D.Morecroft, James I.L. Morison. Boundary layer conductance for contrasting leaf shapes in a deciduous broadleaved forest canopy. Agricultural and Forest Meteorology.139 (2006) 40-54.
    67.Villiam Novak. A Canopy Resistance Estimation Method to Calculate Transpiration. Phys.Chem. Earth.1998,23(4):449-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700