用户名: 密码: 验证码:
SiCp颗粒增强6061Al基复合材料等离子弧原位焊接的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强铝基复合材料具有比强度高、比模量高、膨胀系数低、耐磨性良好等优异的综合性能,在航天、航空结构件、发动机耐热和耐磨部件等方面有着广阔的应用前景,成为当今金属基复合材料发展与研究的主流。然而由于铝基复合材料的特殊组织结构导致其焊接性很差,难以形成高强度焊接接头,成为该种材料走向工业应用的严重障碍,因此有必要系统地研究铝基复合材料焊接性。
     本课题以SiCp/6061A1基复合材料为研究对象,以Ar+N_2为离子气,Ar气为保护气,采用等离子弧焊接方法对其焊接工艺及合金化机理进行了系统的研究。利用金相显微镜、扫描电镜及X射线衍射分析仪等微观分析手段研究了复合材料等离子弧焊接接头微观组织及成分变化,利用硬度试验和拉伸试验研究了等离子弧焊接接头的力学性能。
     研究表明填加Al-Si-Ti-Ni合金对SiCp/Al基复合材料进行等离子弧原位焊接,填加材料中Ti含量为5%时,可以有效抑制有害相Al_4C_3的生成,得到的焊缝组织较为致密,没有气孔、微观裂纹等缺陷,接头强度较之不加填充材料时有较大提高,达到226MPa,提高了接头的力学性能。
     研究了使用Al-Si-Ti-Y合金片为填充材料对SiCp/6061A1基复合材料进行等离子弧原位焊接时,焊缝组织和性能的变化。试验表明以Al-Si-Ti-Y合金片为填充材料时,可以细化晶粒获得致密的焊缝组织。在抑制有害相Al_4C_3的生成的同时,接头强度又有较大提高,达到240MPa,有效提高了接头的力学性能。此外还分析了Y对焊缝组织及接头力学性能的影响,研究表明在铝基复合材料焊接过程中添加稀土金属Y,可改善焊缝组织,提高焊缝强度、塑性和韧性。
     对SiCp/Al基复合材料等离子弧原位焊接接头进行热处理后发现,热处理的最佳工艺为T6 500℃固溶+时效。热处理后焊缝组织状况得到良好的改善,粗大的Al_3Ti相变为短小棒状,消除了晶间偏析,组织更加均匀。热影响区组织中晶粒均得到比较明显的细化,比较接近母材晶粒的大小。焊接接头强度较未热处理时有了较大提高,达到255MPa,而且接头热影响区硬度基本恢复到母材水平。
Particle reinforced aluminum metal matrix coMPosites(AI MMCs),which exhibit excellent combinations of high specific strength,high specific stiffness,low coefficient of thermal expansion and excellent wear resistance,have wide application in aerospace-flight,aviation structure,and heat resistant-wearable parts of engine,and thus represent the mainstream of conteMPorary research and development of metal matrix coMPosites.However,the special microstructure of Al MMCs,which lead to the poor weldability and the difficulty in obtaining high strength welded joint,severely hinder the application of the coMPosites in welded construction.Therefore,a systematic study on the weldability of aluminum matrix coMPosites is imminent.
     In this paper,SiCp/Al MMCs were selected as research objects,and process and mechanism of SiCp/6061Al MMCs by plasma arc welding(Ar and N2 as ionized gas, Ar as fielded gas) were systematically studied.OM(optics microscopy),SEM(scanning microscopy) and XRD(X-ray diffraction) were used to observe the microstructure and changing of coMPositions of fusion welded joints of coMPosites.Mechanical properties of fusion welded joints were measured by microhardness and tensile tests.
     CoMPact microstructure without phases of Al_4C_3 was obtained by plasma arc "in-situ" welding of SiCp/6061Al MMCs with Al-Si-Ti-Ni alloy filler,whose mass fraction of titanium is 5%.And no defects of pores,fissures and incoMPlete fusion is observed in the central zone of weld.The mechanical properties of weld joint were thus iMProved and the tensile strengths of weld joint reach 226MPa.
     The test results of mechanical property show that the maximum tensile strength of welded joint gained with Al-Si-Ti-Y alloy as filled coMPosite is 240MPa.the microstractures and mechanical properties of the welding joint were researched analysis by plasma Arc "in-situ" welding of SiCp/6061Al MMCs with Al-Si-Ti-Y alloy fillers.
     The grains were refined and dense microstractures were gained.In addition,the effects of yttrium element on microstructures and factors influence the mechanical properties were also investigated.The result shows that the rare earth element yttrium can iMprove the strength,plasticity and toughness.The microstractures of weld can be ameliorated,too.
     The results show that the optimum heat treatment process of the weld joint by plasma Arc "in-situ" welding of SiCp/6061Al MMCs is T6 500℃solution and aging. The microstructure of heat treated weld was well iMProved with the size of massive bulky phases Al_3Ti turning into short rod-like,intergranular segregation eliminated and more homogeneous particles.The grains of heat affected zone were refined during the heat treatment,and were the same as that of base material.Thus the tensile strength of joint was heightened to 255 MPa,and the hardness of the the heat affected zone recovered to the pre-welding value.
引文
[1]赵玉涛,戴起勋,陈刚.金属基复合材料[M].机械工业出版社.2007.
    [2]D.J.Loyd.Particle reinforced aluminum magnesium coMPosites[J].International Materials Reviews.1994,39(1):1-22.
    [3]C.G.Long.TiC/2618复合材料的再结晶过程及高温性能[J].The Chinese Journal of Nonferrous Metals(中国有色金属学报).1999,9(4):740-743.
    [4]郭伟.颗粒增强铝基复合材料液相冲击扩散焊接机理研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2004:50
    [5]J.V.Wood,P.Davies,J.L.F.Kellie.Properties of reactively cast aluminum TiB2 alloy[J].Mater Sci Teeh.1993,9(10):833-840.
    [6]游志勇,张永忠,赵浩峰.金属基复合材料及其发展现状[J].山西机械.2003,120(3):5-8.
    [7]于化顺.金属基复合材料及其制备技术[M].化学工业出版社.2006.
    [8]申泽骥.李保东.铸造镁合金熔炼技术进展[J].特种铸造及有色合金.2001(压铸增刊):90-93.
    [9]牛济泰,刘黎明.铝基复合材料焊接研究现状及展望[J].哈尔滨工业大学学报.1999,31(1).130-136
    [10]Ells M B D.Joining of aluminum based metal matrix coMPosites[J].International Materials Reviews.1996,41(2):41-58.
    [11]吴人杰.下世纪我国复合材料的发展机遇与挑战[J].复合材料学报.2000,17(1):1-4.
    [12]Kenndy J R.Microstructural observations of arc welded boron-aluminum coMPosites[J].Welding Jourual.1973(3):120-124.
    [13]Bob Irving.What's being done to weld metal matrix coMPosites[J].Welding Journal.1991(6):65-67.
    [14]林丽华等.金属基复合材料焊接技术及其发展动向[J].材料科学与工程.1997(3):23-28.
    [15]Tom Miller.B/Al coMPosite is stiffer light[J].Advanced Materials & Process.1997(2):2.
    [16]吕世雄.SiCw/6061Al复合材料无钎剂低温搅拌加压钎焊方法的研究[D].哈尔滨工业大学硕士论文.2000:19-28.
    [17]Moshier W C,Ahearn J S,Cooke D C.Intemaction of Al-Si,AI-Ge,and Zn-Al Eutectic Alloys with SiC/Al Discontinuously Reinforced Metal-Matrix CoMPosite[J].Journal of Materials Science.1987(22):115-122.
    [18]马晓春,唐逸民等.碳化硅颗粒增强铝基复合材料的钎焊机理研究[J].焊接学报.1997, 18(1):12-17.
    [19]邹家生,陈铮,许如强,赵其章.SiCp/LY12复合材料的真空钎焊[J].中国有色金属学报.2004,14(1):74-78.
    [20]栾亦琳,刚铁,闫久春.铝基复合材料超声波辅助钎焊质量评价[J].2006,27(6):9-12.
    [21]冯吉才,何鹏,刘玉章,张九海.铝硅合金钎焊Cf/Al复合材料的界面反应及连接机理[J].中国有色金属学报.2005,15(11):1710-1716.
    [22]Midling O T.A Process model for friction Welding of Al-Si-Mg Alloys and Al-SiC MMCs-I HAZ TeMPerature and Strain Rate Distribution[M].Acta Metal Mater.1994,42(5):1595-1622.
    [23]Midling O T,Grong O.Joining of particle reinforced Al-SiC MMCs[M].Key Engineering.1995.
    [24]加腾数良,时未光.Al合金复合材料とAl合金摩擦压接续手の结合界面[J].轻金属熔接.1994,32(1):1-5.
    [25]Kate K,Tokisue H.Weld Interface of Friction Welded Aluminum Alloy CoMPosite to Aluminum Alloy Joints[J].Welding International.1995(5):352-256.
    [26]陈华斌,严铿,李敬勇.颗粒增强铝基复合材料SiCp/6066A1搅拌摩擦焊[J].华东船舶学院学报.2004,18(3):62-64.
    [27]Onzawa T,Suzumura A,Hkim J,etal.Joining of Titanium matrix CoMPosites Reinforced With SiC-CVD Fiber[J].Welding International.1992,6(99):707-712.
    [28]M.S.Hersh.Resistance welding of metal matrix coMPosite[J].Welding Journal.1986,47(9):404-409.
    [29]M.S.Hersh.Correlation between B/Al sheet quality and resistance weld quality and Strength[J].Welding Journal.1971,50(12):515-521.
    [30]V.LRyazantsev.Selection of the resistance spot-welding conditions in relation to the content of Bfibers in a coMPosite material[J].WelPro.1981(5):19-26.
    [31]A.Urena.Diffusion Bonding of an Aluminum-Copper Alloy Reinforced with Silicon Carbide Particles(Al2014/SiC_(13P)) Using Metallic Interlayers[J].Sefipta Materialia.1996,35(11):1285-1293.
    [32]中国机械工程学会焊接学会焊接手册[M].北京:机械工业出版社.1992.
    [33]Li Z.Fearis W.North T H.Particulate segregation and mechanical properties intransient liquid phase bonded metal matrix coMPosite material[J].Materials Science and Technology.1995(11):363.
    [34]Zhai Y,North T H.Transient liquid-phase bonding of alumna and metal matrix coMPosite base materials[J].Journal of Materials Science.1997(32):1393.
    [35]Hersh M S.Joining boron/aluminum coMPosites[J].Welding Journal.1972(9):626-632.
    [36]唐逸民.金属基复合材料焊接的研究进展问题及对策[J].焊接研究与生产.1998(1):5-12.
    [37]#12
    [38]牛济泰.利用Gleeble1500热/力模拟试验机研究扩散焊参数对镁基复合材料接头性能的影响[J].哈尔滨工业大学学报.1996(28):89-92.
    [39]桃野正,西川浩司,圆成敏男,池内建二.SiC/Al纤维强化复合材料の扩散熔接[J].轻金属学会第71回秋季大会讲演概要.1986,89-94.
    [40]#12
    [41]杜兴春.碳化硅晶须增强铝基复合材料扩散焊的研究[D].哈尔滨工业大学硕士学位论文.1991:85.
    [42]A.Urena.Diffusion bonding of discontinuously reinforced SiC/Al CoMPosite:the role of interlayers[J].Key Engineering Materials.1995(5):104-107.
    [43]Ellis M B D.Joining of aluminum based metal matrix coMPosites[M].International Materials Reviews.1996.
    [44]陈彦宾,张德库,牛济泰等.激光焊接铝的复合材料钛的原位增强作用[J].应用激光.2002,22(3):320-322.
    [45]A.Hirose.Joining process for structure application of continuous fiber reinforced MMC[J].Key Engi Mater.1995,35(4):104-107.
    [46]T.J.Lienerr,E.D.Brandon,J.C.Lippold.Laser and beam welding of SiCp/Al356 MMC[J].Scripta Metal.1993(28):1341-1346.
    [47]王慕珍,孙永.SiCw/6061Al激光焊规范参数对接头强度的影响[J].航天工艺.1991(6):1-5.
    [48]潘龙修.SiCw/6061Al复合材料激光焊[D].哈尔滨:哈尔滨工业大学硕士学位论文.1992.81.
    [49]袁为进.合金化填充材料Ti及其它工艺参数对SiCp/6061Al等离子弧焊焊缝组织及性能的影响[D].镇江:江苏大学硕士学位论文.2005:3.
    [50]张永俐,罗素华.SiC-Al界面Al_4C_3的生成及其控制[J].材料科学与工程,1998,16(1):32-35.
    [51]雷玉成,朱飞,袁为进.Ti对SiCp/Al等离子弧焊焊缝组织的影响[J].材料科学与工艺.2006,14(6):565-567.
    [52]冀国娟,谢建刚,薛文涛.SiCp/101铝基复合材料的填加焊丝TIG焊[J].有色金属.2003,55(4):21-23.
    [53]刘黎明,高振坤,董长富,韩文波.亚微米级Al_2O_3p/6061Al铝基复合材料扩散焊接工艺[J].焊接学报.2004,25(5):85-88.
    [54]Lei Yucheng,Yuan Weijin,Chen Xizhan.In-situ weld-alloying plasma arc welding of SiCp/Al MMCs[J].Trans.Nonferrous Met.Soc.China.2007,17(2):313-317.
    [55]候增寿.金属学原理.上海:上海科学技术出版.1990.
    [56]谭敦强,黎文献.Al-Ti-C晶粒细化剂对工业纯铝的晶粒细化[J].特种铸造及有色合金.2003,24(2):1-3.
    [57]王学政,赵明,房建强,薛卫京.SiCp/ZL109复合材料热处理工艺优化[J].复合材料.2005年中国压铸、挤压铸造、半固态加工学术年会专刊.2005:97-99.
    [58]陈永来,于利根.合金化填充材料Ni对SiCp/6061Al复合材料激光焊接焊缝显微组织的影响[J].复合材料学报.2000,17(4):63-65.
    [59]李周,尹志民,郭明星.Al-Zn-Mg合金焊接接头性能分析[J].理化检验:物理分册.2006,42(8):386-388.
    [60]Yin Zhimin,Guo Feiyue,Pan Qinglin.Al-Cu based welding wire with minor Sc-Zr alloying and its application[J].Transactions of Nonferrous Metals Society of China.2003,13(4):781-784.
    [61]刘光华.稀土材料与应用技术[M].化学工业出版社.2005.
    [62]范洪波,曹福洋.铝基非晶态合金的制备方法及性能[J].材料导报.1997,11(2):13-17
    [63]沈焕祥,苏升贵.稀土元素对ZL203合金铸态组织和性能的影响[J].稀土.1990,11(4):35-38.
    [64]张秉刚,陈国庆,何景山,冯吉才.Ti-43Al-9V-0.3Y/TC4异种材料电子束焊接(EBW)[J].焊接学报.2007,28(4):41-44.
    [65]Ma Xin,Qian Yiyu,Yoshida F.Effect of Lanthanum on Driving Force for Cu6Sn5 Growth and IMProvement of Solder Joint Reliability[J].Journal of Rare Earth.2002,20(2):128-131.
    [66]王学政,赵明,房建强,薛卫京.SiCp/ZL109复合材料热处理工艺优化[J].复合材料2005年中国压铸、挤压铸造、半固态加工学术年会专刊.2005:97-99.
    [67]郑超.复杂形状SiCp/Al复合材料的热处理与性能.西安:西北工业大学.博士论文.2007:3.
    [68]姚若浩.稀土Al-Ti-C晶粒细化剂的研究开发[J].轻合金加工技术.2004,32(4):18-20.
    [69]董尚利,杨德庄.碳化硅晶须和颗粒增强铝基复合材料的时效行为[J].材料工程.1996(8):45-48.
    [70]韩嫒嫒,武高辉,李凤珍等 热处理过程中SiCp/2024Al复合材料的热应力分析[J].材料科学与工艺.2004,12(3):288-302.
    [71]陈艳,唐前鹏,王孟君.SiCp/6061 Al复合材料激光焊接焊后热处理[J].热加工工艺.2007,36(11):93.
    [72]陈艳,唐前鹏,向寓华,王孟君.热处理温度对SiCp/6061铝基复合材料激光熔化焊焊缝显微组织的影响[J].金属热处理.2007,35(5):72-74.
    [73]ROBERTSON A R,MILLER M F,MAIKISH C R.Soldering and brazing of advanced metal-matrix structures[J].Welding Journal.1973,51(10):446-453.
    [74]THOMAS F.KLIMOWIZ.The large-scale commercialization of aluminum-matrix coMPosites[J].JOM.1994,(11):49-53.
    [75]唐仁正.物理冶金基础[M].北京:冶金工业出版社,1997:79-88.
    [76]郭强,严红革,陈振华,张辉.AZ31镁合金高温热压缩变形特性[J].中国有色金属学.2005,15(6):900-904.
    [77]毛为民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版.1994:2-95.
    [78]BAE D H,LEE M H,KIM K L KIM W T.Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys[J].Journal of Alloys and CoMPounds,2002,342:445-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700