用户名: 密码: 验证码:
基于多谐振特性的单层平面反射阵列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平面反射阵列结合了抛物面反射镜天线和阵列天线的优点,自1978年提出就受到很高的重视,90年代之后开始快速发展。但是,平面反射阵列也继承了微带天线带宽窄的缺点。本文旨在研究一种新型的宽频带单元结构,以扩展阵列带宽。论文同时给出了单元相移特性的详细计算方法以及平面反射阵列的设计过程。
     单元设计的目标是在宽频带内获得良好的相移特性。第一步工作是要获得充足的相位动态范围,为提高相移特性的平滑度提供基础。通过研究单层多谐振结构的工作原理,并对振子和方形环单元进行分析,提出一种由振子和截断矩形环构成的四谐振结构,即“双D形”结构单元。“双D形”结构单元既能够增加单元谐振点的个数,获得充足的相位动态范围,又能够有效控制单元尺寸,避免因阵元间距过大而导致栅瓣产生。
     设计好单元后,需要对其相移特性进行计算。研究了广义散射矩阵结合矩量法(GSM-MoM),给出利用该方法计算单元相移特性的详细过程。
     得到充足的相位动态范围后,需要对单元进行优化,以获得平滑的相移特性。首先以“双C形”结构作为对象,研究谐振单元谐振频率的比例及基板材料等参数对单元相移特性的影响。在此基础上,对“双D形”单元进行优化,给出了“双D形”单元的优化过程。优化后单元在7-10GHz带宽内获得了良好的相移特性,其带宽相比文中双层堆叠结构提高了近一倍,相比缝隙耦合结构提高了约65%。与其它单层多谐振结构相比,“双D形”单元的优势在于既能够增加谐振点个数,又控制了单元尺寸,而多谐振振子等结构只能满足其中一个条件。
     最后,为验证“双D形”单元设计的有效性,设计并制作了一个12×13单元的平面反射阵列。对其辐射特性进行仿真计算和实测,结果表明,实测增益与仿真值吻合,在7-10GHz频带内,该阵列获得45 %左右的口径效率,验证了单元设计的有效性。
Microstrip reflectarrays combine certain advantages of reflector antennas and planar phased arrays. Since introduced in 1978, microstrip reflectarrays have attracted so much attention and developed rapidly from 1990s. However, the advantage of narrow bandwidth is inherited from microstrip antennas. The purpose of this thesis is to develop a new broadband microstrip reflectarray element, which can increase the bandwidth of the array. The method of calculating the phase shift of the elements and the designing process of the reflectarray are presented.
     The target of designing an element is to achieve good phase shift characteristic in broadband. But enough phasing range should be achieved to reduce the lope of the phase shift characteristic. Based on the study of the principle of single-layer multiple-resonance structures, by analyzing the surface current distribution of dipoles and rectangle loops, a fourfold-resonance structure composed with dipoles and served rectangle loop is proposed, called as“double D”structure. By using the“double D”structure, not only the number of resonance elements are increased, which increases the bandwidth of the element, but also the size of the element is controlled to be smaller than the maximum element spacing that will lead to the grating lobe.
     Then, the Method of Moments combined with Generalized Scattering Matrix(GSM-MoM) is studied, and the detailed process to calculate the phase shift of the element is proposed.
     With enough phasing range, structure of the element should be optimized. Simply, with a“double C”structure instead of“double D”structure as reflectarray element, the affects on phase shift characteristic are studied when changing the ratios of resonant frequencies of the elements and behavior of the substrate. Then, on the basis of that, the“double D”structure is optimized, and method of structure optimizing and the optimized result are presented. It is shown that good phase shift characteristics of optimized structure are obtained from 7-10GHz. The phase shift of“double D”structure is calculated by the GSM-MoM and CST microwave studio, and similar results are achieved. With the advantages of briefer structure and lower cost, the bandwidth of“double D”structure is twice that of stacked patches presented in the paper, and about 65% more than that of aperture-coupled patches. Also, compared with other single-layer multiple-resonance structures, the distinct advantage of“double D”structure is that the resonant elements are increased while the size of element is compact.
     As validation of the structure, a reflectarray with 12×13 elements is fabricated, computed and tested. The measured result and the computed result are consistent. About 45% aperture efficiency is achieved from 7-10GHz.
引文
[1] Malagisi C S. Microstrip Disc Element Reflect Array[C]. Electronics and Aerospace Systems Convention, New York, 1978:186-192.
    [2] Berry D G, Malech R G, W A Kennedy. The Reflectarray Antenna[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(6):645~651.
    [3] Phelan H R. Spiralphase Reflectarray for Multitarget Radar[J]. Microwave Journal, 1977, 20:67~73.
    [4] Montgomery J P. A Microstrip Reflectarray Antenna Element[C]. Antenna Applications Symposium, Urbana, 1978:624~626.
    [5] Biakkowski M E, Song H J. Dual Linearly Polarized Reflectarray Using Aperture Coupled Microstrip Patches[C]. IEEE Antennas and Propagation Society International Symposium, Boston, 2001:486-489.
    [6]陈红辉,章文勋,吴知航,刘震国.三层贴片宽频带正交线极化变换微带反射阵[J].电波科学学报,2008,23(2):225-228.
    [7] Han C, Rodenbeck C, Huang J, etc. A C/Ka Dual-freqency Dual-layer Circlarly Polarized Reflectarray Antenna With Microstrip Ring Elements[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(11):2871-2876.
    [8] Huang J, Feria A. A One-Meter X-band Inflatable Reflectarray Antenna[J].Microwave & Optical Technology Letters, 1999, 20:97-99.
    [9] Huang J, Feria A. Inflatable Microstrip Reflectarray Antennas at X and Ka Band Frequencies[C]. IEEE AP Symposium, Orlando, florida, 1999, 1670-1673.
    [10] Fusco V F. Mechanical Beam Scanning Refelctarray[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(11): 3842-3844.
    [11] Okoniewski M, Potter M E, Adrian S, etc. On the Selection of the Number of Bits to Control a Dynamic Digital MEMS Reflectarray[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7:183-186.
    [12] Hum S V, Okoniewski M, Davies R J. Realizing an Electronically Tunable Reflectarray Using Varactor Diode-Tuned Elements[J]. IEEE Antennas and Wireless Components Letters, 2005, 15(6): 422-424.
    [13] Pozar D M, Targonski S D, Pokuls R. A Shaped-Beam Microstrip Patch Reflectarray[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7):1167-1173.
    [14] Huang J, Encinar J A. Reflectarray Antennnas[M]. New Jersey: A John Wiley&Sons, Inc., Publication, 2008:169-173.
    [15] Arrebola M, Encinar J A, Alvarez Y, etc. Design of A Reflectarray With Three Shaped Beams Using the Near-Field Radiated By the Feeds[C].European Conference on Antennas and Propagation, Nice, France, 2006:529-533.
    [16] Menzel W, Pilz D, Tikriti M A. Millimeter-Wave Folded Reflector Antenna With High Gain,Low Loss, and Low Profile[J]. IEEE AP Magazine, 2002, 44(3):24-29.
    [17] Huang J, Han C, Chang K. A Cassegrain Offset-Fed Dual-Band Reflectarray[C]. IEEE Antennas and Propagation Society International Symposium,Albuguerque,2006:2439-2442.
    [18] Huang J, Encinar J A. Reflectarray Antennnas[M]. New Jersey: A John Wiley&Sons, Inc., Publication, 2008:194.
    [19] Hodeges R, Zawadzki M. Design of A Large Dual Polarized Ku-band Reflectarray for Spaceborne Radar Altimeter[C]. IEEE AP-S Symposium, Monterey, California, June 2005:4356-4359.
    [20] Bialkowski M E, Robinson A W, etc. Design, Development, and Testing of X-band Amplifying Reflectarrays[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(8): 1065-1076.
    [21] Zich R E, Mussetta M, Tovaglieri M, etc. Genetic Optimization of Microstrip Reflectarrays[J]. IEEE Int. Symp. of Antennas Propagat., 2002, 2:128-131.
    [22] Kurup D G, Himdi M, Rydberg A. Design of an Unequally Spaced Reflectarray[J]. IEEE Antennas and Wireless Propagation Letters, 2003, 2:33-35.
    [23] Shum K M, Xue Q, Chan C H, etc. Gain Enhancement of Microstrip Reflectarray Incorporating a PBG Structure[C].IEEE Antennas and Propagation Society International Symposium, Hong Kong, China, 2000:350-353.
    [24] Encinar J A. Design of Two-Layer Printed Reflectarray Using Patches of Variable Size[J]. IEEE Transactions on Antennas and Propagation, 2001, 40(10): 1403-1410.
    [25] Encinar J A, Zornoza J A. Broadband Design of Three-Layer Printed Reflectarrays[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(7): 1662-1664.
    [26] Carrasco E, Barba M, Encinar J A. Reflectarray Element Based on Aperture-Coupled Patches With Slots and Lines of Variable Length[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 820-825.
    [27] Carrasco E, Barba M, Encinar J A. Aperture-Coupled Reflectarray Element With Wide Range of Phase Delay[J]. Electronics Letters, 2006, 42(12):1-2.
    [28] Encinar J A, Datashvili L S, Zornoza J A, etc. Dual-Polarization Dual-Coverage Reflect- array for Space Applications[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(10): 2827-2837.
    [29] Bialkowski M E, Sayidmarie K H. Inverstigations Into Phase Characteristics of a Single- Layer Reflectarray Employing Patch or Ring Elements of Variable Size[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(11): 3366-3372.
    [30] Deguchi H, Mayumi K, Tsuji M, etc. Broadband Single-Layer Triple-Resonance Microstrip Reflectarray Antennas[C]. Proceedings of 39th European Microwave Confer- ence, Rome, Italy, 2009:29-32.
    [31] Sayidmarie K H, Bialkowsk M E. Investigations Into Unit Cells Offering an Increased Phasing Range for Single-Layer Printed Reflectarrays[J]. Microwave and Optical Technology Letters, 2008, 50(4):1028-1032.
    [32] Chaharmir M R, Shaker J. Broadband Reflectarray with Combination of Cross and Rectangle Loop Elements[J].Electronic Letters, 2008, 44(11):658-659.
    [33] Li H, Wang B Z, Shao W. Novel Broadband Reflectarray antenna with Compound-Cross- Loop Elements for Millimeter-Wave Application[J]. Journal of Electromagnetic Waves and Application, 2007, 21(10):1333-1340.
    [34] Misran N, Cahill R, Fusco V F. Design Optimisation of Ring Elements For Broadband Reflectarray Antennas[J]. IEE Proc. Microwave Antennas Propagation, 2003, 150(6): 440- 444.
    [35] Chaharmir M R, Shaker J, Cuhaci M, etc. A Broadband Reflectarray Antenna With Double Square[J]. Microwave and Optical Technology Letters, 2006, 48(7): 1317- 1320.
    [36] Li Q Y, Jiao Y Ch, Zhao G. A Novel Microstrip Rectangular-Patch/Ring-Combination Re?ectarray Element and Its Application[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8:1119-1122.
    [37] Volakis J L. Antenna Engineering Handbook[M].4th, New York, McGraw-Hill, 2007:70.
    [38] Pozar D M, T A Metzler. Analysis of a Reflectarray Antenna Using Microstrip Patches of Variable Size[J]. Electronics Letters, 1993, 19(8):657-658.
    [39] Javor R D, Wu X D, Chang K. Design and Performance of A Microstrip Reflectarray Antenna[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(9):932-939.
    [40] Huang J, Pogorzelski R J. A Ka-band Microstrip Reflectarray with Elements Having Variable Rotation Angles[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(5):650-656.
    [41] Huang J, Encinar J A. Reflectarray Antennnas[M]. New Jersey: A John Wiley&Sons, Inc., Publication, 2008:5.
    [42] Pozar D M, Targonski S D, Syrigos H D. Design of Millimeter Wave Microstrip Reflect- array[J]. IEEE Transactions on Antennas and Propagation, 1997, 45:287-295.
    [43] Tsai F E, Bialkowski M E. Designing a 161-Element Ku-Band Microstrip Reflectarray of Variable Size Patches Using an Equivalent Unit Cell Waveguide Approach[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10):2953-2962.
    [44]刘震国,吴知航,章文勋.一种渐变槽线作馈源的新型微带反射阵[J].现代雷达, 2008, 30(10):75-78.
    [45]林昌禄.天线工程手册[M].北京:电子工业出版社.2002:430.
    [46] Tsao C H, Mittra R. Spectral-Domain Analysis of Frequency Selective Surfaces Comprised of Periodic Arrays Cross Dipoles and Jerusalem Crosses[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(5):478-486.
    [47] Boix R R, Freire M J, Medina F. New Method for the Efficient Summation of Double Infinite Series Arising From the Spectral Domain Analysis of Frequency Selective Surfaces[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(4):1080-1094.
    [48] Mittra R, Chan C H, Cwik T. Techniques for Analyzing Frequency Selective Surfaces a Review[J]. Proceedings of the IEEE, 1988, 76(12):1593-1619.
    [49] Cadoret D, Laisne A, Milon M, etc. FDTD Analysis of Reflectarray Radiating Cells[C]. IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetic, Hawaii, 2005: 853-856.
    [50] Bardi I, Remski R, Perry D, etc. Plane Wave Scattering From Frequency-Selective Surfaces by the Finite-Element Method[J].IEEE Transactions on Magnetics, 2002, 38(2):641-644.
    [51] Metzler T, Shaubert D. Scattering From a Stub Loaded Microstrip Antenna[C].Antenna and Propagation Society International Symposium, Digest, 1989:446-449.
    [52] Venneri F, Angiulli G, Massa G D. Design of Microstrip Reflectarray Using Data From Isolated Patch[J]. Microwave and Optical Technology Letters, 2002, 34(6):411-414.
    [53] Zhang Y, Litva J, Wu C, etc. Modelling Studies of Microstrip Reflectarrays[J]. IEEE Proc. Microwave Propagation, 1995, 142(1):78-80.
    [54] Guirard E, Moulinet R, Gillard R. An FDTD Optimization of a Circularly Polarized Reflec- tarray Unit Cell[C]. IEEE Antennas and Propagation Society International Symposium, San Antonio, Texas, 2002:136-139.
    [55] Pozar D M. Analysis of an Infinite Phased Array of Aperture Coupled Microstrip Patches[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(4):418-425.
    [56] Wan C, Encinar J A. Efficient Computation of Generalized Scattering Matrix For Analyzing Multilayered Periodic Structure[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(11):1233- 1242.
    [57] Balmaz P G, Encinar J A, Mosig J R. Analysis of a Multilayer Printed Arrays by a Modular Approach Based on The Generalized Scattering Matrix[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(1):26-34.
    [58] Lambea M, Gonzalez M A, Encinar J A, etc. Alalysis of Frequency Selective Surfaces With Arbitrarily Shaped Apertures By Finite Element Method and Generalized Scattering Matrix[C].IEEE Antennas and Propagation International Symposium, Newport Beach, California, 1995:1644-1647.
    [59] Tsai F E, Bialkowski M E. An Equivalent Waveguide Approach to Designing of Reflect Arrays With the Use of Variable-Size Microstrip Patches[J].Microwave and Optical Technology Letters, 2002, 34(3):172-175.
    [60] Bozzi M, Perregrini L. Analysis of Multilayered Printed Frequency Selective Surfaces by The MoM/BI-RME Method[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10):2830-2836.
    [61] Bozzi M, Germani S, Perregini L. Performance Comparison of Different Element Shapes Used in Printed Reflectarrays[J]. IEEE Antennas and Wireless Propagation Letters, 2003, 2:219-222.
    [62] Misran N, Cahill R, Fusco V F. Reflection Phase Response of Microstrip Stacked Ring Elements[J]. Electronics Letters, 2002, 38(8):356-357.
    [63]肖博宇,张广求,豆栋梁等.缝隙耦合结构反射阵天线单元的设计[J].信息工程大学学报,2010,11(6):739-732.
    [64]路平.采用矩量法分析频率选择表面的电磁散射特性[D].大连:大连理工大学,2008.
    [65] R F哈林登.计算电磁场的矩量法[M].北京:国防工业出版社,1981:6-11.
    [66] Huang J, Encinar J A. Reflectarray Antennnas[M]. New Jersey: A John Wiley&Sons, Inc., Publication, 2008:38.
    [67]张海霞,赵惠玲,陈峰等.一种分析多层周期阵列结构的有效方法[J].计算机仿真,26(9),2009:289-292.
    [68] Smith C F, Peterson A F, Mittra R. The Biconjugate Gradient Method For Electromagnetic Scattering[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(6):938-940.
    [69] Carrasco E, Encinar J A, Barba M. Wideband Reflectarray Antenna Using True-Time Delay Lines[C]. The Second European Conference on Antennas and Propagation, Edinburgh, 2007:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700