用户名: 密码: 验证码:
流—固界面和弯曲表面上激光超声波的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从流—固界面波和弯曲表面上(柱面、管道)周向波的激光激励机理出发,从理论和实验两方面研究了脉冲激光在流—固界面和弯曲表面上激励的超声场,主要内容如下:
     以激光超声的热弹激发机理为基础,讨论了流体(包括气体)和固体中激光超声的激发过程;在此基础上,重点解决了流-固边界上超声场的耦合问题,给出流-固边界超声场耦合的边界方程;结合热传导方程和Navier-Stokes方程,建立了流—固界面波的激光激发和传播的理论模型。
     根据变分原理,推导出流体和固体中热传导方程和Navier-Stokes方程的有限元形式、流—固边界方程的有限元形式;重点解决了网格大小和单元步长的选择问题,给出了流体和固体中网格大小和单元步长的选择依据;讨论有限元数值色散对计算结果准确性的影响;编制了流—固界面波的激光激发和传播的有限元程序。
     数值模拟了不同流-固界面(包括空气-铝、水-铝平面界面和空气-铝柱面界面等)上的泄露Rayleigh波、泄露Lamb波的激光激发过程;并根据数值计算结果,讨论了泄露Rayleigh波、泄露Lamb波在界面上的传播特性。
     提出了反射式和透射式两种光偏转探测方法,并相应地建立了基于这两种方法的光纤耦合探测装置,探测到了脉冲激光在不同流—固界面激发的流—固界面波(包括泄漏Rayleigh波、泄露Lamb波和Scholte波)波形。实验结果和理论计算吻合,从而验证了所建模型的正确性。
     采用有限元方法从理论上研究了脉冲激光在柱状和管状材料中激发的超声波,探讨了激光超声波在圆柱和管道,这两种典型弯曲表面上的传播特性,结果表明:激光超声波沿圆柱面传播时是色散,而且色散程度与圆柱的曲率半径有关;激光超声波沿管道圆周方向传播时,出现了一个与管道圆周方向的曲率有关的低频模态。该研究为利用激光激励的柱面Rayleigh波和周向导波进行无损探伤提供了有益参考。
     本文的研究是基于目前激光在流—固界面和弯曲表面(柱面、管道)中激励的超声波在无损检测领域中具有广泛的应用前景,但其研究十分薄弱的背景下开展的。本文的研究成果将为激光超声应用于流体环境中的材料检测、以及圆柱和管道的无损检测提供理论基础和实验方法,并为激光超声理论体系作有益的补充。
In this paper, based on the thermoelastic mechanism of laser ultrasonic, the laserinduced ultrasonic waves on the liquid-solid interface and curved (cylinder and hollowcylinder) surfaces have been studied theoretically and experimentally.
     Based on the mechanism of laser ultrasonic, the excitation processes of laserultrasonic in liquid and solid are analyzed, and then the coupling problem of ultrasonicwaves at liquid-solid interface is studied with emphasis, and the boundary equation isgiven. Combined the thermal conduction equation with Navier-Stokes equation, thetheoretical model for laser-induced liquid-solid interface waves is developed.
     Using the finite element method, a finite element model of the laser excitation ofliquid-solid interface waves is developed. The finite element forms of thermal conductionequation, Navier-Stokes equation in solid and interface coupling equation are deduced; therelation of element size and time step is solved to give their determine criterion; theinfluence of numerical dispersion on the correction of simulation results is discussed; afinite element procedure is complied.
     By using the finite element method, the interface waves induced by pulse laser actionat different liquid-solid interfaces, including air-aluminum, water-aluminum plane interfaceand air-aluminum cylindrical interface were simulated, and the propagation characteristicsof interface waves were analyzed.
     Two kinds of optical deflect detection methods are developed. Based on thosemethods, detection sensor for the leaky waves detection at fluid-solid interface was alsodeveloped. By experimental measurements, we obtained good waveforms of the leakyRayleigh waves and the leaky Lamb waves at different fluid-solid interface. Theexperimental signals are in good agreement with theoretical results.
     Appling the finite element method, the laser-induced ultrasonic waves in cylinder andhollow cylinder were studied. The propagation characteristics of cylindrical Rayleigh waveand circumferential wave are analyzed. The results show that cylindrical Rayleigh wave isdispersive, and with the diameter of cylinders decreasing, the dispersion of cylindricalRayleigh wave becomes more serious; there is a new mode in the circumferential wave,which relate to the curvature of hollow cylinder. Those works will provide the reference for the application of laser ultrasonic in the nondestructive testing of cylinder and hollowcylinder.
     Because there are few studies on the laser-induced interface waves at liquid-solidinterface, ultrasonic waves in cylinder and hollow cylinders, and their applications innondestructive testing, we have studied those problems comprehensively in thisdissertation. This work will provide a useful guidance for the use of laser ultrasonic on thecharacterization of material and complement the system info of laser ultrasonic.
引文
1 R.M. White. Generation of elastic waves by transient surface heating. J. Appl. Phys.. 1963 34(12):3559-3567
    2 A. Akaryan, A. M. Prolhorov, G. F. Chanturcy, and M. P. Shipulo. The effects of a laser beam in a liquid. S. Soy. Phys. JEIP. 1963 17(6):1463-1465
    3 小原实,神成文彦,佐藤俊一.应用激光光学.北京:科学出版社,2002
    4 袁易全,陈思忠.近代超声原理与应用.南京:南京大学出版社,1996
    5 章肖融.用激光超声评估复合材料.应用声学.2000(5):1-9
    6 张淑仪.超声无损检测高新技术.国际学术动态.1998(8):58-60
    7 Jin Huang, Yasuaki Nagata, Sridhar Krishnaswamy. Laser-Based Ultrasonics for Flaw Detection. ULTRASONICS SYMPOSIUM. 1994:1205-1209
    8 Brian Culshaw, Gareth Pierce, Pan Jun. Non-Contact Measurement of the Mechanical Properties of Materials using an All-Optical Technique. IEEE SENSORS JOURNAL. 2003 (1):62-70.
    9 A. Aharoni, K. M. Jassby, M. Tar. The thermoelastic surface strip source for laser-generated ultrasound. J. Acoust. Soc. Am.. 1992 92(6):3249-3258
    10 C. B. Scruby, L. E. Drain. Laser Ultrasonics. England: Adam Hilger, 1990
    11 C.B. Scruby. Some applications of laser ultrasound. Ultrasonics. 1989 27(4):195-209
    12 C. B. Scruby, R. J. Dewhurst and S. B. Palmer. Quantitative studied of thermally generated elastic waves in laser-irradiated metals. J. Appl. Phys. 1980 51(12): 6210-6216
    13 J. D. Aussel, A. L. Brim, J. C. Baboux, Generating acoustic waves by laser: theoretical and experimental study of the emission source. Ultrasonics. 1988 (26):245-249
    14 L. R. E Rose. Point-Source representation for laser-generated ultrasound. J. Acoust. Soc. Am. 1984 75(3):723-732
    15 F. A. Mcdonald. On the precursor in laser-generated ultrasound waveforms in metals. Appl. Phys. Lett. 1990 56(3):230-232
    16 Lei Wu, Jian-Chun Chen, Shu-yi Zhang. Mechanisms of laser-generated ultrasound in plates. J. Phys. D. 1995(28):957-964
    17 Z. H. Shen, S. Y. Zhang, J. C. Cheng. Theoretical study on SAW generated by laser pulse in solids. Analytical Science. 2001(17):s204-207
    18 X. M. Wu, M. L. Qian. Simulation of the finite element method on wave propagation in cylinders. Progress in Natural Science. 2001(11):s265-268
    19 M. Kass, S. Fukushima, Y. Gohshi. A basic analysis of pulsed photoacoustic signals using the finite element method. J. Appl. Phys. 1988 64(3):972-976
    20 J. H. Lee, C. P. Burger. Finite element modeling of laser-generated Lamb waves. Computers & Structures. 1995 54(3):499-514
    21 A. C. Tam, G. Ayers. Ultrasonic imaging of layered structures utilizing nondestructive subnanosecond photoacoustic pulse generation. Appl. Phys. Lett. 1986 49(21): 1420-1422
    22 章肖融,干昌明,郑乐奇.用光声表面波谱研究表面缺陷.应用激光.1987(7):246-250
    23 H. Sontag, A. C. Tam. Optical monitoring ofphotoacoustic pulse propagation in silicon wafers. Appl. Phys. Lett. 1985(46):725-727
    24 C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, J. J. Hauser. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 1984 53(10):989-992
    25 K. A. Nelson, R. J. Dwayne Miller, D. R. Lutz, M. D. Fayer. Optical generation of tunable ultrasonics waves. J. Appl. Phys. 1982 53(2):1144-1149
    26 干昌明.用刀刃技术测SAW数度.应用声学.1986(3):41-43
    27 J. W. Wagner. Physical Acoustics. New York: Academic, 1990
    28 J. P. Monchalin. Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer. Appl. Phys. Lett. 1985 47(1): 14-16
    29 Poiree B, Luppe F. Evanescent plane waves and the Scholte-Stonelely interface wave. J. Acoustique. 1991 4(2):575-588
    30 S.R. Seshadri. Leaky Rayeigh waves. J. Appl. Phys. 1993 73(8):3637-3650
    31 Frederic Padilla, Michel de Billy, Gerard Quentin. Theoretical and experimental studies of surface waves on solid-fluid interfaces when the value of the fluid sound velocity is located between the shear and the longitudinal ones in the solid. J. Acoust. Soc. Am. 1999 106(2):666-673
    32 L. M. Brekhovskikh. Waves in Layered Media. New York: Academic. 1960
    33 W. M. Ewing, W. S. Jardetzky, F. Press. Elastic Waves in Layered Media. New York: McGraw-Hill. 1957
    34 J. R. Chamuel, G. H. Brooke. Transient Scholte wave transmission along rough liquid-solid interfaces. J. Acoust. Soc. Am. 1988(83):1336-1344
    35 D. A. Lee, D. M. Cobly. Use of interface waves for nondestructive inspection. IEEE Trans. Sonics Ultrason. 1977 SU-24: 206-212
    36 R. O. Claus, C. H. Palmer. Direct measurement of ultrasonic Stoneley waves. Appl. Phys. Lett. 1977(31):547-549
    37 J. G. Scholte. On the Stoneley wave equation. Proc. Kon. Nederl. Akad. Wetensch. 1942 45(1):20-25
    38 A. H. Nayfeh, D. E. Chimenti. Propagation of guided waves in fluid-coupled plates of fiber-reinforced composite. J. Acoust. Soc. Am. 1988(83): 1736-1743
    39 I. A. Viktorov. Rayleigh and Lamb waves. New York: Plenum. 1967
    40 I. A. Viktorov. Types of acoustic surface waves in solids (review). Sov. Phys. Acoust. 1979 25 (1):1-9
    41 H. Uberall. In physical Acoustics, Principles and Methods. New York: Academic. 1973.
    42 J. M. Claeys, O. Leroy. Reflection and transmission of bounded sound beams on half-spaces and through plates. J. Acoust. Soc. Am.. 1982 72(2):585-590
    43 K. Mampaert, O. Leroy. Reflection and transmission of normally incident ultrasonic waves on periodic solid-liquid interfaces. J. Acoust. Soc. Am. 1988 83(4): 1390-1398
    44 D.E. Chimenti, Adnan H. Nayfeh. Ultrasonic leaky waves in a solid plate separating a fluid and vacuum. J. Acoust. Soc. Am. 1989 85(2):555-560
    45 D.E.Chimenti, S. I. Rokhlin. Relationship between leaky Lamb modes and reflection coefficient zeroes for a fluid-coupled elastic layer. J. Acoust. Soc. Am.. 1990 88(3): 1603-1611
    46 A. Freedman. Anomalies of the A0 leaky Lamb mode of a fluid-loaded, elastic plate. Journal of Sound and Vibration. 1995 183(4):719-737
    47 E. Yu. Knight, M. F. Hamilton, Yu. A. llinskii, E. A. Zabolotskaya. General theory for the spectral evolution of nonlinear Rayleigh waves. J. Acoust. Soc. Am. 1997(102):1402-1417
    48 M. F. Hamilton, Yu. A. llinskii, E. A. Zabolotskaya. Nonlinear surface acoustic waves in crystals. J. Acoust. Soc. Am. 1999(105):639-651
    49 E. Yu. Knight. Generalization of the theory for nonlinear Rayleigh waves to nonplanar and transient waveforms, and investigation of pulse propagation. M. A. Thesis, The University of Texas at Austin. 1995.
    50 G. D. Meegan, M. F. Hamilton, Yu. A. llinskii, E. A. Zabolotskaya. Nonlinear Stoneley and Scholte waves. J. Acoust. Soc. Am. 1999 106(4):1712-1723
    51 E. A. Zabolotskaya. Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids. J. Acoust. Soc. Am. 1992(91):2569-2575
    52 J. D. Achenbach. Wave Propagation in Elastic Solids. New York: North-Holland. 1984
    53 L. F. Bresse, D. A. Hutchins, K. Lundgrn. Elastic constant determination using generation by pulsed lasers. J. Acoust. Soc. Am. 1989 86(2):1810-1817
    54 J. L. Rose, K. Balasubramaniam, A. Tverdokhlebov. A numerical integration Green's function model for ultrasonic field profiles in mildly anisotropic media. J. Nondestr. Eval. 1989 8(3):165-179
    55 J.L.罗斯著.何存富,吴斌,王秀彦译.固体中的超声波.科学出版社.2004
    56 W. L. Roever, T. F. Vining, E. Strick. Propagation of elastic wave motion from an impulse source along a fluid/solid interface. Philos. Trans. R. Soc. London Ser. 1959 (A251):455-523
    57 M. de Billy, G. Quentin. Experimental study of the Scholte wave propagation on a plane surface partially immersed in a liquid. J. Appl. Phys. 1983(54):4314-4322
    58 S. Nasr, J. Duclos, M. Leduc. PVDF transducers generating Scholte waves. Electron. Lett. 1988(24):309-311
    59 K. Dransfeld, E. Salzmann. In Physical Acoustics, Principles and Methods. New York: Academic. 1970
    60 Salah Nasr, Jean Duclos, Michel Leduc. Scholte wave characterization and its decay for various matericals. J. Acoust. Soc. Am. 1990 87(2):507-512
    61 Ch. Mattei, X. Jia, G. Quentin. In Review of Progress in Quantitative Nondestructive Evaluation. New York: Plenum. 1995
    62 S. Y. Zhang, M. Paul, S. Fassbender, U. Schleichert, W. Arnold. Experimental study of laser-generated shear waves using interferometry. Research in Nondestructive Evaluation. 1990 2(3): 143-155
    63 P. Krehl, F. Schwirke, A. W. Cooper. Correlation of stress-wave profiles and the dynamics of the plasma produced by laser irradiation of plane solid targets. J. Appl. Phys.. 1975 46(10): 4400-4406
    64 L. F. Bresse, D. A. Hutchins. Transient generaton by a wide thermoelastic source at a solid surface. J. Appl. Phys. 1989 65(4): 1441-1446
    65 T. Sanderson, C. Ume, J. Jarzynski. Longitudinal wave generation in laser ultrasonics. Ultrasonics. 1998 35:553-561
    66 沈中华.薄膜—基片中激光超声研究.声学学报.2002 27(3):203-208
    67 L. Wu, Jian-Chun Cheng, S. Y. Zhang. Mechanisms of laser-generated ultrasound in plates. J. Phys. D: Appl. Phys.. 1995 28(5): 957-964
    68 Y. N. Al-Nassar, S. K.Datta, A. H. Shah. Scattering of Lamb waves by a normal rectangular strip weldment. Ultrasonics. 1991 29:125-132
    69 M. Koshiba, S. Karakida, M. Suzuki. Finite element analysis of Lamb wave scattering in an elastic plate waveguide. IEEE Trans. Sonics and Ultrason. 1984 31(1): 18-25
    70 R. J. Talbot, J. S. Przemieniecki. Finite element analysis of frequency spectra for elastic waveguides. Int. J. solids. Structures. 1975 11:115-138
    71 G. S. Verdict, P. H. Gien, C. P. Burger. Finite element study of Lamb wave interactions with holes and through thickness defects in thin metal plates, in D. O. Thompson and D. E. Chimenti (Eds.), Review of Progress in Quantitative Nondestructive Evaluation. New York: Plenum. 1992
    72 V. Gusev, C. Desmet, W. Lauriks, C. Glorieux, J. Thoen. Theory of Scholte, Leaky Rayleigh, and lateral wave excitation via the laser-induced thermoelastic effect. J. Acoust. Soc. Am. 1996 100(3): 1514-1528
    73 J. F. Allard, M. Henry, C. Glorieux, W. Lauriks, S. Petillon. Laser induced surface modes at water-elastic and poroelastic solid interfaces. J. Appl. Phys. 2004 95(2):528-535
    74 Desmet C, Gusev V. Lauriks W, et al. Laser-induced thermoelastic excitation of scholte waves. Appl. Phys. Lett.. 1996 69(21 ):2939-2941
    75 Rostyene, Glorieux C, Gao W. Laser ultrasonic measurements of acoustic waves generated at solid-liquid interfaces. Acta Physica Sinica. 1999 8:s219-224
    76 C. Desmet, V. Gusev, C. Glorieux, W. Lauriks, J. Thoen. All-optical investigation of the lowest-order antisymmetrical acoustic modes in liquid-loaded membranes. J. Acoust. Soc. Am. 1998 103(1): 618-621
    77 Christ Glorieux, Kris Van de Rostyne, Vitalyi Gusev, Weimin Gao, Walter Lauriks, Jan Thoen. Nonlinearity of acoustic waves at solid-liquid interfaces. J. Acoust. Soc. Am. 2002 111(1): 95-103
    78 Christ Glorieux, Kris Van de Rostyne, Keith Nelson, Weimin Gao, Walter Lauriks, Jan Thoen. On the character of acoustic waves at the interface between hard and soft solids and liquids. J. Acoust. Soc. Am.. 2001 110(3):1299-1306
    79 张步法,张淑仪,魏荣爵,高敦堂,汪泽民.扫描激光探针检测声脉压线声场.声学学报.1988 13(5):383-385
    80 张步法,张淑仪,魏荣爵.倾斜金属线条反射阵对声表面波的反射特性.声学学报. 1989 14(1):58-61
    81 K V de Rostyne, W Gao. Influence of the deposition conditions on the elastic properties of chemical vapor deposited diamond films studied by laser ultrasonics. Journal of the Acoustical Society of America. 1999 105(2): 1229-1231
    82 A. A. Kolomenskii, A. M. Lomonosov, R. Kuschnereit, P. Hess, V. E. Gusev. Laser generation and detection of strongly nonlinear elastic surface pulses. Phys. Rev. Lett. 1997 79:1325-1328
    83 V. Gusev, A. A. Kolomenskii, P. Hess. Effect of melting on the excitation of surface acoustic wave pulses by UV nanosecond laser pulses in silicon. Appl. Phys. A. 1995 61:285-298
    84 A. R. Duggal, J. A. Rogers, K. A. Nelson. Real-time optical characterization of surface acoustic modes of polyimide thin-film coatings. J. Appl. Phys. 1992 72(7):2823-2839
    85 J. A. Rogers, A. A. Maznev, K. A. Nelson. Thin film photoacoustics: From the laboratory to the real world and back. J. Acoust. Soc. Am. 2000 107(5):2794-2795
    86 B. Q Xu, Z H Shen, X W Ni, J Lu. Numerical simulation of laser-generated ultrasound by the finite element method. Journal of Applied Physics. 2004 95(4):2116-2123
    87 B. Q Xu, Z H Shen, X W Ni, J Lu. Finite element model of laser-generated surface acoustic waves in coating-substrate system. Journal of Applied Physics. 2004 95(4):2109-2115
    88 Jianfei Guan, Zhonghua Shen, Jian Lu, Xiaowu Ni. Finite element analysis of the scanning laser line source technique. Jpn. J. Appl. Phys. 2006 45(6A):5046-5050
    89 C.T.F鲁斯著,吴德心,谢仁物,严京敏,安里千译.结构力学的有限元法.北京:人民交通出版社.1991
    90 雷晓燕编.有限元法.中国铁道出版社.2002
    91 李维特,黄保海,毕仲波.热应力分析及应用.北京:中国电力出版.2004
    92 王勖成.有限单元法.北京:清华大学出版社.2003
    93 F. Schubert, B. Koehler, A. Peiffer. Time domain modeling of axisymmetric wave propagation in isotropic elastic media with CEFIT-cylindrical elastodynamic finite integration technique. J. Comput. Acoust.. 2001 9(3): 1127-1146
    94 Y. Sohn, S. Krishnaswamy. Mass spring lattice modeling of the scanning laser source technique. Ultrasonics. 2002 39(8): 543-551
    95 J. Lu, R. Hou, J. P. Chen, H. Shao, X. W. Ni. A new detection technique for laser-generated Rayleigh wave pulses. Optics Communications. 2001 195(1-4): 221-224
    96 J. E. Sinclair. Epicenter solutions for point multiple sources in an elastic half-space. J. Phys. D: Appl. Phys. 1979 12:1309-1315
    97 J. R. Bernstein, J. B. Spicer. Line source representation for laser-generated ultrasound in aluminum. J. Acoust. Soc. Am.. 2000 107(3):1352-1357
    98 P. A. Doyle. On epicentral waveforms for laser-generated ultrasound. J. Phys. D: Appl. Phys. 1986 19:1613-1623
    99 R. J. Dewhurst, C. Edwards, A. D. W. Micie, S. B. Palmer. Estimation of thickness of thin metal sheet using laser generated ultrasound. Appl. Phys. Lett.. 1987 51(14): 1066-1068
    100 J. B. Spicer, A. D. W. Micie, J. W. Wagner. Quantitative theory for ultrasonic wave in a thin plate. Appl. Phys. Lett.. 1990 57(18): 1882-1884
    101 H. Nakano, S. Nagai. Laser generation of antisymmetric Lamb waves in thin plate. Ultrasonics. 1991 29:230-234
    102 S. E. Bobbin, J. W. Wagner, R. C. Cammarata. Determination of the flexural modulus of thin films from measurement of the first arrival of the symmetric Lamb wave. Appl. Phys. Lett.. 1991 59(13):1544-1546
    103 H. Coufal, R. K. Grygier. Broadband detection of laser-excited surface acoustic wave by a novel transducer employing ferroelectric polymers. J. Acoust. Soc. Am.. 1992 92(5): 2980-2983
    104 D. Royer, C. Chenu. Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source. Ultrasonics. 2000 38(9):891-895
    105 D. Royer. Mixed matrix formulation for the analysis of laser-generated acoustic waves by a thermoelastic line source. Ultrasonics. 2001 39(5):345-354
    106 Abdellatif Bey Temsamani, Steve Vandenplas, Leo Van Biesen. Surface waves investigation for ultrasonic materials characterization: theory and experimental verification. Ultrasonics. 2000 40:73-76
    107 许伯强,沈中华,倪晓武,关建飞,陆建.涂层.基底系统激光激发表面波的时间.频率分析.激光技术.2004 28(6):609-612
    108 Shen Zhonghua, Zhang Shuyi. Laser induced ultrasound in film-substrate system. Acta Acoustica Sinica. 2002 27(3):203-208
    109 R.Coulette, E. Lafond, M. H. Nadal. Laser-generated ultrasound applied to two-layered materials characterization: semi-analytical model and experimental validation. Ultrasonics. 1998 36(1-5):239-243
    110 A. Cheng, T. W. Murray, J. D. Achenbach. Simulation of laser-generated ultrasonic waves in layered plates. J. Acoust. Soc. Am.. 2001 110(2):845-855
    111M. Z. Silva, R. Gouyon, F. Lepoutre. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis. Ultrasonics. 2003 41:301-305
    112Yasuhisa Hayashi, Shingo Ogawa, Hideo Cho, Mikio Takemoto. Non-contact estimation of thickness and elastic properties of metallic foils by the wavelet transform of laser-generated Lamb waves. NDT&E International. 1999 32: 21-27
    113C. M. Scala, P. A. Doyle. Time- and frequency- domain characteristics of laser- generated ultrasonic surface waves. J. Acoust. Soc. Am. 1989 85(4): 1569-1576
    114H. Coufal, R. K. Gryier. Broadband detection of laser-excited surface acoustic waves by a novel transducer employing ferroelectric polymers. J. Acoust. Soc. Am. 1992 92(5): 2980-2983
    115H. Coufal, K. Meyer, R. K. Gryier. Precision measurement of the surface acoustic wave velocity on silicon single crystals using optical excitation and detection. J. Acoust. Soc. Am. 1994 95(2): 1158-1160
    116A.Zerwer, M. A. Polak, J.C. Santamarina. Rayleigh wave propagation for the detection of near surface discontinuities: finite element modeling. Journal of nondestructive evaluation. 2003 22(2):3952-3956
    117Waled Hassan, William Veronesi. Finite element analysis of Rayleigh wave interaction with finite-size, surface-breaking cracks. Ultrasonics. 2003 41:41-52
    118D. Clorennec, D. Royer, S. Catheline. Saw propagating on cylindrical parts using laser-ultrasonics: application to crack defection. IEEE ULTRASONICS SYMPOSIUM. 2002 1(8-11): 207-210
    119D. Clorennec, D. Royer, H. Walaszek. Nondestructive evaluation of cylindrical parts using laser ultrasonics. Ultrasonics. 2002 40(1): 783-789
    120D. Clorennec, D. Royer. Analysis of surface acoustic wave propagation on a cylinder using laser ultrasonics. Appl. Phys. Lett.. 2003 82(25): 4608-4610
    121U. Kawald, C. Desmet, W. Lauriks, C. Glorieus, J. Thoen. Investigation of the dispersion relations of surface acoustic waves propagating on a layered cylinder. J. Acoust. Soc. Am. 1996 99(2):926-930
    122Markus Kley, Christine Valle, Laurence J. Jacobs, Jianmin Qu, Jacek Jarzynski. Development of dispersion curves for two-layered cylinders using laser ultrasonics. J. Acoust. Soc. Am.. 1999 106(2):582-588
    123X. Wu, M. Qian, J. H. Cantrell. Dispersive properties of cylindrical Rayleigh waves. Appl. Phys. Lett.. 2003 83(19): 4053~4055
    124 W. Hu, M. Qian, J. H. Cantrell. Thermoelastic generation of cylindrical Rayleigh waves and whispering gallery modes by pulsed-laser excitation. Appl. Phys. Lett.. 2004 85(18): 4031-4033
    125 Y. Pan, C. Rossignol, B. Audoin. Acoustic waves generated by a laser line pulse in a transversely isotropic cylinder. Appl. Phys. Lett.. 2003 82(24): 4379-4381
    126 D. C. Gazis. Three-dimensional investigation of the propagation of waves in hollow circular cylinders, I. Analytical foundation. J. Acoust. Soc. Am. 1959 31 (5):568-573
    127 Silk M G, Bainton K F. The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves. Ultrasonics. 1979 17(1): 11-19
    128 Lowe M, Alleyne D N, Cawley P. The mode conversion of a guided wave by a part-circumferential notch in a pipe. J. Appl. Mech. 1998 65:649-656
    129 Ditri J J, Rose J L. Excitation of guided elastic wave modes in hollow cylinders by applied surface tractions. J. Appl. Phys. 1992 72(7): 2589-2597
    130 A.Demma, P. Cawley, M. Lowe, A. G. Roosenbrand. The reflection of the fundamental torsional mode from cracks and notches in pipes. J. Acoust. Soc. Am.. 2003 114(2): 611-625
    131 汤立国,程建春,王金兰.管道中激光激发瞬态导波的理论研究.声学学报.200126(6):489-496
    132 D. Royer, E. Dieulesaint, Ph. Leclaire. Remote sensing of the thickness of hollow cylinders from optical excitation and detection of Lamb wave. ULTRASONICS SYMPOSIUM. 1989:1163-1166
    133 Weimin Gao, Christ Glorieux, Jan Thoen. Study of circumferential waves and their interaction with defects on cylindrical shells using line-source laser ultrasonics. J. Appl. Phys.. 2002 91(9): 6114-6119
    134 W. M. Rohsenow, J. P. Hartnett. Handbook of heat transfer fundamentals. New York: McGraw-Hill. 1985
    135 W. Sachse, Y. H. Pao. On the determination of phase and group velocities of dispersive waves in solids. J. Appl. Phys.. 1978 49(8): 4320-4327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700