用户名: 密码: 验证码:
新型天线高维多目标优化设计理论和技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天线为无线通信系统中最为重要的元件之一。为减轻不断增长的系统需求以及提升系统的整体性能,天线的分析与综合设计在整个通信系统分析与设计中已经从次要的任务演变为关键论题。天线综合设计的电磁场逆问题由此成为计算电磁学的热点问题。有鉴于此,本文对一种平面双频天线、倒S型天线、以及介质加载的电子换向多波束天线等天线的综合设计理论和数值计算方法进行了系统分析和深入研究。
     现有倒S型天线一般以屈折的带状线与直线带状线构成S形结构。此时为获得平面化的倒S型天线,以共面波导构成馈源网络。但是,研究发现此条件下极难实现阻抗匹配,与原始设计的经验公式不相契合。因此,平面倒S型天线综合设计这一电磁场逆问题只能通过将其表述为拥有多于三个目标的多目标优化问题才能解决。这类多于3个目标函数的优化问题也称为高维多目标优化问题。此外,为实现更为紧凑的体积,以及具备宽带特性与水平方向的全向性辐射场型,倒S型天线需要更为复杂和精细优化设计和改进。因此,本文提出电流路径屈折技术与对称几何结构以改造倒S型天线。由于这一新型结构设计并无可用的设计导则和工程实践经验,进行多目标优化设计是保证此类天线性能进而实现其工程应用的基础。
     类似地,虽然介质加载电子换向多波束天线由Yagi-Uda天线组合而成,其加载的介质导致了这类天线的综合设计无法根据任何解析方法或经验方法进行,必须归结为优化设计问题。由于该天线具有实现角度分集的可能,因此本文提出应用多端口同时激励,以及等高角反射阵的新思想实现介质了加载电子换向多波束天线的角度分集和天线阵隔离。据此,如果采用高维多目标优化设计理论和技术,可以获得理想的多输入多输出天线设计方案。
     除去多个目标这一问题,这些天线的优化问题还具有多个局部最优点以及高度的非线性,这些都增加了问题求解的难度。由于具有全局寻优能力并在一次运行中获得多个非控解的潜力,进化算法现已广泛应用于工程多目标综合设计问题。但现有的基于非控关系的多目标优化方法难以有效求解超出三维的高维多目标优化问题。为处理这一问题,已有若干算法和技术提出。其中,多重单目标Pareto采样算法(MSOPS)实现简单,计算复杂度低,但是收敛速度慢且结果的多样性不佳。为解决现有MSOPS算法的上述不足,本文首先对MSOPS算法进行了改进研究,提出了基于目标矢量拥挤操作的目标矢量更新新机制,以及目标矢量重新定位和独立外部档案设置等新思想。通过与MSOPS-II,NSGA Ⅱ,以及HypE等性能良好的主流多目标算法在测试函数与天线阵列(直线阵列,Yagi-Uda阵列)的实际应用比较,证明了改进算法在Pareto控制关系下的优越性。为进一步证明改进算法在实际天线问题中的有效性和优越性,应用本文算法实现了圆极化切角矩形贴片微带天线的优化设计。应用实例表明,本文算法得到的优化天线性能在多个方面均优于原有的经典设计天线的性能。
     在对倒S型天线与介质加载电子换向多波束天线进行综合设计时,传统的分析技术不能估测其特性。故必须引入计算电磁学的数值计算方法。为此,本文采用了与有限元方法相结合的进化算法解决诸天线综合设计的逆问题。基于上述方法,平面倒S型天线与其改进类型得以首先优化。至于介质加载电子换向多波束天线,其用于多输入多输出系统的最优设计得以导出并与传统多波束天线进行了比较。
     通过系统分析和大量的实例计算可以发现:
     倒S型天线的优化设计只有对屈折带状线施加激励才能实现馈电。这表明可将倒S型天线视为印刷单极子天线。本文通过对优化设计的参数研究证实了这一特性。此外,由于采用了电流路径屈折技术与对称几何结构的缘故,改进型倒S型天线的优化给出了外形紧凑且水平方向上增益增加的设计方案。
     在介质加载电子换向多波束天线研究方面,优化设计存在两种矛盾选择,即在天线大小与性能之间必须做出取舍。为此,本文基于反复优化设计实践阐明了加载介质的物理限制与阵列构型的特性。研究结论为:如条件允许,推荐使用更多的加载介质材料,同时阵元的长度也将受到了这一加载的影响。最后,根据某一优化设计制成了样品天线,其性能超过了传统多波束天线。
Antennas is one of the most critical components in wireless communication systems. To relax the ever-increasing system requirements and improve the overall system performance, their designs evolve from the secondary role to topical one. A planar dual band antenna, Inverted-S Antenna (ISA), and the dielectric embedded electronically steerable multiple beam (DE-ESMB) antenna array were comprehensively and sysmetically modified and synthesized in this dissertation.
     The original ISA comprises a folded strip and a straight strip. Both strips create an S-shape structure. To obtain planar ISA, a coplanar waveguide is used as the feed network. However, the impedance matching is difficult in such a feeding mode, which is deviate from the physical understanding using the rule of thumb to design the original one. Thus the synthesis of ISA can only be solved by representing such an inverse problem as a multi-objective optimization one with more than three objectives, which is termed as many-objective optimization problem. Furthermore, the achievement of more compact size, broader bandwidth and omni-directional radiation pattern in azimuthal diractions requires more sophisticated designs. Therefore, the meandering technique and symmetrical geometry is proposed to modify the structure of ISA. Since no guideline is available to design this novel ISA, a many-objective optimization is inevitable.
     Similarly, although constructed as a combination of Yagi-Uda antennas, the synthesis of DE-ESMB excludes any analytical or empirical solutions because of the loaded dielectric, and must be formulated as an optimization problem. If all-port operation mode and equal height corner reflector is utilized to modify DE-ESMB, the angle diversity and antenna isolation can be realized. In this way, a multi-input multi-output (MIMO) antenna with exclusive features could be attainable, if the many-objective optimization technique is invoked again.
     Besides multiple objective functions, the optimal design problems of these antennas have numerous local optimal solutions with highly nonlinear behavior, which additionally increase the problem complexity. Evolutionary algorithms not only converge to global optimal solutions but also have the potential to produce a multiple non-dominated solutions in a single run. Therefore, they are applied extensively in multi-objective optimization community. However, existing non-dominance based multi-objective optimal algorithms have difficulties in solving many-objective problems. To handle many-objective optimal problems, several techniques have been proposed. Among them, the Multiple Single Objective Pareto Sampling (MSOPS and MSOPS-II) Algorithm is simple in implementations and has a feasible computational complexity, but has slow convergence and poor diversity of the final results. To address these problems, an improved MSOPS is proposed by incorporating a crowding operation of target vectors, a non-uniform target vector updating mechanism, and an external archive. In terms of the optimization of test functions, the synthesis of linear array and Yagi-Uda array, the proposed algorithm outperforms the MSOPS-Ⅱ and the other two well developed multi-objective evolutionary algorithms, HypE and NSGA II, in the concept of Pareto dominance. To illustrate the effectiveness of the proposed algorithm in engineering antenna synthesis problems, a circular polarized square patch microstrip antenna with truncated edge is firstly synthesized. The optimal solution outperforms the original classic design in many respects.
     In the synthesis of ISA and DE-ESMB, the conventional analytical technique is incapable of predicting their characteristics. The computational electromagnetics must be introduced. To this end, a methodology combining finite element method and evolutionary algorithm is proposed in this dissertation.
     With the help of aforementioned metodology, a planar ISA and its modified version are firstly optimized. As for the synthesis of DE-ESMB, the optimized design used in MEVIO application is conducted and compared with its traditional rival.
     The optimization of ISA indicates that the ISA can be only fed via folded line, that is, an ISA can be regarded as a kind of printed monopoles. The parametric analysis of the optimal design validates such assumption, and a new guideline for ISA designs is given. Moreover, thanks to the proposed meandering technique and symmetrical structure, the optimization of the modified ISA produces some optimized designs with compact size, and enhanced gain in the azimuthal plane.
     As far as the DE-ESMB concerned, there are two types of optimal designs. The trade-off between size and performance must be compromised. Based on the optimal designs, the physical limitation of the loaded dielectrics and the characteristics of array configurations are discussed. More loaded dielectric is recommended if the condition is permitted, and the height of monopole element is affected by such loading. In the end, a stereotype of the optimized design is fabricated, and the tested results demonstarted that the optimized stereotype outperforms its conventional rival.
引文
1. J. S. Stone, "A binomial expansion representation-Design of patterns by choice of coefficients," US Patents 1,643,323 and 1,715,433.
    2. C. L. Dolph, "A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level," Proc. IRE, vol.34, pp.335-348,1946.
    3. W. L. Stutzman and E. L. Coffey, "Radiation pattern synthesis of planar antennas using the iterative sampling method," IEEE Trans. Antennas Propagat., vol.23, pp.764-769,1975.
    4. H. J. Orchard, R. S. Elliot and G. J. Stern, "Optimizing the synthesis of shaped beam antenna patterns," IEE Proc, vol.132, pp.63-68,1985.
    5. J. E. Richie and H. N. Kritikos, "Linear program synthesis for direct broadcast satellite phased arrays," IEEE Antennas Propagat., vol.36, pp.345-348,1988.
    6. M. I. Skolnik, G. Nemhauser, and J. W. Sherman, "Dynamic programming applied to unequally spaced arrays," IEEE Antennas Propagat., vol.12, pp.35-43, 1964.
    7. J. F. Deford and O. P. Gandhi, "Phase-only synthesis of minimum peak sidelobe patterns for linear and planar arrays," IEEE Antennas Propagat., vol.36, pp.191-201,1988.
    8. F. Ares, R.S. Elliott, and E. Moreno, "Design of planar arrays to obtain efficient footprint patterns with an arbitrary footprint boundary," IEEE Antennas Propagat, vol.42, pp.1509-1514,1994.
    9. Cheng D., Cheng C., "Optimum element spacings for Yagi-Uda arrays," IEEE Trans. Antennas Propagat., vol.21, pp.615-623,1973.
    10. Chen C, Cheng D., "Optimum element lengths for Yagi-Uda arrays," IEEE Trans. Antennas Propagat., vol.23, pp.8-15,1975.
    11. Cheng D. K., "Gain optimization for Yagi-Uda arrays," IEEE Trans. Antennas Propagat., vol.33, pp.42-46,1991.
    12. Jones E. A., Joines W. T., "Design of Yagi-Uda antennas using genetic algorithms," IEEE Trans. Antennas Propagat., vol.45, pp.1386-1392,1997.
    13. Kin-Lu Wong, PLANAR ANTENNAS FOR WIRELESS COMMUNICATIONS, John Wiley & Sons, Ltd, Hoboken, New Jersey,2003, Ch.l.
    14. Zhi Ning Chen, ANTENNAS FOR PORTABLE DEVICES, John Willey & Sons, Ltd, the Atrium, Southern Gate, Chichester,2007; Ch.l.
    15. Thomas Back, Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York,1996, Ch.1.
    16. D. W. Boeringer and D. H. Werner, "Adaptive mutation parameter toggling genetic algorithm for phase-only array synthesis," IEE Electron. Lett., vol.38, pp.1618-1619,2002.
    17. D. W. Boeringer, D. H. Werner, and D. W. Machuga, "A simultaneous parameter adaptation scheme for genetic algorithms with application to phased array synthesis," IEEE Trans. Antennas Propagat., vol.53, pp.356-371,2005.
    18. R. L. Haupt, "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propagat., vol.42, pp.993-999,1994.
    19. A. Tennant, M. M. Dawoud, and A. P. Anderson, "Array pattern nulling by element position perturbations using a genetic algorithm," IEE Electron. Lett., vol.30, pp.174-176,1994.
    20. P. L. Werner and D. H. Werner, "Design synthesis of miniature multiband monopole antennas with application to ground-based and vehicular communication systems," Antennas Wireless Propag. Lett, vol.4, pp.104-106, 2005.
    21. D. H. Werner and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas Propagat. Mag., vol.45, pp.38-57,2003.
    22. E. Jones and W. Joines, "Design of Yagi-Uda antennas using genetic algorithms," IEEE Trans. Antennas Propagat, vol.45, pp.1386-1392,1997.
    23. Neelakantam V. V. and Tapabrata Ray, "Optimum Design of Yagi-Uda Antennas Using Computational Intelligence," IEEE Trans. Antennas Propagat., vol.52, pp.1811-1818,2004.
    24. Y. Lu, X. Cai, and Z. Gao, "Optimal design of special corner reflector antennas by the real-coded genetic algorithm," Proc. Asia-Pacific Microwave Conf., Dec.2000,pp.1457-1460.
    25. D. Lee and S. Lee, "Design of a coaxially fed circularly polarized rectangular microstrip antenna using a genetic algorithm," Microw. Opt. Tech. Lett., vol.26, pp.288-291,2000.
    26. O. Ozgun, S. Mutlu, et. al., "Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm," IEEE Trans. Antennas Propagat., vol.51, pp.1947-1954,2003.
    27. C. A. Coello Coello, G. B. Lamont, David A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Springer Science+Business Media. LLC, Netherlands,2007, Ch.l.
    28. J. David Schaffer, "Multiple Objective Optimization with Vector Evaluated Genetic Algorithms," Ph.D. thesis, Vanderbilt Univ., Tennessee,1984.
    29. N. H. Eklund and M. J. Embrechts, "GA-based multi-objective optimization of visible spectra for lamp design," Smart Engineering System Design, New York, 1999, pp.451-456.
    30. C. A. Coello Coello and A. D. Christiansen, "Two New GA-based methods for multiobjective optimization," Civil Engineering Systems, vol.15, pp.207-243, 1998.
    31. C. M. Fonseca and P. J. Fleming, "Multiobjective optimization and multiple constraint handling with evolutionary algorithms-part I:A unified formulation," IEEE Trans. Systems, Man, and Cybernetics, Part A:Systems and Humans, vol.28, pp.26-37,1998.
    32. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, Massachusetts,1989.
    33. D. E. Goldberg and J. Richardson, "Genetic algorithm with sharing for multimodal function optimization," Proc. Intel. Conf. Genetic Algorithms, Hilisdale, New Jersey,1987, pp.41-49.
    34. N. Srinivas and K. Deb, "Multiobjective optimization using nondominated sorting in genetic algorithms," IEEE Trans. Evolutionary Computation, vol.2, pp.221-248,1994.
    35. C. M. Fonseca and P. J. Fleming, "Genetic algorithms for Multiobjective Optimization:Formulation, Discussion and generalization," Proc. Intel. Conf. Genetic Algorithms, San Mateo,1993, pp.416-423.
    36. E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms:A comparative case study and the strength pareto approach," IEEE Trans. Evolutionary Computation, vol.3,1999, pp.257-271.
    37. E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2:Improving the strength pareto evolutionary algorithm," Proc. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece,2002, pp.95-100.
    38. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm:NSGA-II," IEEE Trans. Evolutionary Computation, vol.6, pp.182-197 2002,.
    39. E. Zitzler, L. Thiele, M. Laumanns, et. al,, "Performance Assessment of Multiobjective Optimizers:An Analysis and Review," IEEE Trans. Evolutionary Computation, vol.7, pp.117-132,2003,.
    40. Varlanmos P. K., Papakanellos P. J., Panagiotou S. C., "Multi-objective genetic optimization of Yagi-Uda arrays with additional parasitic elements," IEEE Antennas Propagat., vol.47, pp.92-97.2005.
    41. Zhang Zhan. Lee Yee Hui, "Multi-band antenna design using multi-objective evolutionary algorithm," Proc. ICCEA,2005, pp.200-203.
    42. Travassos X. L., Avila S. L., Lisboa A. C., et. al. "Multi-objective optimization of bow-tie antennas for radar assessment of concrete structure," IEEE conf. Electro. Field Computation,2006, pp.407-407.
    43. Raida Z., Lacik J.. Lukes Z., "Multi-Objective Synthesis of Multiband Planar Antennas in Time Domain," Intel. Conf. ICEAA,2007, pp.539-542.
    44. Stjernman A., Derneryd A., Jakobsson S., et. al., "Multi-objective optimization of mimo antenna systems," Conf. Antennas Propagat.,2009, pp.1758-1762.
    45. Wang An-Na, Zhang Wen-Xun, "Optimization of broadband circularly polarized wide-slot antenna," IEEE Intel. Conf.ICMTCE,2009,pp.53-56.
    46. Bianchi D., Fontana N., Genovesi S.. Monorchio A., et. al., "Multi-objective optimization of wideband spiral arrays," IEEE Intel. Symp. Antennas Propagat., 2010, pp.1-4.
    47. Bui Van Ha, Dao Ngoc Chien. "A GA-based optimized broadband millimeter-wave quasi-Yagi antenna," Intel. Conf. ICCE,2010, pp.352-356.
    48. Jin Au Kong, Electromagnetic Wave Theory, Wiley-Interscience, Hoboken, New Jersey,1986, Ch.l.
    49. C. A. Balanis, ANTENA THEORY ANALYSIS AND DESIGN, Wiley-Interscience, Hoboken, New Jersey,2005, Ch.2, Ch.4, Ch.10, Ch.14.
    50. Roger F. Harrington, Time-Harmonic Electromagnetic Fields, Wiley-IEEE Press, 2001, Ch.8.
    51. Randy L. Haupt, ANTENNA ARRAYS A computational Approach, John Wiley & Sons, Hoboken, New Jersey,2010, Ch.1-Ch.3.
    52. zhi Ning Chen, M. Y. W. Chia, Broadband Planar Antennas Design and Applications, John Wiley & Sons Ltd. The Atrium, Southern Gate, Chichester, 2006.
    53. Girish Kumar, K. P. Ray, Broadband Microstrip Antennas, Artech House, Inc, Norwood,2003, Ch.9.
    54. Kin-Lu Wong, Compact and Broadband Microstrip Antennas, Wiley-Interscience, New York,2002,
    55. S. Silver, Microwave Antenna Theory and Design, Peter Pereginus, London,1984.
    56. R. W. P. King, S. R. Mishra, et. al. "The insulated monopole:admittance and junction affect," IEEE Trans. Anten. Propag, vol.23, pp.172-177,1975.
    57. L. J. Bahl, s. S. Stuchly, "Analysis of a microstrip covered with a lossey dielectric," IEEE Trans. Microwave Theory Tech., vol.28, pp.104-109,1980.
    58. N. Bama et. al., "Finite-element analysis of dielectric coated antenna," Int. Symp. Anten. Propag., Sapporo, Japan, Sept,1992, vol.2, pp.433-436.
    59. D. R. Jackson, N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Trans. Anten. Propag., vol.9, pp.976-987,1985.
    60. K. K. Mei, "Unimoment method of solving antenna and scattering problems," IEEE Trans. Anten. Propag., vol.22, pp.760-766,1974.
    61. M. L. Barton, Z. J. Cendes, "New vector finite elements for three-dimensional magnetic field computation," J. Appl. Phys., vol.61, pp.3919-3921,1987.
    62. J. M. Jin, The Finite Element Method in Electromagnetics,2nd ed., John Wiley & Sons, Hoboken, New Jersey,2002.
    63. M. M. Botha, J. M. Jin, "On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis," IEEE Trans. Anten. Propag., vol.52, pp.3037-3047,2004.
    64. T. Rylander, J. M. Jin, "Perfectly matched layers in three dimensions for the time-domain finite element method applied to radiation problems," IEEE Trans. Anten. Propag., vol.53, pp.1489-1499,2005.
    65. A. F. Peterson, "Absorbing boundary conditions for the vector wave equation,' Microwave Opt. Tech. Lett., vol.1, pp.62-64,1988.
    66. W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, Hoboken, New Jersey,1981.
    67. S. Rouselle, A Detailed Review of HFSSTM v9.0 Ports and Boundary [Online]. Available:http://www.ansoft.com/hfworkshop
    68. H. Ishibuchi, N. Tsukamoto and Y. Nojima, "Evolutionary many-objective optimization:A short review," IEEE 2008CEC, pp.2419-2426.
    69. D. K. Saxena, T. Ray, et. al., "Constrained many-objective optimization:A way forward," IEEE 2009 CEC, Trondheim, pp.545-552.
    70. E. Zitzler, L. Thiele and J. Bader, "On Set-Based Multiobjective Optimization,' IEEE Trans. Evolu. Comput., vol.14, pp.58-79,2009.
    71. K. Ikeda, H. Kita and S. Kobayashi, "Failure of Pareto-based MOEAs:Does non-dominated really mean near to optimal?" IEEE 2001 CEC, pp.2780-2787.
    72. M. Laumanns, L. Thiele, et. al., "Combining convergence and diversity in evolutionary mulit-objective optimization," IEEE Trans. Evolu. Comput., vol.10, pp.263-282,2002.
    73. H. Sato, H. E. Aguirre, and K. Tanaka, "Local Domiance Including Control of Dominance Area of Solutions in MOEAs," IEEE Symposium on Computational Intelligence in Multicriteria Decision Making,2007, pp.310-317.
    74. D. W. Corne and J. D. Knowles, "Techniques for highly multiobjective optimisation:some nondominated points are better than others," IEEE 2007 GECCO, pp.773-780.
    75. M. Laumanns, L. Thile, et. al., "Combining Convergence and Diversity in Evolutionary Multiobjective Optimization," IEEE Trans. Evolu. Comput.,vol.10, pp.263-282,2002.
    76. P. J. Bentley, J. P. Wakefield, "Finding acceptable solutions in the Pareto-optimal range using multiobjective genetic algorithms," Soft Computing in Engineering Design and Manufacturing, Springer Verlag,1997.
    77. D. Drechsler, R. Drechsler and B. Becker, "Multi-objective optimization based on relation favour," IEEE 2001 EMO, pp.154-166.
    78. D. Brockhoff, E. Zitzler, "Improving hyper-volume based multi-objective evolutionary algorithms by using objective reduction methods," IEEE 2007CEC, pp.2086-2093.
    79. K. Deb, D. K. Saxena, "Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems," IEEE 2006CEC, pp.3353-3360.
    80. J. D. Knowles, "Local-Search and Hybird Evolutionary Algorithms for Pareto Optimization," Ph. D. thesis, Univ. of Reading, Berkshire, England,2002.
    81. M. Fleischer, "The measure of Pareto optima. Applications to multi-objective metaheuristics," IEEE 2003 EMO, Faro, Potugal, pp.519-533.
    82. L. While, "A New Analysis of the LebMeasure Algorithm for Calculating Hypervolume," IEEE 2005 EMO, Guanajuato, Mexico, pp.326-340.
    83. L. While, P. Hingston, et. al., "A Faster Algorithm for Calculating Hypervolume," IEEE Trans. Evolu. Comput., vol.10, pp.29-38,2006.
    84. C. M. Fonseca, L. Paquete and M. Lopez-Ibanez, "An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator," IEEE 2006 CEC, pp.1157-1163.
    85. Q. Yang, S. Ding, "Novel Algorithm to Calculate Hypervolume Indicator of Pareto Approximation Set", ICIC 2007, vol.2, pp.235-244.
    86. K. Bringmann and T. Friedrich, "Approximating the volume of unions and intersections of high-dimensional geometric objects," Proc. of 2008 ISAAC, Berlin, Germany.
    87. J. Bader and E. Zitzler, "HypE:An Algorithm for Fast Hypervolume-Based Many-Objective Optimization," IEEE Trans. Evolu. Comput., vol.19, pp.45-76, 2011.
    88. Hughes, E. J., "Multiple Single Objective Pareto Sampling," 2006 CEC,2006, Canberra, Australia, pp.2678-2684.
    89. Hughes, E. J., "MSOPS-Ⅱ:A general purpose Many-Objective Optimizer," 2007 CEC, pp.3944-3951.
    90. H. Sato, H. E. Aguirre and K. Tanaka, "On the Locality of Dominance and Recombination in Multiobjective Evolutionary Algorithms," 2005 CEC, vol.1, pp. 451-458.
    91. R. Storn, K. Price, "Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces," Technical Report TR-95-012. ICSI Berkeley[online]. Available:http:// www.icsi.berkeley.edu/-storn/code.html.
    92. K. Deb, L. Thiele, et. al., "Scalable Test Problems for Evolutionary Multi-Objective Optimization," World Congress on Computational Intelligence, 2002, pp.825-830.
    93. J. D. Gibbons, Nonpar-ametric Statistical Inference,2nd edition, M. Dekker, 1985.
    94. R. McGill, J. W. Tukey and W. A. Larsen, "Variations of Boxplots," The American Statistician, vol.32, pp.12-16,1978.
    95. F. Gunes, F. Tokan, "Pattern Search Optimization with Applications on Synthesis of Linear antenna array," Expert Systems with Applications, vol.37, pp. 4698-4705,2010.
    96. M. Haneishi, Y. Suzuki, "Circular Polarization and Bandwidth," in Handbook of Micros trip Antennas, vol.1, Peter Peregrinus, London, UK,1989.
    97. L. Unterberger, M. Comments, "An introduction to HFSS OptimetricsTM," 2002 Ansolft HFSS/Ensemble Users'Workshop.
    98. A. A. Lotfi, Kashani, "Bandwidth optimization of the E-shaped microstrip antenna using the genetic algorithm based on fuzzy decision making," IEEE Interl. Sympos. Anten. Propag., vol.3,2004, page(s):2333-2336.
    99. G. Kiziltas, J. L. Volakis, "Shape and Material Optimization for Bandwidth Improvement of Printed Antennas on High Contrast Substrates," IEEE interl. Sympos. Electromag. Compatibility, vol.2,2003, page(s):1081-1084.
    100.D. Thiel, J. Lu and S. O'Keefe, "Antennas for use in portable communication devices," Australian Patent, PCT Specification 679992,1995.
    101.F. J. Harachiewicz, B. Jung, and B. Lee, "GPS/PCS Dual-Band Internal Antenna with Parasitic Element," Microwave and Optical Technology Letters, vol.46, pp. 297-301,2005.
    102.R. Li, B. Pan, et. al., "A Novel Low-Profile Broadband Dual-Frequency Planar Antenna for Wireless Handsets," IEEE Trans. Anten. Propag., vol.56, pp.1155-1162,2008.
    103.C. Y. Pan, C. H. Huang, and T. S. Horng, "A New Printed G-shaped Monopole Antenna for Dual-band WLAN Applications," Microwave and Optical Technology Letters, vol.45, pp.295-297,2005.
    104.M. N. Suma, R. K. Raj, et. al., "A Compact Dual band Planar Branched Monopole Antenna for DCS/2.4 GHz WLAN Applications," IEEE Microwave and Wireless Component Letters, vol.16, pp.275-277,2006.
    105.Lu Lu, J. C, Coetzee, "A Modified Dual-Band Microstrip Monopole Antenna," Microwave and Optical Technology Letters, vol.48, pp.1401-1403,2006
    106.T. L. Zhang, Z. H. Yan, et. al., "Compact CPW-Fed Planar Monopole Antenna for Dual-Band WLAN Applications," Microwave and Optical Technology Letters, vol.51, pp.1377-1379,2009.
    107.W. S. Chen, Y. C. Chang, "CPW-FED PRINTED MONOPOLE ANTENNA WITH BRANCH SLITS FOR WIMAX APPLICATIONS," Microwave and Optical Technology Letters, vol.50, pp.952-954,2008.
    108.G. Augustin, P. C. Bybi, et. al., "A Compact Dual-Band Planar Antenna for DCS-1900/PCS/PHS, WCDMA/IMT-2000, and WLAN Applications," IEEE Antennas and Wireless Propagation Letters, vol.7, pp.108-111,2008.
    109.C. Lin, F. S. Zhang, et. al., "A Novel Symmetrical Monopole Antenna for Dual-Broadband Operation," Microwave and Optical Technology Letters, vol.51, pp.976-979,2009
    110.W. C. Liu, C. M. Wu and N. C. Chu, "A Compact CPW-Fed Slotted Patch Antenna for Dual-Band Operation," IEEE Antennas and Wireless Propagation Letters, vol.9, pp.110-113,2010.
    111.J. Lu, D. Thiel and S. Saario, "FDTD analysis of dielectric-embedded electronically switched multiple-beam (DE-ESMB) antenna array," IEEE Trans. Magnetics, vol.38, pp.701-704.2002.
    112.M. A. Jensen, J. W. Wallace, "A Review of Antennas and Propagation for MIMO Wireless Communications," IEEE Trans. Anten. Propag., vol.52, pp.2810-2824,2004.
    113.M. A. Jensen, J. W. Wallace, "Antenna design Considerations for MIMO and Diversity Systmes," Modern Antenna Handbook, edited by C. A. Balanis, John Wiley & Sons, Inc., Hoboken, New Jersey,2008, Ch.26.
    114.R. F. Harrington, "On the Gain and Beamwidth of Directional Antennas," IEEE Trans. Anten. Propag., vol.6, pp.219-225,1958.
    115.L. J. Chu, "Physical limitations in omnidirectional antennas," J. Appl. Phys., vol.19, pp.1163-1175,1948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700