用户名: 密码: 验证码:
MCS的观测研究与MCV的个例模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中尺度对流系统(Mesoscale Convective System,简称MCS)是我国夏季造成暴雨和洪涝灾害的主要天气系统之一,静止卫星红外云图是监测MCS的重要手段。因而基于静止卫星红外云图对MCS进行普查是MCS研究的一个重要方向。静止卫星原始数据经过定位、插值、定标三个步骤可以转化为格点上的物理量数据,从而可以用于科学计算中。
     以往对MCS的普查工作中,由于人工识别MCS的普查方法的限制,对MCS的普查工作往往局限在一个较小的时间跨度和空间范围内,而且带有一定的主观性,不利于对MCS气候学特征的研究。本文中,作者开发了一种基于静止卫星红外云图的MCS的计算机自动识别方法。自动识别方法主要包括三个步骤:MCS轮廓的生成、对MCS的追踪、对MCS的判别。对1999年中国及邻近地区MCS的抽样普查结果表明,自动识别方法在查找MαCS时的错识别率大约为19.1%,误识别率为1.4%,漏识别率为零;查找MβCS的错识别率为10.1%,误识别率和漏识别率均为零。基于新的MCS自动识别方法,作者开发了一款卫星云图资料处理软件:“静止卫星云图处理和强对流侦测系统”。
     采用基于静止卫星红外云图的MCS的计算机自动识别方法普查了1995~2008年夏半年亚洲和西太平洋地区的四类不同尺度和形状的MCS,共得到47468个满足要求的MCS。然后,以这些普查到的MCS为样本,研究了亚洲和西太平洋地区MCS的形状、尺度、持续时间、移动速度、地理分布、月变化、日变化生命史等的气候学统计特征。结果显示:MCS近线形的数目是近圆形的2.5倍,近线形MCS的尺度更大,近圆形MCS的持续时间更长。500hPa引导气流对MCS的移动起重要作用,MCS成熟以后移动速度会加快。四类MCS的地理分布特征、月变化特征较为相似。MCS基本呈纬向带状分布,从南向北依次有三条活动强度递减的MCS分布带。各地区MCS的月变化与其所处的大尺度环境的季节调整相关联。MCS按日变化特征可以分为四类:低纬全天候MCS、高纬全天候MCS、夜发性MCS和午后形成的MCS。在中国地区,高原和丘陵地区的MCS是单峰型生命史,下午形成,傍晚成熟,入夜后减弱消散;平原地区MCS的生命史是多峰型特征,下午和夜间都有MCS形成;洋面上午夜时是MCS的形成高峰;两广沿海受海陆风环流影响,MCS集中在下午三四点左右形成;四川盆地受山谷风环流影响,MCS夜发性特征显著。
     利用2008年华南暴雨实验期间的LAPS分析资料、MT1R红外云图资料、多普勒雷达资料对2008年6月12日的一次暴雨MCS过程进行了诊断分析,研究了其发生的环境背景、红外云图上MCS演变过程及对流系统中风暴的发生发展和演变。结果显示:该次暴雨MCS形成于有利的对流发展环境中,低层的西南涡在MCS的形成和演变中起到了重要作用;红外云图显示对流系统是一次MβECS过程;雷达图象显示对流系统是一次飚线强风暴过程,入流区低层反射率因子梯度很大,存在弱回波区,中高层的回波悬垂结构明显,径向速度图显示入流区中层存在辐合区;LAPS资料分析表明强风暴形成于中等的CAPE值和较强的垂直风切变环境中。
     使用WRF3.2对2009年8月16日~18日发生的一次暴雨灾害过程进行了数值模拟,该次模拟较好的模拟出了该次暴雨过程中的MCS活动和MCV活动。结果显示:MCV形成于800hPa以下,以850hPa涡旋特征最为明显;涡旋形成于对流性降水区中,涡旋形成时涡旋区域内有正负变涡耦极子,涡旋向正变涡的方向移动;在对流层低层,辐合辐散项和倾斜项是正涡度的来源,而对流项和平流项则抑制局地涡度的增大。大气对对流加热的平衡响应,是该MCV的形成机制之一,该MCV形成的另一个机制为对流内上升运动造成的水平涡管的倾斜。对MCV形成时的Rossby形变半径的计算表明,扰动尺度大于Rossby形变半径,即扰动为“动力大尺度”的,MCV将会持续较长的时间。
Mesoscale Convective Systems (MCSs) cause heavy rain and other severe weather events during the warm season. Geostationary satellite infrared imagery with high spatial and temporal resolution can provide much available information for MCS surveillance. Hence, MCS census by means of satellite infrared imagery is one of the important aspects of MCS study. After orientation, interpolation and calibration, the raw satellite data can be translated into the grid data, as could be used in scientific computing.
     In previous studies on MCS census, because of the limitations of MCS identifying method, the census were confined to either a relatively small space and time frame or a particular type of MCS, which was bad for the research on MCS climatic characteristics. In this article, a new method of identifying MCS from infrared imagery by computer is developed, which contains three main steps:forming MCS profile, tracking the MCS, and judging the system according to MCS definitions. Results of the MCS census over China and its vicinity of the year1999show that, the wrong rate of the new method in identifying MaCS was lower than20%, which was about10%while identifying M(3CS. Based on the new method, the author developed a software, Satellite image and MCS plot.
     The automatic MCS identification method was used to capture four categories of MCS with different size and shape from satellite infrared numerical data. Forty-seven thousand four hundred and sixty-eight MCSs were found over Asia and western Pacific region during the warm season (May to October) from1995to2008. From this database, MCS characteristics such as shape, size, duration, velocity, geographical distribution, intermonthly variation, diurnal variation, and lifecycle were studied. The results indicated that linear MCSs were2.5times the number of circular MCSs. The former was of a larger size while the latter was of a longer duration. The500hPa steering flow played an important role in MCS movement. MCSs tended to move faster after they reached the maximum extent. Four categories of MCS had similar characteristics of geographical distribution, intermonthly variation. Basically, MCSs were in zonal distribution, with three zonations weakening from south to north. The intermonthly variation of MCS in one place was related to the seasonal adjustment of its large-scale circulation. MCS could be divided into four categories according to their diurnal variation characteristics:low latitude all-day MCS, high latitude all-day MCS, nocturnal MCS, and afternoon MCS. As far as the MCSs over China were concerned, they had different lifecycle characteristics over different areas. MCSs over plateau and hill areas, which had only one peak in their lifecycle curves, tended to form in the afternoon, mature at nightfall, and dissipate at night. On the other hand, MCSs over plain areas, which had several peaks in their lifecycle curves, might form either in the afternoon or at night, whereas MCSs over the oceans tended to form at midnight. Affected by sea-land breeze circulation, MCSs over coastal areas of Guangdong and Guangxi Province always came into being at about three or four pm local time, while MCSs over the Sichuan Basin which were affected by mountain-valley breeze circulation generally initiated nocturnally.
     By means of the LAPS data, MT1R satellite infrared imagery, and Doppler radar data, the process of heavy rain on June12,2008, was analyzed. The background environment, MCS evolution, as well as the formation and evolution of the storm in the MCS were researched in details. Results showed that:the MCS was formed in a favorable environment, and the southwest vortex in low levels played an important role in MCS evolution. The MCS was a MβECS from the satellite infrared imagery and a strong storm of squall line from radar imagery. The reflectivity gradient in low levels of inflow area was large, with a weak-echo region. The overhanging of echo in mid levels was quite clear. The radial velocity image showed that a convergence area existed in the mid levels of inflow area. The strong storm was formed in the environment with moderate CAPE and strong vertical wind shear.
     The rainstorm during August16th~18th,2009, was simulated by WRF3.2. The simulation succeeded in simulating the MCS and MCV activities during the rainstorm process. Results showed that:MCV formed beneath800hPa, and the rotation was most evident on850hPa. MCV formed in the convective precipitation area. When MCS formed, a vorticity variation couplet existed in the vortex area, and MCV moved along the direction of positive vorticity variation. In low levels of troposphere, the stretching term and tilting term were main source of positive vorticity when MCV formed, and the horizontal advection term and convection term restrained the growth of local vorticity. About this MCV case, one of the MCV formation mechanism was the atmospheric balance response to convective heating, and the other was the tilting of the horizontal vortex tube. After calculating the Rossby deformation radius at the time of MCV formation, the horizontal scale of the circulation was found to be larger than the Rossby deformation radius. It means that, the perturbation was "dynamically large", and the MCV was expected to be long lasting.
引文
Anderson, C. J., and R. W. Arritt,1998:Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev.,126,578-599.
    Augustine, J. A.,1985:An automated method for the documentation of cloud-top characteristics of mesoscale convective systems. NOAA Tech. Memo. ERL ESG-10, Dept. of Commerce, Boulder, CO,121 pp.
    Augustine, J. A., K. W. Howard,1988:Mesoscale convective complexes over United States during 1985. Mon Wea Rev,116:686-701.
    Augustine, J. A., K. W. Howard,1991:Mesoscale convective complexes over United States during 1986 and 1987. Mon Wea Rev,119:1575-1589.
    Barnes S L,1964:A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor.,3,396-409.
    Barnes, S.L.,1973:Mesoscale objective map analysis using weighted. time-series observations. NOAA Teeh. Memo.62, NSSL,60 pp.
    Bartels D L, and R A Maddox,1991:Midlevel Cyclonic Vortices Generated by Mesoseale Convective Systems. Mon. Wea. Rev.,119,104-118.
    Bartels, D. L., J. M. Brown, and E. I. Tollerud,1997:Structure of a midtropospheric vortex induced by a mesoscale convective system. Mon. Wea. Rev.,125, 193-211.
    Bluestein, H. B., and M. H. Jain,1985:Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci.,42,1711-1732.
    Bluestein, H. B., G. T. Marx, and M. H. Jain,1987:Formation of mesoscale lines of precipitation:Nonsevere squall lines in Oklahoma during the spring. Mon. Wea. Rev.,115,2719-2727.
    Carbone, R.E., J.D. Tuttle, D. Ahijevych, and S.B. Trier,2002:Inferences of Predictability Associated with Warm Season Precipitation Episodes, J. Atmos. Sci.,59,2033-2056.
    Chen M and Zheng Y.-G,2004:Vorticity Budget Investigation of a Simulated Long-Lived Mesoscale Vortex in South China. Advances in Atmospheric Sciences,21,928-940.
    Chen, S.-J., and L. Dell'Osso,1984:Numerical prediction of the heavy rainfall vortex over eastern Asia monsoon region. J. Meteor. Soc. Japan,62,730-747.
    Chen, S.S., and W.M. Frank,1993:A numerical study of the genesis of extratropical convective mesovortices. Part Ⅰ:Evolution and Dynamics.J. Almos. Sci.,50, 2401-2426.
    Cheng Lingshen, and Kuo Yinhua,1992:Mesoscale numerical simulation of the influence of PBL parameterization and moist process on development of a sheer line vortex, C. J. Atmos. Sci.,16,90-100.
    Cotton, W. R., and R. A. Anthes,1989:Storm and Cloud Dynamics. Academic Press, 883pp.
    Coniglio M. C., J.Y. Hwang, and D. J. Stensrud,2010:Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses.
    Conzemius, R. J., R. W. Moore, M. T. Montgomery, et al.,2007:Mesoscale convective vortex formation in a weakly sheared moist neutral environment. Journal of Atmospheric Sciences,64,1443-1466.
    Corfidi, S. F., J. H. Merritt, and J. M. Fritsch,1996:Predicting the movement of mesoscale convective complexes. Weather and Forecasting,11,41-46.
    Cotton, W. R., G. D. Alexander, R. Hertenstein, R. L. Walko, R. L. McAnelly, and M. Nicholls,1995:Cloud venting-A review and some new global annual estimates. Earth-Sci. Rev.,39,169-206.
    Cotton, W. R., M. S. Lin, R. L. McAnelly, C. J. Tremback,1989:A composite model of mesoscale convective complexes. Mon. Wea. Rev.,117,765-783,
    Davis, C. A., D. A. Ahijevych, and S. B. Trier,2002:Detection and prediction of warm season midtropospheric vortices by the Rapid Update Cycle. Mon. Wea. Rev.,130,24-42
    Davis C, Atkins N, Bartels D, Bosart L, Coniglio M, et al.,2004:The bow echo and MCV experiment:Observations and. opportunities. Bull. Ameri Meteor. Soc.,85, 1075-1093
    Davis, C. A., and T. J. Galarneau JR.,2009:The vertical structure of mesoscale convective vortices. Journal of Atmospheric Sciences,66,686-704.
    Doswell C A,1996:Flash flood forecasting:an ingredients-based methodology. Wea Forecasting,11,560-581.
    Dudia, J.,1989:Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci.,46, 3077-3107.
    Durran D R., and J B Klemp,1982:On the effects of moisture on. the Brunt-Vaisala frequency. J. Atmos. Sci.,39,2152-2158.
    Dyer, A. J., and B. B. Hicks,1970:Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc.,96,715-721.
    Frank, W. M.,1983:The cumulus parameterization problem. Mon. Wea. Rev.,111, 1859-1871.
    Galarneau JR. T. J., L. F. Bosart, C. A. Davis, et al.,2009:Baroclinic transition of a long-lived mesoscale convective vortex. Mon. Wea. Rev.,137,562-584.
    Hertenstein, R. F. A., and W. H. Schubert,1991:Potential vorticity anomalies associated with squall lines. Mon. Wea. Rev.,119,1663-1672.
    Hong, S.-Y., H.-M. H. Juang, and Q. Zhao,1998:Implementation of prognostic cloud scheme for a regional spectral model, Mon. Wea. Rev.,126,2621-2639.
    Hong, S.-Y., and H.-L. Pan,1996:Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev.,124,2322-2339.
    Houze, R. A., Jr.,1977:Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev.,105,1540-1567.
    Houze, R. A., Jr.,2004:Mesoscale convective systems, Rev. Geophys.,42, RG4003, doi:10.1029/2004RG000150
    Houze, R. A., B. F. Smull, and P. Dodge,1990:Mesoscale organization of springtime rainstorm in Oklahoma. Mon. Wea. Rev.,118,613-654.
    James, E. P., and R. H. Johnson,2010:Patterns of precipitation and mesolow evolution in midlatitude mesoscale convective vortices. Mon. Wea. Rev.,138
    Jirak, I. L., W. R. Cotton, R. L. Mcanelly,2003:Satellite and radar survey of mesoscale convective system development. Monthly Weather Review,131(10): 2428-2449.
    Johnston, E. C.,1981:Mesoscale vorticity centers induced by mesoscale convective complexes. M. S. Thesis, Dept. of Meteorology, University of Wisconsin-Madison,54 pp.
    Jorgensen, D.P., and B.F. Smull,1993:Mesovortex circulations seen by airborne Doppler radar within a bow-echo mesoscale convective system. Bulletin of the American Meteorological Society,74,2146-2157.
    Kain, J. S., and J. M. Fritsch,1990:A one-dimensional entraining/ detraining plume model and its application in convective parameterization.J. Atmos. Sci.,47, 2784-2802.
    Kain, J. S., and J. M. Fritsch,1993:Convective parameterization for mesoscale models:The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc. 246 pp.
    Kane, R. J., Jr., C. R. Chelius, and J. M. Fritsch,1987:Precipitation characteristics of mesoscale convective weather systems.J. Climate Appl. Meteor,26,1345-1357.
    King, R.,1996:Mid-level vorticity in mesoscale convective systems. Colorado State University Atmospheric Science Paper,606,92pp.
    Kirk, J. R.,2003:Comparing the dynamical development of two mesoscale convective vortices. Mon. Wea. Rev.,131,862-890.
    Kirk, J. R.,2007:A phased-plot method for diagnosing vorticity concentration mechanisms in mesoscale convective vortices. Mon. Wea. Rev.,135,801-820.
    Knievel J C,2002:A comparison of convectively generated mesoscale vortices in the United States and in China.21st Conference on Severe Local Storms.
    Knievel J C, and R H Johnson,2003:A Scale-Discriminating Vorticity Budget for a Mesoscale Vortex in a Midlatitude, Continental Mesoscale Convective System. J. Atmos. Sci.,60,781-794.
    Kuo, C.-K., and C.-H. Horng,1994:A study of finite amplitude barotropic instability. TAO,5,199-243.
    Kuo, Y. H., and R. A. Anthes,1982:Numerical Simulation of a Mei-Yu system over Southeastern Asia, Papers Meteor. Res.,5,15-36.
    Kuo, Y.-H., L. Cheng, and R. A. Anthes,1986:Mesoscale analysis of the Sichuan flood catastrophe,11-15 July 1981. Mow. Wea. Rev.,114,1984-2003.
    Laing, A., and J. M. Fritsch,1993:Mesoscale convective complexes over the Indiamonsoon region. J Climate,6:911-919.
    Laing, A., J. M. Fritsch,1993:Mesoscale convective complexes in Africa. Mon Wea Rev,121,2254-2263.
    Maddox, R. A.,1980:Mesoscale convective complexes. Bull Amer Meteor Soc, 61(11):1374-1387.
    Maddox, R. A.,1980:An objective technique for separating, macroscale and mesoscale features in meteorological data. Mon. Wea. Rev.,.108,1108-1121.
    Maddox, R. A., D. M. Rogers, and K. W. Howard,1982:Mesoscale convective complexes over the United States during 1981 -An annual summary. Mon. Wea. Rev.,110,1501-1514.
    Maddox R A.,1983:Large scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev.,111:1475-1493.
    McAnelly, R. L., and W. R. Cotton,1986:Meso-β scale characteristics of an episode of meso-ascale convective complexes. Mon. Wea. Rev.,114,1740-1770.
    Menard, R. D., and J. M. Fritsch,1989:A mesoscale convective. complex-generated inertially stable warm core vortex. Mon. Wea. Rev.,117,1237-1260.
    Miller, D., and J. M. Fritsch,1991:Mesoscale convective complexes in the western Pacific region. Mon Wea Rev,119:2978-2992.
    Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough,1997: Radiative trans-fer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the long-wave.J. Geophys. Res.,102 (D14), 16663-16682.
    Orlanski, L. A.,1975:A rational subdivision of scales for atmospheric processes. Bull Amer Meteor Soc,56(5):527-530.
    Parker, M. D., and R. H. Johnson,2000:Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev.,128,3413-3436.
    Paulson, C. A.,1970:The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer.J. Appl. Meteor.,9,857-861.
    Pielke, R.A, Sr.,2002:Mesoscale meteorological modeling.2nd Edition, Academic Press, San Diego, CA,676 pp.
    Raymond, D. J., and H. Jiang,1990:A theory for long-lived mesoscale convective systems. J. Atmos. Sci.,47,3067-3077.
    Romatschke, U., and R. A. Houze:Characteristics of precipitating convective systems in the premonsoon season of South Asia. Journal of Hydromeleorol, in press.
    Schubert, W. H., and J. J. Hack,1982:Inertial Stability and Tropical Cyclone. Development. J. Atmos Sci.,39,1687-1697.
    Showalter, A. K.,1947:A stability index for forecasting thunderstorms. Bull. Amer. Meteor. Soc,34,250-252.
    Skamarock W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers,2005:A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR,88 pp
    Smith, R. K.,1997:Thermodynamics of Moist and Cloudy Air. R. K. Smith(ed), The Physics and Parameterization of Moist Atmospheric Convection. Klmver Academic Publishers. Printed in the Netherlands, pp 29-58.
    Schumacher, R. S., and R. H. Johnson,2008:Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev.,136, 3964-3986.
    Schumacher, R. S., and R. H. Johnson,2009:Quasi-stationary extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Weather and Forecasting,24,555-574.
    Tao, S. Y., and Y. H. Ding,1981:Observational evidence of the influenceof the Qinghai-Xizang (Tibet) Plateau and the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc.,62,23-30.
    Tao,S.,and L.Chen,1987:A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology,C.P. Chang and T. N. Krishnamurti, Eds.. Oxford University Press,60-92.
    Tao, Z. Y., H. Q. Wang, J. Bai, et al.,1995:A case of mesoscale convective complexes evolving into a vortex. Acta Meteor Sinica,9(2):184-189.
    Trier, S. B., C. A. Davis, and J. D. Tuttle,2000a:Long-lived mesoconvective vortices and their environment. Part I Observations from the central United States during the 1998 warm season. Mon. Wea. Rev.,128,3376-3395.
    Trier, S. B., C. A. Davis, and W. C. Skamarock,2000b:Long-lived mesoconvective vortices and their environment. Part II:Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev.,128,3396-3412.
    Trier, S. B., and Davis, C. A.,2002:Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130,877-899.
    Trier, S. B., and Davis, C. A.,2007:Mesoscale convective vortices observed during BAMEX. Part Ⅱ:Influences on secondary deep convection. Mon. Wea. Rev., 135,2051-2075.
    Velasco, L. and J. M. Fritsch,1987:Mesoscale convective complexes in Americas. J GeophysRes,192:9591-9613.
    Verlinde, J., and W. R. Cotton,1990:A mesoscale vortex couplet observed in the trailing anvil of a multicellular convective complex. Mon. Wea. Rev.,118, 993-1010.
    Wang, B.,1987:The development mechanism for Tibetan Plateau warm vortices. J. Atmos. Sci.,44,2978-2994.
    Wang, B., and I. Orlanski,1987:Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau. Mon. Wea. Rev.,115,1370-1393.
    Wang, W., Y.-H. Kuo, and T. T. Warner,1993:A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau. Mon. Wea. Rev.,121,2542-2561.
    Webb, E. K.,1970:Profile relationships:The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc.,96,67-90.
    Weisman, M. L., and C. A. Davis,1998:Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems.J. Atmos. Sci.,55,2603-2622.
    Weisman, M. L., and J. B. Klemp,1982:The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev.,110, 504-520.
    Wicker, L. J. and W. C. Skamarock,2002:Time splitting methods for elastic models using forward time schemes, Mon. Wea. Rev.,130,2088-2097.
    Wu, G.-X., and S.-J. Chen,1985:The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc.,111,1049-1070.
    Ye, D.,1981:Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62,14-19.
    Zhang, D.-L., and J.M. Fritsch,1988:A numerical investigation of a convectively generated, inertially stable, extratropical warm-core mesovortex over land. Part I: Structure and evolution. Mon. Wea. Rev.,116,2660-2687.
    Zhang, D.-L., and J.M. Fritsch,1988:Numerical sensitivity experiments of varying model physics on the structure, evolution and dynamics of two mesoscale convective systems.J. Atmos. Sci.,45,261-293.
    Zhang, D.-L.,1992:The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line. Monthly Weather Review,120, 2763-2785.
    Zheng, Y. G., Z. Y. Tao, H. Q. Wang, et al.,1999:Enviroment of meso-a-scale convective system development in Yellow Sea region. Progress in Natural Science,9(7):842-848.
    陈丽芳,高坤,徐亚梅,2004:梅雨锋演变与低涡发展的联系.浙江大学学报(理学版),31,103-109.
    陈廷标,夏良正,1990:数字图象处理.人民邮电出版社,173-176 pp.
    陈渭民,2005:卫星气象学(第二版).气象出版社.
    程麟生,彭新东,马艳,1995:“91.7”江淮暴雨低涡发展结构和演变的中尺度数值模拟.高原气象,14,270-280.
    程麟生KUO Ying-hua,李小莉,等,1993:中国暴雨中尺度系统发生与发展的诊断分析和数值模拟(Ⅰ):诊断分析.应用气象学报,4,257-268.
    丁一汇,1993:1991年江淮流域持续性大暴雨的研究.北京:气象出版社,255pp
    段旭,张秀年,许美玲,2004:云南及其周边地区中尺度对流系统时空分布特征.气象学报,26(2):243-249.
    方宗义,1985:夏季长江流域中尺度云团的研究.大气科学进展,2(3):334-340.
    方宗义,项续康,方翔等,2005:2003年7月3日梅雨锋切变线上的p-中尺度暴雨云团分析.应用气象学报,16,569-575.
    方宗义,覃丹宇,2006:暴雨云团的卫星监测和研究进展.应用气象学报。17(5),583-593.
    费增坪,郑永光,王洪庆,2005:2003年淮河大水期间MCS的普查分析.气象,31(13):18-22.
    费增坪,郑永光,张焱等,2008:基于静止卫星红外云图的MCS普查研究进展及标准修订.应用气象学报,19(1):82-90.
    高坤,徐亚梅,2001:1999年6月下旬长江中下游梅雨锋低涡扰动的结构研究.大气科学,25,740-756.
    何明元,石汉青,2003:静止气象卫星资料处理.解放军理工大学学报(自然科学版),3(1):75-78.
    洪毅,李玉柱,陈智源等,2008:FY-2卫星数字云图的细网格定量处理.浙江气象,29(1):3-7.
    胡伯威,潘鄂芬,1996:梅雨期长江流域两类气旋性扰动和暴雨.应用气象学报,7,138-144.
    江吉喜,项续康,范梅珠,1996:青藏高原夏季中尺度强对流系统的时空分布.应用气象学报,7(4):474-478.
    蒋尚程,2006:应用卫星气象学.北京大学出版社.
    李凤昌,1992:数字展宽地球同步卫星扫描云图的定位.气象,18(6):53-55.
    李玉兰,王婧熔,郑新江等,1989:我国西南-华南地区中尺度对流复合体(MCC)的研究.大气科学,13(4):417-422.
    李毓芳,黄安丽,高坤,1986.对流加热在梅雨暴雨系统中的作用.中国科学(B辑),7.765-775.
    廖捷,谈哲敏,2005:一次梅雨锋特大暴雨过程的数值模拟研究:不同尺度天气系统的影响作用.气象学报,63,771-789.
    廖胜石,寿绍文,2004:一次江淮暴雨中中尺度低涡的数值模拟及分析.南京气象学院学报,27,753-759
    林锦祥,邓玉娇,2006:FY2-C静止气象卫星资料处理方法.新疆气象,29(5):42-43.
    马禹,王旭,陶祖钰,1997:中国及其邻近地区中尺度对流系统的普查和时空分布特征.自然科学进展,7(6):701-706.
    马禹,王旭,陶祖钰,1998:新疆特大暴雨过程中的中尺度对流系统特征.新疆气象,21(6):3-7.
    靳冰凌,王辛方,孙仲毅等,2010:2009年8月17日河南北部区域性暴雨诊断分析.气象与环境科学,33,121-125.
    石定朴,朱文琴,王洪庆等,1995:中尺度对流系统云图云顶黑体温度的分析.气 象学报,54(5):600-611.
    施曙,赵思雄,1994:梅雨锋上与强暴雨有关的中低压及其三维环境流场诊断研究,大气科学,18,476-484.
    束宇,潘益农,2010:红外云图上中尺度对流系统的自动识别.南京大学学报(自然科学),46(3),337-348.
    宋敬平,杜冠惠,张湘建,1991:日本静止气象卫星GMS图象的简单定位算法及其应用.海洋预报,8(4):35-40.
    孙建华,周海光,赵思雄,2006:2003年7月4-5日淮河流域大暴雨中尺度对流系统的观测分析.大气科学,30,1103-1118
    孙淑清,杜长萱,1996:梅雨锋的维持与其上扰动的发展特征.应用气象学报,7,154-159.
    陶诗言,1980:中国之暴雨,北京:科学出版社,225 pp.
    陶诗言,张小玲,张顺利,2004:长江流域梅雨锋暴雨灾害研究.北京:气象出版社,192 pp.
    陶祖钰,王洪庆,王旭等,1998:1995年中国的中-α尺度对流系统.气象学报,56(2):166-177.
    王元,2006:我国中尺度涡旋研究的若干进展和回顾.“第一次中尺度强对流天气系统综合分析研究”研讨会.北京.
    吴国雄,蔡雅萍,唐晓菁,1995:湿位涡和倾斜涡度发展.气象学报,53,387-404.
    项续康,江吉喜,1995:中国南方地区的中尺度对流复合体.应用气象学报,6(1):9-17.
    谢静芳,王晓明,1995:东北地区中尺度对流复合体的卫星云图特征.气象,21(5):41-44.
    徐亚梅,高坤,2002:1998年7月22日长江中游中β低涡的数值模拟及初步分析.气象学报,60,85-95.
    阎凤霞,寿绍文,张艳玲等,2005.一次江淮暴雨过程中干空气侵入的诊断分析.南京气象学院学报,28,117-124.
    杨本相,陶祖钰,2005:青藏高原东南部MCC的地域特点分析.气象学报,63(2):236-242.
    杨大升,刘玉滨,刘式适,1980:动力气象学.北京:气象出版社,34-37 pp.
    郁凡,陈渭民,1994:双光谱云图的云分类探讨.南京气象学院学报,17(1):117-124.
    袁源,2004:基于频域双线性插值的数字水印算法.计算机应用,24(1):87-89.
    赵思雄,陶祖钰,孙建华等,2004:长江流域梅雨锋暴雨机理的分析研究.北京:气象出版社,281 pp.
    郑永光,朱佩君,白洁等,2003:Windows下静止卫星云图处理软件.气象,29(6):16-21.
    郑永光,朱佩君,陈敏等,2004:1993-1996黄海及其周边地区MαCS的普查分析.北京大学学报(自然科学版),30(1):66-72.
    郑永光,陈炯,费增坪等,2007:2003淮河流域持续暴雨的云系特征及环境条件.北京大学学报(自然科学版),43(2):157-165.
    郑永光,陈炯,朱佩君,2008:中国及周边地区夏季中尺度对流系统分布及其日变化特征.科学通报,53(4):471-481.
    郑永光,张春喜,陈炯等,2007:用NCEP资料分析华北暖季对流性天气的气候背景,北京大学学报(自然科学叛),43(5),600-608.
    钟晓平,1993:地球静止卫星云图象点定位方法之比较.高原气象,12(4): 392-399.
    朱爱军,潘益农,2007:中国东部地区一个中尺度对流涡旋的涡度收支分析.南京大学学报(自然科学),43,260-269.
    朱乾根,林锦瑞,寿绍文,1981:天气学原理和方法.北京:气象出版社,649 pp.
    Augustine, J. A.,1985:An automated method for the documentation of cloud-top characteristics of mesoscale convective systems. NOAA Tech. Memo. ERL ESG-10, Dept. of Commerce, Boulder, CO,121 pp.
    Augustine, J. A., K. W. Howard,1988:Mesoscale convective complexes over United States during 1985. Mon Wea Rev,116:686-701.
    Augustine, J. A., K. W. Howard,1991:Mesoscale convective complexes over United States during 1986 and 1987. Mon Wea Rev,119:1575-1589.
    Kane, R. J., Jr., C. R. Chelius, and J. M. Fritsch,1987:Precipitation characteristics of mesoscale convective weather systems. J. Climate Appl. Meteor.,26,1345-1357.
    Laing, A., and J. M. Fritsch,1993:Mesoscale convective complexes over the Indiamonsoon region. J Climate,6:911-919.
    Laing, A., J. M. Fritsch,1993:Mesoscale convective complexes in Africa. Mon Wea Rev,121,2254-2263.
    Maddox, R. A.,1980:Mesoscale convective complexes. Bull Amer Meteor Soc, 61(11):1374-1387.
    Miller, D., and J. M. Fritsch,1991:Mesoscale convective complexes in the western Pacific region. Mon Wea Rev,119:2978-2992.
    Orlanski, L. A.,1975:A rational subdivision of scales for atmospheric processes. Bull Amer Meteor Soc,56(5):527-530.
    Tao, Z. Y., H. Q. Wang, J. Bai, et al.,1995:A case of mesoscale convective complexes evolving into a vortex. Acta Meteor Sinica,9(2):184-189.
    Velasco, L. and J. M. Fritsch,1987:Mesoscale convective complexes in Americas. J Geophys Res,192:9591-9613.
    Zheng, Y. G, Z. Y. Tao, H. Q. Wang, et al.,1999:Enviroment of meso-a-scale convective system development in Yellow Sea region. Progress in Natural Science,9(7):842-848.
    陈廷标,夏良正,1990:数字图象处理,人民邮电出版社,173-176 pp.
    陈渭民,2005:卫星气象学(第二版).气象出版社.
    段旭,张秀年,许美玲,2004:云南及其周边地区中尺度对流系统时空分布特征.气象学报,26(2):243-249.
    方宗义,1985:夏季长江流域中尺度云团的研究.大气科学进展,2(3):334-340.
    费增坪,郑永光,王洪庆,2005:2003年淮河大水期间MCS的普查分析.气象,31(13):18-22.
    费增坪,郑永光,张焱等,2008:基于静止卫星红外云图的MCS普查研究进展及标准修订.应用气象学报,19(1):82-90.
    何明元,石汉青,2003:静止气象卫星资料处理.解放军理工大学学报(自然科学版),3(1):75-78.
    洪毅,李玉柱,陈智源等,2008:FY-2卫星数字云图的细网格定量处理.浙江气象,29(1):3-7.
    江吉喜,项续康,范梅珠,1996:青藏高原夏季中尺度强对流系统的时空分布.应用气象学报,7(4):474-478.
    蒋尚程,2006:应用卫星气象学.北京大学出版裤.
    李凤昌,1992:数字展宽地球同步卫星扫描云图的定位.气象,18(6):53-55.
    李玉兰,王婧熔,郑新江等,1989:我国西南-华南地区中尺度对流复合体(MCC)的研究.大气科学,13(4):417-422.
    林锦祥,邓玉娇,2006:FY2-C静止气象卫星资料处理方法.新疆气象,29(5):42-43.
    马禹,王旭,陶祖钰,1997:中国及其邻近地区中尺度对流系统的普查和时空分布特征.自然科学进展,7(6):701-706.
    马禹,王旭,陶祖钰,1998:新疆特大暴雨过程中的中尺度对流系统特征.新疆气象,21(6):3-7.
    石定朴,朱文琴,王洪庆等,1995:中尺度对流系统云图云顶黑体温度的分析.气象学报,54(5):600-611.
    束宇,潘益农,2010:红外云图上中尺度对流系统的自动识别.南京大学学报(自然科学),46(3),337-348.
    宋敬平,杜冠惠,张湘建,1991:日本静止气象卫星GMS图象的简单定位算法及其应用.游洋预报,8(4):35-40.
    陶祖钰,王洪庆,王旭等,1998:1995年中国的中-a尺度对流系统.气象学报,56(2):166-177.
    项续康,江吉喜,1995:中国南方地区的中尺度对流复合体.应用气象学报,6(1):9-17.
    谢静芳,王晓明,1995:东北地区中尺度对流复合体的卫星云图特征.气象,21(5):41-44.
    杨本相,陶祖钰,2005:青藏高原东南部MCC的地域特点分析.气象学报,63(2):236-242.
    郁凡,陈渭民,1994:双光谱云图的云分类探讨.南京气象学院学报,17(1):117-124.
    袁源,2004:基于频域双线性插值的数字水印算法.计算机应用,24(1):87-89.
    郑永光,朱佩君,白洁等,2003:Windows下静止卫星云图处理软件.气象,29(6):16-21.
    郑永光,朱佩君,陈敏等,2004:1993-1996黄海及其周边地区MaCS的普查分析.北京大学学报(自然科学版),30(1):66-72.
    郑永光,陈炯,费增坪等,2007:2003淮河流域持续暴雨的云系特征及环境条件.北京大学学报(自然科学版),43(2):157-165.
    郑永光,陈炯,朱佩君,2008:中国及周边地区夏季中尺度对流系统分布及其日变化特征.科学通报,53(4):471-481.
    钟晓平,1993:地球静止卫星云图象点定位方法之比较.高原气象,12(4):392-399.
    Anderson, C. J., and R. W. Arritt,1998:Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev.,126,578-599.
    Augustine, J. A.,1985:An automated method for the documentation of cloud-top characteristics of mesoscale convective systems. NOAA Tech. Memo. ERL ESG-10, Dept. of Commerce, Boulder, CO,121 pp.
    Augustine, J. A., K. W. Howard,1988:Mesoscale convective complexes over United States during 1985. Monthly Weather Review,116:686-701.
    Augustine, J. A., K. W. Howard,1991:Mesoscale convective complexes over United States during 1986 and 1987. Monthly Weather Review,119:1575-1589.
    Bluestein, H. B., and M. H. Jain,1985:Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmtnos. Sci.,42,1711-1732.
    Bluestein, H. B., G. T. Marx, and M. H. Jain,1987:Formation of mesoscale lines of precipitation:Nonsevere squall lines in Oklahoma during the spring. Mon. Wea. Rev.,115,2719-2727.
    Coniglio M. C., J.Y. Hwang, and D. J. Stensrud,2010:Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses.
    Corfidi, S. F., J. H. Merritt, and J. M. Fritsch,1996:Predicting the movement of mesoscale convective complexes. Weather and Forecasting,11,41-46.
    Cotton, W. R., G. D. Alexander, R. Hertenstein, R. L. Walko, R. L. McAnelly, and M. Nicholls,1995:Cloud venting-A review and some new global annual estimates. Earth-Sci. Rev.,39,169-206.
    Cotton, W. R., M. S. Lin, R. L. McAnelly, C. J. Tremback,1989:A composite model of mesoscale convective complexes. Mon. Wea. Rev.,117,765-783.
    Houze, R. A., B. F. Smull, and P. Dodge,1990:Mesoscale organization of springtime rainstorm in Oklahoma. Mon. Wea. Rev.,118,613-654.
    Jirak, I. L., W. R. Cotton, R. L. Mcanelly,2003:Satellite and radar survey of mesoscale convective system development. Monthly Weather Review,131(10): 2428-2449.
    Kane, R. J., C. R. Chelius, J. M. Fritsch,1987:Precipitation characteristics of mesoscale convective weather systems. Journal of Climate and Applied Meteorology,26:1345-1357.
    Laing, A., J. M. Fritsch,1993:Mesoscale convective complexes over the Indiamonsoon region. Journal of Climate,6:911-919.
    Laing, A., J. M. Fritsch,1993:Mesoscale convective complexes in Africa. Monthly Weather Review,121,2254-2263.
    Maddox, R. A.,1980:Mesoscale convective complexes. Bulletin American Meteorological Society,61(11):1374-1387.
    Maddox, R. A., D. M. Rogers, and K. W. Howard,1982:Mesoscale convective complexes over the United States during 1981-An annual summary. Mon. Wea. Rev.,110,1501-1514.
    Maddox, R. A.,1983:large-scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev.,111,126-140.
    McAnelly, R. L., and W. R. Cotton,1986:Meso-(3 scale characteristics of an episode of meso-αscale convective complexes. Mon. Wea. Rev.,114,1740-1770.
    Miller, D., J. M. Fritsch,1991:Mesoscale convective complexes in the western Pacific region. Monthly Weather Review,119:2978-2992.
    Orlanski, L. A.,1975:A rational subdivision of scales for atmospheric processes. Bulletin American Meteorological Society,56(5):527-530.
    Parker, M. D., and R. H. Johnson,2000:Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev.,128,3413-3436.
    Romatschke, U., and R. A. Houze:Characteristics of precipitating convective systems in the premonsoon season of South Asia. Journal of Hydrometeorol, in press.
    Velasco, L., J. M. Fritsch,1987:Mesoscale convective complexes in Americas. Journal of Geophysical Research,192:9591-9613.
    Weisman, M. L., and J. B. Klemp,1982:The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev.,110, 504-520.
    Zheng, Y. G., Z. Y. Tao, H. Q. Wang, et al.,1999:Enviroment of meso-a-scale convective system development in Yellow Sea region. Progress in Natural Science,9 (7):842-848.
    段旭,张秀年,许美玲,2004:云南及其周边地区中尺度对流系统时空分布特征.气象学报,26(2):243-249.
    费增坪,郑永光,王洪庆,2005:2003年淮河大水期间MCS的普查分析.气象,31(13):18-22.
    江吉喜,项续康,范梅珠,1996:青藏高原夏季中尺度强对流系统的时空分布.应用气象学报,7(4):474-478.
    马禹,王旭,陶祖钰,1997:中国及其邻近地区中尺度对流系统的普查和时空分布特征.自然科学展,7(6):701-706.
    马禹,王旭,陶祖钰,1998:新疆特大暴雨过程中的中尺度对流系统特征.新疆气象,21(6):3-7.
    陶祖钰,王洪庆,王旭等,1998:1995年中国的中-α尺度对流系统.气象学报,56(2):166-177.
    项续康,江吉喜,1995:我国南方地区的中尺度对流复合体.应用气象学报,6(11):9-17.
    谢静芳,王晓明,1995:东北地区中尺度对流复合体的卫星云图特征.气象,21(5):41-44.
    杨本相,陶祖钰,2005:青藏高原东南部MCC的地域特点分析.气象学报,63(2):236-242.
    郁凡,陈渭民,1994:双光谱云图的云分类探讨.南京气象学院学报,17(1):117-124.
    郑永光,陈炯,费增坪等,2007:2003淮河流域持续暴雨的云系特征及环境条件.北京大学学报(自然科学版),43(2):157-165.
    郑永光,朱佩君,陈敏等,2004:1993-1996黄海及其周边地区MαCS的普查分析.北哀大学学报(自然科学版),30(1):66-72.
    郑永光,陈炯,朱佩君,2008:中国及周边地区夏季中尺度对流系统分布及其日变化特征.科学通报,53(4):471-481.
    Barnes S L,1964:A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor.,3,396-409.
    Barnes, S.L.,1973:Mesoscale objective map analysis using weighted. time-series observations. NOAA Teeh. Memo.62, NSSL,60 pp.
    Bartels D L, and R A Maddox,1991:Midlevel Cyclonic Vortices Generated by Mesoseale Convective Systems. Mon. Wea. Rev.,119,104-118.
    Bartels, D. L., J. M. Brown, and E. I. Tollerud,1997:Structure of a midtropospheric vortex induced by a mesoscale convective system. Mon. Wea. Rev.,125, 193-211.
    Carbone, R.E., J.D. Tuttle, D. Ahijevych, and S.B. Trier,2002:Inferences of Predictability Associated with Warm Season Precipitation Episodes, J. Atmos. Sci.,59,2033-2056.
    Chen M and Zheng Y.-G,2004:Vorticity Budget Investigation of a Simulated Long-Lived Mesoscale Vortex in South China. Advances in Atmospheric Sciences,21,928-940.
    Chen, S.-J., and L. Dell'Osso,1984:Numerical prediction of the heavy rainfall vortex over eastern Asia monsoon region.J. Meteor. Soc. Japan,62,730-747.
    Chen, S.S., and W.M. Frank,1993:A numerical study of the genesis of extratropical convective mesovortices. Part Ⅰ:Evolution and Dynamics.J.Atmos. Sci.,50, 2401-2426.
    Cheng Lingshen, and Kuo Yinhua,1992:Mesoscale numerical simulation of the influence of PBL parameterization and moist process on development of a sheer line vortex, C. J. Atmos. Sci.,16,90-100.
    Cotton, W. R., and R. A. Anthes,1989:Storm and Cloud Dynamics. Academic Press, 883pp.
    Conzemius, R. J., R. W. Moore, M. T. Montgomery, et al.,2007:Mesoscale convective vortex formation in a weakly sheared moist neutral environment. Journal of Atmospheric Sciences,64,1443-1466.
    Davis, C. A., D. A. Ahijevych, and S. B. Trier,2002:Detection and prediction of warm season midtropospheric vortices by the Rapid Update Cycle. Mon. Wea. Rev.,130,24-42
    Davis C, Atkins N, Bartels D, Bosart L, Coniglio M, et al.,2004:The bow echo and MCV experiment:Observations and. opportunities. Bull. Ameri Meteor. Soc.,85, 1075-1093
    Davis, C. A., and T. J. Galarneau JR.,2009:The vertical structure of mesoscale convective vortices. Journal of Atmospheric Sciences,66,686-704.
    Doswell C A,1996:Flash flood forecasting.an ingredients-based methodology. Wea Forecasting,11,560-581.
    Dudia, J.,1989:Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci.,46, 3077-3107.
    Durran D R., and J B Klemp,1982:On the effects of moisture on. the Brunt-Vaisala frequency. J. Atmos. Sci.,39,2152-2158.
    Dyer, A. J., and B. B. Hicks,1970:Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc.,96,715-721.
    Frank, W. M.,1983:The cumulus parameterization problem. Mon. Wea. Rev., 111, 1859-1871.
    Galarneau JR. T. J., L. F. Bosart, C. A. Davis, et al.,2009:Baroclinic transition of a long-lived mesoscale convective vortex. Mon. Wea. Rev.,137,562-584.
    Hertenstein, R. F. A., and W. H. Schubert,1991:Potential vorticity anomalies associated with squall lines. Mon. Wea. Rev.,119,1663-1672.
    Hong, S.-Y., H.-M. H. Juang, and Q. Zhao,1998:Implementation of prognostic cloud scheme for a regional spectral model, Mon. Wea. Rev,126,2621-2639.
    Hong, S.-Y., and H.-L. Pan,1996:Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev.,124,2322-2339.
    Houze, R. A., Jr.,1977:Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev.,105,1540-1567.
    Houze, R. A., Jr.,2004:Mesoscale convective systems, Rev. Geophys.,42, RG4003, doi:10.1029/2004RG000150
    James, E. P., and R. H. Johnson,2010:Patterns of precipitation and mesolow evolution in midlatitude mesoscale convective vortices. Mon. Wea. Rev.,138
    Johnston, E. C.,1981:Mesoscale vorticity centers induced by mesoscale convective complexes. M. S. Thesis, Dept. of Meteorology, University of Wisconsin--Madison,54 pp.
    Jorgensen, D.P., and B.F. Smull,1993:Mesovortex circulations seen by airborne Doppler radar within a bow-echo mesoscale convective system. Bulletin of the American Meteorological Society,74,2146-2157.
    Kain, J. S., and J. M. Fritsch,1990:A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci.,47, 2784-2802.
    Kain, J. S., and J. M. Fritsch,1993:Convective parameterization for mesoscale models:The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., 246 pp.
    King, R.,1996:Mid-level vorticity in mesoscale convective systems. Colorado State University Atmospheric Science Paper,606,92pp.
    Kirk, J. R.,2003:Comparing the dynamical development of two mesoscale convective vortices. Mon. Wea. Rev.,131,862-890.
    Kirk, J. R.,2007:A phased-plot method for diagnosing vorticity concentration mechanisms in mesoscale convective vortices. Mon. Wea. Rev.,135,801-820.
    Knievel J C,2002:A comparison of convectively generated mesoscale vortices in the United States and in China.21st Conference on Severe Local Storms.
    Knievel J C, and R H Johnson,2003:A Scale-Discriminating Vorticity Budget for a Mesoscale Vortex in a Midlatitude, Continental Mesoscale Convective System. J. Atmos. Sci.,60,781-794.
    Kuo, C.-K., and C.-H. Horng,1994:A study of finite amplitude barotropic instability. TAO,5,199-243.
    Kuo, Y. H., and R. A. Anthes,1982:Numerical Simulation of a Mei-Yu system over Southeastern Asia, Papers Meteor. Res.,5,15-36.
    Kuo, Y.-H., L. Cheng, and R. A. Anthes,1986:Mesoscale analysis of the Sichuan flood catastrophe,11-15 July 1981. Mon. Wea. Rev.,114,1984-2003.
    Maddox, R. A.,1980:An objective technique for separating. macroscale and mesoscale features in meteorological data. Mon. Wea. Rev.,.108,1108-1121.
    Maddox R A.,1983:Large scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev.,111:1475-1493.
    Menard, R. D., and J. M. Fritsch,1989:A mesoscale convective. complex-generated inertially stable warm core vortex. Mon. Wea. Rev.,117,1237-1260.
    Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough,1997: Radiative trans-fer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res.,102 (D14), 16663-16682.
    Orlanski, L. A.,1975:A rational subdivision of scales for atmospheric processes. Bulletin American Meteorological Society,56(5):527-530.
    Paulson, C. A.,1970:The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor,9,857-861.
    Pielke, R.A, Sr.,2002:Mesoscale meteorological modeling.2nd Edition, Academic Press, San Diego, CA,676 pp.
    Raymond, D. J., and H. Jiang,1990:A theory for long-lived mesoscale convective systems. J. Atmos. Sci.,47,3067-3077.
    Schubert, W. H., and J. J. Hack,1982:Inertial Stability and Tropical Cyclone. Development. J. Atmos Sci.,39,1687-1697.
    Showalter, A. K.,1947:A stability index for forecasting thunderstorms. Bull. Amer. Meteor. Soc.,34,250-252.
    Skamarock W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers,2005:A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR,88 pp
    Smith, R. K.,1997:Thermodynamics of Moist and Cloudy Air. R. K. Smith(ed), The Physics and Parameterization of Moist Atmospheric Convection. Kluwer Academic Publishers. Printed in the Netherlands. pp 29-58.
    Schumacher, R. S., and R. H. Johnson,2008:Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev.,136, 3964-3986.
    Schumacher, R. S., and R. H. Johnson,2009:Quasi-stationary extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Weather and Forecasting,24,555-574.
    Tao, S. Y., and Y. H. Ding,1981:Observational evidence of the influenceof the Qinghai-Xizang (Tibet) Plateau and the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc.,62,23-30.
    Tao,S.,and L.Chen,1987:A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology,C.P. Chang and T. N. Krishnamurti, Eds.. Oxford University Press,60-92.
    Trier, S. B., C. A. Davis, and J. D. Tuttle,2000a:Long-lived mesoconvective vortices and their environment. Part I Observations from the central United States during the 1998 warm season. Mon. Wea. Rev.,128,3376-3395.
    Trier, S. B., C. A. Davis, and W. C. Skamarock,2000b:Long-lived mesoconvective vortices and their environment. Part Ⅱ:Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev.,128,3396-3412.
    Trier, S. B., and Davis, C. A.,2002:Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130,877-899.
    Trier, S. B., and Davis, C. A.,2007:Mesoscale convective vortices observed during BAMEX. Part Ⅱ:Influences on secondary deep convection. Mon. Wea. Rev.,135, 2051-2075.
    Verlinde, J., and W. R. Cotton,1990:A mesoscale vortex couplet observed in the trailing anvil of a multicellular convective complex. Mon. Wea. Rev.,118, 993-1010.
    Wang, B.,1987:The development mechanism for Tibetan Plateau warm vortices.J. Atmos.Sci.,44,2978-2994.
    Wang, B., and I. Orlanski,1987:Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau. Mon. Wea. Rev.,115,1370-1393.
    Wang, W., Y.-H. Kuo, and T. T. Warner,1993:A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau. Mon. Wea. Rev.,121,2542-2561.
    Webb, E. K..,1970:Profile relationships:The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc.,96,67-90.
    Weisman, M. L., and C. A. Davis,1998:Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci.,55,2603-2622.
    Weisman, M. L., and J. B. Klemp,1982:The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev.,110, 504-520.
    Wicker, L. J. and W. C. Skamarock,2002:Time splitting methods for elastic models using forward time schemes, Mon. Wea. Rev.,130,2088-2097.
    Wu, G.-X., and S.-J. Chen,1985:The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc.,111,1049-1070.
    Ye, D.,1981:Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62,14-19.
    Zhang, D.-L., and J.M. Fritsch,1988:A numerical investigation of a convectively generated, inertially stable, extratropical warm-core mesovortex over land. Part I: Structure and evolution. Mon. Wea. Rev.,116,2660-2687.
    Zhang, D.-L., and J.M. Fritsch,1988:Numerical sensitivity experiments of varying model physics on the structure, evolution and dynamics of two mesoscale convective systems. J. Atmos. Sci.,45,261-293.
    Zhang, D.-L.,1992:The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line. Monthly Weather Review,120, 2763-2785.
    陈丽芳,高坤,徐亚梅,2004:梅雨锋演变与低涡发展的联系.浙江大学学报(理学版),31,103-109.
    程麟生,彭新东,马艳,1995:“91.7”江淮暴雨低涡发展结构和演变的中尺度数值模拟.高原气象,14,270-280.
    程麟生KUO Ying-hua,李小莉,等,1993:中国暴雨中尺度系统发生与发展的诊断分析和数值模拟(Ⅰ):诊断分析.应用气象学报,4,257-268.
    丁一汇,1993:1991年江淮流域持续性大暴雨的研究,北京:气象出版社,255 pp
    方宗义,项续康,方翔等,2005:2003年7月3日梅雨锋切变线上的p-中尺度暴雨云团分析.应用气象学报,16,569-575.
    高坤,徐亚梅,2001:1999年6月下旬长江中下游梅雨锋低涡扰动的结构研究.大气科学,25,740-756.
    胡伯威,潘鄂芬,1996:梅雨期长江流域两类气旋性扰动和暴雨.应用气象学报,7,138-144.
    李毓芳,黄安丽,高坤,1986.对流加热在梅雨暴雨系统中的作用.中国科学(B辑),7,765-775.
    廖捷,谈哲敏,2005:一次梅雨锋特大暴雨过程的数值模拟研究:不同尺度天气系统的影响作用.气象学报,63,771-789.
    廖胜石,寿绍文,2004:一次江淮暴雨中中尺度低涡的数值模拟及分析.南京气象学院学报,27,753-759
    靳冰凌,王辛方,孙仲毅等,2010:2009年8月17日河南北部区域性暴雨诊断分析.气象与环境科学,33,121-125.
    施曙,赵思雄,1994:梅雨锋上与强暴雨有关的中低压及其三维环境流场诊断研究,大气科尝18,476-484.
    孙建华,周海光,赵思雄,2006:2003年7月4-5日淮河流域大暴雨中尺度对流系统的观测分析.大气科学30,1103-1118
    孙淑清,杜长萱,1996:梅雨锋的维持与其上扰动的发展特征.应用气象学报,7,154-159.
    陶诗言,1980:中国之暴雨,北京:科学出版社,225 pp.
    陶诗言,张小玲,张顺利,2004:长江流域梅雨锋暴雨灾害研究.北京:气象出版社,192 pp.
    王元,2006:我国中尺度涡旋研究的若干进展和回顾.“第一次中尺度强对流天气系统综合分析研究”研讨会.北京.
    吴国雄,蔡雅萍,唐晓菁,1995:湿位涡和倾斜涡度发展.气象学报,53,387-404.
    徐亚梅,高坤,2002:1998年7月22日长江中游中p低涡的数值模拟及初步分析.气象为》 报,60,85-95.
    阎凤霞,寿绍文,张艳玲等,2005.一次江淮暴雨过程中干空气侵入的诊断分析.南京气象学院学报,28,117-124.
    杨大升,刘玉滨,刘式适,1980:动力气象学.北京:气象出版社,34-37 pp.
    赵思雄,陶祖钰,孙建华等,2004:长江流域梅雨锋暴雨机理的分析研究.北京:气象出版社,281 pp.
    朱爱军,潘益农,2007:中国东部地区一个中尺度对流涡旋的涡度收支分析.南京大学学报(自然科学),43,260-269.
    朱乾根,林锦瑞,寿绍文,1981:天气学原理和方法.北京:气象出版社,649 pp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700