用户名: 密码: 验证码:
毫米波雷达对云宏微观特性的探测和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
和传统天气雷达相比,毫米波雷达的波长短,对小云滴更敏感,同时空间分辨率小,能获取更为精细的云结构,因此是探测非降水云和弱降水云的有效工具。毫米波不仅能提供直观的云高云厚等宏观信息,更为云微物理参数的反演提供数据。本文利用中国气象科学研究院的一部35GHz双偏振多普勒毫米波雷达(HMBQ),进行云的宏观结构分析和云微物理参数反演方法的研究,具体研究内容如下:
     (1)对毫米波雷达的发展状况和探测特点做简要概述。在此基础上,介绍HMBQ的系统组成和系统参数,讨论和分析其探测性能,并给出其观测个例,对其探测能力做初步验证;
     (2)通过HMBQ和人工影响天气飞机对云的联合探测试验,进一步检验HMBQ的探测能力。将HMBQ探测的反射率因子和利用飞机实测滴谱计算得到的反射率因子作比较,发现在暖云中,两个反射率因子值较为接近,而冰云中,有较大偏差。由于HMBQ和飞机的滴谱仪的采样目标不可能完全一致,并且冰云中可能有过冷水存在,雷达探测值和飞机估值存在差异是合理的。计算飞机在云层中部采样期间两个反射率因子的均方根误差,暖云和冰云分别为5.5dBZ和6.1dBZ,可见,HMBQ具有准确探测云层的能力。利用滴谱计算云滴和降水粒子的反射率因子,通过寻找这两个反射率因子的概率密度函数的交点,得到云滴的反射率因子通常低于-5dBz,而降水粒子高于-20dBZ,暖云的降水粒子反射率阈值在-15~-12dBZ之间;
     (3)选取两部毫米波雷达和一部微脉冲激光雷达(MPL)联合观测的层积云、高层云、高积云和卷积云个例,对三个仪器探测到的云边界进行对比。两部毫米波雷达探测的结果有很好的一致性。但是MPL和毫米波雷达的探测结果往往存在差异。云粒子对毫米波电磁波和激光光束的散射机制不同以及两个设备判定云底的方法不同是差异产生的主要原因。通常,MPL探测的云底高度高于毫米波雷达。对于云顶的小粒子和云内的小冰晶,MPL的探测能力强于毫米波雷达,但对于发展深厚云层,MPL会因衰减的影响探测不到真实的云顶,而毫米波雷达可以探测到完整的云层。在上述分析的基础上,制定毫米波雷达和激光雷达联合遥感确定云边界的标准,并用联合观测数据对云宏观结构进行统计。
     (4)介绍多普勒谱的概念和理论模型,同时对HMBQ探测到的多普勒谱进行实例分析,发现绝大部分多普勒谱满足单峰或者双峰高斯分布。其结构与雷达照射体积内包含的粒子有关。双峰的多普勒谱对应雷达照射体积内有两种不同粒径分布的粒子,比如,云滴和降水粒子、液滴和冰晶共存的情况。在对原始多普勒谱进行平均、平滑和去除系统噪声后,通过非线性最小二乘拟合的方法将多普勒谱分解为单峰或者双峰的高斯分布,进而可求得不同类别粒子的反射率因子和速度。对一次观测个例中探测的双峰多普勒谱,用分解多普勒谱的方法,得到云滴和降水粒子的谱参数。通过将云滴看做空气运动的示踪,利用云滴落速对空气速度进行估计。再用利用Frisch模型分别得到这两种粒子的云微物理参数。
In comparison with widely used centimeter wavelength radars, millimeter wavelength radars have certain advantages for detecting nonprecipitating and lightly precipitating clouds. The sensitivity to small hydrometeors and excellent spatial resolution make them provide important information about the macro and micro cloud properties. Data with a35GHz dual-polarization Doppler radar (HMBQ) is studied to analyze the qualitative information about the presence of clouds and to develop a method to retrieve cloud microphysical properties. The main contents and conclusions are as follows:
     (1) The general development and main advantage of millimeter wavelength radars is summarized. Furthermore, the components and parameters of HMBQ are introduced in order to evaluate its detecting capability. In addition, the results from recent cloud experiments are presented to reveal the intricate structure of a wide variety of clouds obtain by HMBQ.
     (2) The capacity of HMBQ was investigated based on an aircraft and cloud radar co-observation. The reflectivity calculated from aircraft measurements is compared with the simultaneous radar observation in detailed. It shows that the two reflectivities are comparable in warm clouds, but in ice cloud there are more discrepancies which are probably associated with the occurrence of overcooled liquid water. Because of the difficulty of exactly matching up the collocation between the two sensors and their distinct sample volumes, the deviation is inevitable. Based on the dataset collected in warm clouds in this experiment, the threshold of reflectivity to diagnose drizzle and cloud particles is studied by analyses of the probability distribution function of reflectivity due to cloud particles and drizzle drops. The reflectivity of cloud particles is usually below-5dBZ which the value of drizzle is above-20dBZ. A value between-15and-12dBZ can be used as the threshold of drizzle.
     (3) Determination of cloud base and top heights from millimeter wavelength radar are compared to those from the Micro Pulse Lidar (MPL) as a means to evaluate the accuracy of both cloud radar and MPL retrievals, as well as to ascertain their limitations. Four cases are studied, including a stratocumulus, a altostratus, a altocumulus and a cirrocumulus. The study reveals that the cloud boundaries detected by both cloud radars agree well with each other. However, the MPL usually reports higher cloud base heights than cloud radar. Statistical comparison reveals that the differences between their mean cloud base heights are large for nonflat-based altostratus but small for other cases. The differences are mainly due to the different scattering mechanism for light and microwave and the distinct methods of cloud boundaries identification. The MPL sometimes see higher cloud tops than the cloud radar when the lidar signal can completely penetrate the clouds. However, for deeply developed clouds the cloud radar measure reliable cloud tops while MPL suffers heavy attenuations. Furthermore, the MPL has a superior in some optical thin clouds detection. An integration of cloud boundary is determined based on these analyses. Using the radar/lidar synergetic observations, frequency distributions of cloud macro structure are calculated.
     (4) A detailed description of the Doppler spectra is given in theory. One size particles in the radar resolution volume produce a uni-mode Gaussian spectrum. Different size particles produce a spectrum that is due to the linear superposition of their Gaussian signals. Several examples of Doppler spectra detected by HMBQ are presented to show that the structures of Doppler spectra bring information on the size range of droplets. Commonly double-model structures are related to cloud droplets of different size, ice crystals with different habit and size, or cloud droplets mixed with ice crystals. In order to evaluate the moments of the Doppler spectra due to different ensembles of particles, a method of decomposing Doppler spectra is applied. Firstly, the measured spectra are averaged over10s and smoothed the turbulence by a three-point window. Then the spectra is decomposed by fitting as Gaussian distribution. Using the decomposed spectra to study a stratocumulus. The air motion is estimated by treating the small cloud particles as the tracer of air motion. The microphysical properties are retrieved by means of the Frisch model.
引文
Atlas, D., S. Y. Matrosov, A. J. Heymsfield, M. Chou, D. B. Wolff,1995:Radar and Radiation Properties of Ice Clouds. J. Appl. Meteor.,34(11),2329-2345.
    Atlas, D.,1954:The estimation of cloud parameters by radar. J. Meteor.,11,309-317.
    Austin, R. T., and G. L. Stephens,2001:Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat:1. Algorithm formulation. J. Geophys. Res.,106(D22),28233-28242.
    Babb, D. M., and J. Verlinde,2000:The retrieval of turbulent broadening in radar Doppler using linear inversion with double-sided constraint. J. Atmos. Oceanic Technol.,17,1577-1583.
    Battan, L. J.,1964:Some observations of vertical velocities and precipitation sizes in a thunderstorm. J. Appl. Meteor.,3,415-420.
    Chernykh, I. V., and O. A. Alduchov,2000:Comparison of cloud layers detecting by different methods. The Fifth International Cloud Modelling Workshop, working group on polar clouds,7-11 August, Colorado.
    Clothiaux, E. E., M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett,1995:An Evaluation of a 94-GHz Radar for Remote Sensing of Cloud Properties. J. Atmos. Oceanic Technol.12,201-229.
    Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller and B. E. Martner, 2000:Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor.,39,645-665.
    Comstock J. M., T. P. Ackerman, G. G. Mace,2000:Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island Cloud statistics and radiative impacts. J. Geophys. Res.107 (D23),4714, doi:10.1029/2002JD002203,2002.
    Deng, M., and G. G. Mace,2004:Cirrus Microphysical Properties and Air Motion Statistics Using Cloud Radar Doppler Moments. Part Ⅰ:Algorithm Description. J. Appl. Meteoro. Climatol.,45,1690-1709.
    Fox, N. I., and A. J. Illingworth,1997:The retrieval of stratocumulus cloud properties by ground-based cloud radar. J. Appl. Meteor.,36,485-492.
    Fox, N. I., and A. J. Illingworth,1997:The potential of spacebome cloud radar for the detection of stratocumulus clouds. J. Appl. Meteor.,36,676-687.
    Frisch, A. S., C. W. Fairall, and J. B. Snider,1995:Measurement of stratus cloud and drizzle parameters in ASTEX with Doppler radar and microwave radiometer. J. Atmos. Sci.,52,2788-2799.
    Frisch, A. S., C. W. Fairall, G Feingold, T. Uttal, and J. B. Snider,1998. On cloud radar microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res.103 (D18),23195-23197.
    Gossard, E. E.,1988:Measuring drop-size distributions in clouds with clear-air sensing Doppler radar. J. Atmos. Oceanic Technol.,5,640-649.
    Gossard, E. E., and R. R. Rogers,1990:Evolution of drop-size distributions in liquid precipitation observed by ground-based Doppler radar. J. Atmos. Oceanic Technol.,7,815-828.
    Gossard, E. E.,1994:Measurement of cloud droplet spectra by Doppler radar. J. Atmos. Oceanic Technol., 11,712-726.
    Gossard, E. E., J. B. Snider, E. E. Clothiaux, B. Martner, J. S. Gibson, R. A. Kropfli, and A. S. Frisch,1997: The potential of 8-mm radars for remotely sensing cloud drop size distributions. J. Atmos. Oceanic Technol.,13,76-87.
    Hauser D. and P. Amayenc,1981:A new method for reducing hydrometer-size distributions and vertical air motions from Doppler radar measurements at vertical incidence. J. Appl. Meteor.,20,547-555.
    Hughes N. A.,1984:Global Cloud Climatologies:A Historical Review. J. Climate App Meteo,23,724-751.
    Hobbs, P. V., N. T. Funk,1984:Cloud and precipitation studies with a millimetre-wave radar:A pictorial overview. Weather,39(11),334-339.
    Hobbs, P. V., N. T. Funk, R. R. Weiss, and J. D. Locatelli,1985:Evaluation of a 35-GHz radar for cloud physics research. J. Atmos. Oceanic Technol.,2,35-48.
    Hollars, S., Q. Fu, J. Comstock, T. Ackerman,2004:Comparison of cloud-top height retrievals from ground-based 35 GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site. Atmos. Res.,72,169-186.
    Intrieri, J. M., G. L. Stephens, W. L. Eberhard and T. Uttal,1993:Cloud-layer overlap characteristics derived from long-term cloud radar data. J. Appl. Meteor.,32,1074-1082.
    Intrieri, J. M., T. Uttal, W. L. Eberhard, J. B. Snider, Y. Han, J. A Shaw, B. W. Orr, and S. Y. Matrosov,1995: Demonstrations of multiwavelength observations and advantages for cirrus cloud studies:The FIRE 1126 November 1991 case study. J. Atmos. Sci.,52,4079-4093.
    IPCC,1995:Radiative Forcing of Climate Change. eds. J. T. Houghton, et. al., Cambridge University Press, 339.
    Knight, C. A., and L. J. Miller,1993:First radar echoes from cumulus clouds. Bull. Amer. Meteor. Soc., 74(2),179-188.
    Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman,2007: Millimeter-wavelength radar:New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc.,1608-1624, DOI:10.1175/BAMS-88-10-1608.
    Kropfli, R. A., and R. D. Kelly,1996:Meteorological research applications of MM-Wave radar Meteorol. Atmos. Phys.59,105-121.
    Lhermitte, R. M.,1966:Probing air motion by Doppler analysis of radar clear air returns. J. Atmos. Sci.,23, 575-591.
    Lhermitte, R.,1987:A 94-GHz Doppler radar for cloud observations, J. Atmos. Oceanic Technol.,4,36-48, doi:10.1175/1520-0426(1987)004<0036:AGDRFC>2.0.CO;2.
    Lhermitte, R.,1990:Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol,7,464-479.
    Li L. H., G. H. Heymsfield, P. E. Racette, L. Tian, Ed, Zenker,2004:A 94-GHz Cloud Radar System on a NASA High-Altitude ER-2 Aircraft, J. Atmos. Oceanic Technol.,21,1378-1388.
    Liao, L., and K. Sassen,1992:Theoretical investigation of the relationship between ice mass content and Ka-band radar reflectivity factor. Preprints,11th Int. Conf, on Cloud physics and Precipitation, Montreal, Amer. Meteor. Soc.,1005-1008.
    Mace, G. G., T. P. Ackerman, P. Minnis and D. F. Young,1998:Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data. n, J. Geophys. Res., 103(D 18),23207-23216.
    Miller, M., J. Verlinde, C. Gilbert, J. Tongue, and G. Lehenbauer,1997:Cloud detection using the WSR-88D:An initial evaluation. Preprints,28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc.,442-443.
    Moran K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener,1998:An Unattended Cloud-Profiling Radar for Use in Climate Research. Bull. Amer. Meteor. Soc.,79, 443-455.
    Matrosov, S. Y., T. Uttal, J. B. Snider, and R. A. Kropfli,1992:Estimation of ice cloud parameters from ground-based infrared radiometer and radar measurements, J. Geophys. Res.,97,11567-11574.
    Matrosov, S. Y., B. W. Orr, R. A. Kropfli, and J. B. Snider,1994:Retrievals of vertical profiles of cirrus cloud microphysical parameters from Doppler radar and infrared radiometer measurements, J. Appl. Meteorol.,33,617-626.
    Matrosov, S. Y.,1999:Retrievals of vertical profiles of ice cloud microphysics from radar and IR measurements using tuned regressions between reflectivity and cloud parameters. J. Geophys. Res., 104(D14),16741-16753.
    O'Connor E. J., R. J. Hogan and A. J. Illingworth,2004:Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteorol.,44,14-27.
    Paulsen, W. H., P. J. Petrocchi, and G. McLean,1970:Operational utilization of the AN/TPQ-11 cloud detection radar. AFCRL-70-0335, Instrumentation Paper No.166,59pp.
    Quante M.,2004:The role of clouds in the climate system. Journal de Physique, EDP Sciences, DOI: 10.1051/jp4:2004121003.
    Racette, P. E., G. M. Heymsfield, L. Li, L. Tian, and E. Zenker,2003:The cloud radar system. Preprints, 31st Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc.,237-240.
    Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann,1989: Cloud-Radiative Forcing and Climate:Results from the Earth Radiation Budget Experiment. Science 243 (4887):57-63.
    Roger, R. R.,1964:An extension of the Z-R relation for Doppler radar. The 11th Weather Radar Conference AMS, Boston, MA. Goulder, Co.,Sept.,14-18.
    Sassen, K., and L. Liao,1996:Estimation of cloud content by Wband radar. J. Appl. Meteor.,35,932-938.
    Sassen K., G. G. Mace, Z. Wang, M. R. Poellot, S. M. Sekelsky, and R. E. Mcintosh,1999:Continental stratus clouds:A case study using coordinated remote sensing and aircraft measurements. J. Atmos. Sci.,56,2345-2358.
    Shupe, M. D., P. Kollias, M. Poellot, E. Eloranta,2004:Deriving Mixed-Phase Cloud Properties from Doppler Radar Spectra. J. Atmos. Oceanic. Tech.,65,1304-1322.
    Shupe, M. D., P. Kollias, S. Y. Matrosov, T. L. Schneider,2008:On Deriving Vertical Air Motions from Cloud Radar Doppler Spectra. J. Atmos. Oceanic. Tech.,25,547-557.
    Slingo, A., and J. Slingo,1990:Sensitivity of the earth's radiation budget to changes in low clouds. Nature, 343,49-51.
    Stephens, G. L.,2005:Cloud Feedbacks in the Climate System:A Critical Review. J. Climate,18,237-273.
    Stephens, G. L., S. C. Tsay, P. W. Stackhouse, and P. J. Flatau,1990:The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci.,47, 1742-1752.
    Stephens, G. L. and Coauthors,2002:The CloudSat mission and the A-train. Bull. Amer. Meteor. Soc.,83, 1771-1789.
    Ulaby, F. T., R. K. Moore and A. K. Fung,1982:Microwave Remote Sensing. Addison-Wesley, Reading, Massachussets, p314.
    Uttal, T., E. E. Clothiaux, T. P. Ackerman, J. M. Intrieri and W. L. Eberhard,1994:Cloud boundaries during FIRE Ⅱ. J. Atmos. Sci.,52(23),4276-4284.
    Venema, V., H. Russchenberg, A. Apituley, A. Lammeren, L. Ligthart,2000:Cloud boundary height measurements using lidar and radar. Physics and Chemistry of the Earth,24(2),129-134.
    Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao and S. Kato,1986:A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Ocean. Technol.,3, 623-629.
    马振骅,陈大任,周彪,1985:VHF雷达探测对流层风廓线的数值模拟实验研究.大气科学.9(2),113-118.
    彭亮,陈洪滨,李柏,2010:3mm多普勒云雷达测量反演云内空气垂直速度的研究,大气科学,36(1),1-10.
    阮征,何平,葛润生,2008:风廓线雷达对大气折射率结构常数的探测研究.大气科学.32(1),133-140.
    魏重,林海,忻妙新,1985:毫米波气象雷达的测云能力.气象学报,43(3):378-383.
    仲凌志,刘黎平,葛润生.2011.毫米波测云雷达的系统定标和探测能力研究.气象学报,69(2):352-362.
    Baedi, R. J. P., J. J. M. de Wit, H. W. J. Russchenberg, J. S. Erkelens, and J. P. V. Poiares Baptista,2000: Estimating Effective Radius and Liquid Water Content from Radar and Lidar Based on the CLARE98 Data-Set. Phys. Chem. Earth (B),25(10-12),1057-1062.
    Bohren C. F. and D. R. Huffman,1983:Absorption and Scattering of Light by Small Particles. John Wiley, New York, NY.
    Ellis, S. M., and J. Vivekanandan,2011:Liquid water content estimates using simultaneous S and Ka band radar measurements. Radio Sci.,46, RS2021, doi:10.1029/2010RS004361.
    Erkelens, J. S., V. K. C., Venema, H.W. J., Russchenberg, and L. P., Ligthart,2001:Coherent scattering of microwaves by particles:Evidence from clouds and smoke. J. Atmos. Sci.,58:1091-1102.
    Fox, N. I., and A. J. Illingworth,1997:The retrieval of stratocumulus cloud properties by ground-based cloud radar. J. Appl. Meteor.,36,485-492.
    Gorsdorf, U. and J. Handwerker,2006:A 36 GHz high sensitivity cloud radar for continuous measurements of cloud parameters-experiences of 2-years operation and system intercomparison. Proc. Seventh International Symposium on Tropospheric Profiling:Needs and Technologies (ISTP), Boulder(CO), 12-16 June 2006.
    Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman,2007: Millimeter-wavelength radar:New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc.,1608-1624, DOI:10.1175/BAMS-88-10-1608.
    Kropfli, R. A., and R. D. Kelly,1996:Meteorological research applications of MM-Wave radar Meteorol. Atmos. Phys.59,105-121.
    Lhermitte, R. M.,1966:Probing air motion by Doppler analysis of radar clear air returns. J. Atmos. Sci.,23, 575-591.
    Lhermitte, R.,1990:Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol,7,464-479.
    Miller, M. A., Jensen, M. P., and Clothiaux, E. E.,1998:Diurnal cloud and thermodynamic variations in the stratocumulus transition regime:A case study using in-situ and remote sensors. J. Atmos. Sci.,55, 2294-2310.
    Moran K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener,1998:An Unattended Cloud-Profiling Radar for Use in Climate Research. Bull; Amer. Meteor. Soc.,79, 443-455.
    Quante M.,2004:The role of clouds in the climate system. Journal de Physique, EDP Sciences, DOI: 10.1051/jp4:2004121003.
    Sauvageot, H., and J. Omar,1987:Radar reflectivity of cumulus clouds. J. Atmos. Ocean. Technol.,4, 264-272.
    Smith, P. L.,1993:An update on weather radar system sensitivity. Preprints,26th Conference on Radar Meteorology, American Meteorological Society, Norman, OK.
    Ulaby, F. T., R. K. Moore and A. K. Fung,1982:Microwave Remote Sensing. Addison-Wesley, Reading, Massachussets, p314.
    张培昌,王振会.2001.天气雷达回波衰减订正算法的研究(1):理论分析.高原气象.
    仲凌志.2009.毫米波测云雷达系统的定标和探测能力分析及其在反演云微物理参数中的初步研究毫米波测云雷达的系统定标和探测能力研究[博士论文].
    Albrecht, B. A.,1989:Aerosols, cloud microphysics, and fractional cloudiness. Science,245,1227-1230.
    Albrecht, B. A.,1993:The effects of precipitation on the thermodynamic structure of trade-wind boundary layers. J. Geophys. Res.,98,7327-7337.
    Baumgardner, D., H. Jonsson, W. Dawson, D. O'Connor and R. Newton,2001:The cloud, aerosol and precipitation spectrometer:a new instrument for cloud investigations. Atmos. Res.,59-60,251-264.
    Baedi, R. J. P., J. J. M. de Wit, H. W. J. Russchenberg, J. S. Erkelens, and J. P. V. Poiares Baptista,2000: Estimating Effective Radius and Liquid Water Content from Radar and Lidar Based on the CLARE98 Data-Set. Phys. Chem. Earth (B),25(10-12),1057-1062.
    Brown, P. R. A., and A. J. Illingworth,1995:The role of spacebome Millimeter-wave radar in the global monitoring of ice cloud. J. Appl. Meteor.,34,2346-2366.
    Chin, H.N. S., D. J. Rodriguez, R. T. Cederval, C. C. Chuang, A. S. Grossman, and J. J. Yio,2000:A microphysical retrieval scheme for continental low-level stratiform clouds:impacts of subadiabatic character on microphysical properties and radiation budgets, Mon. Weather Rev.,128,2511-2527.
    Cober, S. G, J. W. Strapp, and G A. Isaac,1996:An example of supercooled drizzle drops formed through a collision-coalescence process. J. Appl. Meteor.,35,2250-2260.
    French, J. R., G Vali, and R. D. Kelly,2000:Observations of microphysics pertaining to the development of drizzle in warm, shallow cumulus clouds. Quart. J. Roy. Meteor. Soc.,126,415-443.
    Frisch, A. S., C. W. Fairall, and J. B. Snider,1995:Measurement of stratus clouds and drizzle parameters in ASTEX with a Ka-band Doppler radar and a microwave radiometer. J. Atmos. Sci.,52,2788-2799.
    Hobbs, P. V, T. J. Matejka, P. H. Herzegh, J. D. Locatelli and R. A. Houze,1980:The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Ⅰ:A case study of a cold front. J. Atmos. Sci.,37,568-596.
    Hobbs, P. V.,1991. Twenty years of airborne research at the University of Washington. Bull Amer Meteor Soc,72:1707-1716.
    Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth,2006:The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteorol. Climatol.,45,301-317.
    Kogan, Z. N., D. B. Mechem, and Y. L. Kogan,2005:Assessment of variability in continental low stratiform clouds based on observations of radar reflectivity. J. Geophys. Res.,110, D18205, doi:10.1029/2005JD006158.
    Lawson R. P., P. Zuidema,2009:Aircraft microphysical and surface-based radar observations of summertime arctic clouds. J,.Atmos. Sci.,66,3505-3529.
    Liu, Y., P. H. Daum, S. S. Yum, and J. Wang,2008:Use of microphysical relationship to discern growth/decay mechanisms of cloud droplets with focus on Z-LWC relationships.15th International Conference on Clouds and Precipitation, Cancun, Mexico, the International Commission on Clouds and Precipitation (ICCP).
    Miller, M. A., Jensen, M. P., and Clothiaux, E. E..1998. Diurnal cloud and thermodynamic variations in the stratocumulus transition regime:A case study using in situ and remote sensors. J. Atmos. Sci.,55, 2294-2310.
    Morales, J.,2004:Cirrus clouds Millimeter-wave reflectivity comparison with in-situ ice crystal airborne data. SPIE 04, Hawaii, Nov 8-12.
    Sauvageot, H. and J. Omar,1987:Radar reflectivity of cumulus clouds. J. Atmos. Ocean. Technol.,4, 264-272.
    Wood, R.,2000:Parametrization of the effect of drizzle upon the droplet effective radius in stratocumulus clouds. Q. J. R. Meteorol. Soc.,126,3309-3324.
    Wang, J., and B. Geerts,2003:Identifying drizzle within marine stratus with W-band radar reflectivity. Atmos. Res.,69,1-27.
    Yum S S, Hudson J G. 2002. Maritime continental microphysical contrast s instratus. Tellus(Series B), 54(1):61-73.
    郭学良,付丹红,胡朝霞.2013.云降水物理与人工影响天气研究进展(2008~2012年)[J].大气科学,37(2):351-363,doi:10.3878/j.issn.1006-9895.2012.
    毛节泰,郑国光.2006.对人工影响天气若干问题的探讨[J].应用气象学报,17(5):643-646.
    游来光.1987.我国云物理和人工影响天气研究工作新进展[J].气象科技,21(1):59-64.
    Bretherton, C. S., T. Uttal, C. W. Fairall, S. Yuter, R. Weller, D. Baumgardner, K. Comstock, R. Wood, and G. Raga,2004:The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc.,85,967-977.
    Campbell, JR, DL Hlavka, EJ Welton, CJ Flynn, DD Turner, JD Spinhirne, VS Scott, and IH Hwang.2002. Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites:Instruments and Data Processing. Journal of Atmospheric and Oceanic Technology,19, 431-442.
    Han, D., and R. G Ellingson,2000:An experimental technique for testing the validity of cumulus cloud parameterisations forlongwave radiation calculations, J. Appl. Meteor.,39,1147-1159.
    Illingworth, A. J., and Coauthors,2007:CLOUDNET—Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc.,88,883-898.
    Kogan, Z. N. and Y. L. Kogan,1998:The effect of cloud geometrical thickness variability on optical depth, Proc. of the 8th ARM Science Team Meeting, U.S. Department of Energy,377-380.
    Kollias, P., G. Tselioudis, and B. A. Albrecht,2007b:Cloud climatology at the Southern Great Plains and the layer structure, drizzle, and atmospheric modes of continental stratus. J. Geophys. Res.,112, D09116, doi:10.1029/2006JD007307.
    Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty,2002:An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res.,107(C10), doi:10.1029/2000JC000423.
    Pal, S. R., W. Steinbrecht, and A. I. Carswell,1992:Automated method for lidar determination of cloud base height and vertical extent. Appl. Opt.,31,1488-1494.
    Randall, D. A., Harshvardhan, D. A. Dazlich, and T. G. Corsetti,1989:Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci..46,1943-1970.
    Slingo, A. and J. Slingo,1991:Response of the National Center for Atmospheric Research community climate model to improvements in the representation of clouds. J. Geophys. Res.,96,15341-15357.
    Uttal, T., E. E. Clothiaux, T. P. Ackerman, J. M. Intrieri, and W. L. Eberhard,1994:Cloud boundary statistics during FIRE II. J. Atmos. Sci.,52,4276-4284.
    Winker, D. M., and M. A. Vaughan,1994:Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs, Atmos. Res.,34,117-133.
    Atlas, D., R. C. Srivastava and R. S. Sekon,1973:Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys.,11,1-35.
    Babb, D. M., and J. Verlinde,2000:The retrieval of turbulent broadening in radar Doppler using linear inversion with double-sided constraint. J. Atmos. Oceanic Technol.,17,1577-1583.
    Battan, L. J.,1964:Some observations of vertical velocities and precipitation sizes in a thunderstorm. J. Appl. Meteor.,3,415-420.
    Beard, K. V., and H. R. Pruppacher,1969:A determination of the terminal velocity and drag by means ofa wind tunnel. J. Atmos. Sci.,26,1066-1072.
    Donaldson, R. J., Jr.,1967:A preliminary report on Doppler radar observation of turbulence in a thunderstorm. Air Force Cambridge Research Laboratories, Environ. Res.,19,255.
    Feingold, G., B. Stevens, W. R. Cotton, and A. S. Frisch,1996:The relationship between drop-in cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53,1108-1122.
    Frisch, A. S., C. W. Fairall, and J. B. Snider,1995:Measurement of stratus cloud and drizzle parameters in ASTEX with Doppler radar and microwave radiometer. J. Atmos. Sci.,52,2788-2799.
    Frisch, B. E. Martner, I. Djalalova, and M. R. Poellot,2000:Comparison of radar/radiometer retrievals of stratus cloud liquidwater content profiles with in situ measurements by aircraft. J. Geophys. Res.,105, 15361-15364.
    Gossard, E. E.,1994:Measurement of cloud droplet spectra by Doppler radar. J. Atmos. Oceanic Technol., 11,712-726.
    Gossard, E. E., J. B. Snider, E. E. Clothiaux, B. Martner, J. S. Gibson, R. A. Kropfli, and A. S. Frisch,1997: The potential of 8-mm radars for remotely sensing cloud drop size distributions. J. Atmos. Oceanic Technol.,13,76-87.
    Gossard, E. E., and R. R. Rogers,1990:Evolution of drop-size distributions in liquid precipitation observed by ground-based Doppler radar. J. Atmos. Oceanic Technol.,7,815-828.
    Gunn R. and G. D. Kinzer,1949:The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6(4),243-248.
    Hogan, R. J., A. J. Illingworth, E. J. O'Connor, and J. P. V. Poiares Baptista,2003:Characteristics of mixed-phase clouds. Part Ⅰ:Lidar, radar and aircraft observations from CLARE'98. Quart. J. Roy. Meteor. Soc.,129,2089-2116.
    Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis,1999:Cloud resolving simulations of Arctic stratus. Part Ⅱ:Transition-season clouds. Atmos. Res.,51,45-75.
    Hildebrand, P. H., and R. S. Sekhon,1974:Objective determination of the noise level in Doppler spectra. J. Appl. Meteor.,13,808-811.
    Kollias, P., R. Lhermitte, and A. Savtchenko,2001:Radar observations of updrafts, downdrafts, and turbulence in fairweather cumuli. J. Atmos. Sci.,58,1750-1766.
    Kollias, P.,2011:AMS Short Course on Millimeter Wavelength Radars. McGill,34.
    Luke, E., and P. Kollias,2013:Separating Cloud and Drizzle Radar Moments during Precipitation Onset using Doppler Spectra. J. Atmos. Oceanic Technol. doi:10.1175/JTECH-D-11-00195.1, in press.
    Rauber, R. M., and A. Tokay,1991:An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci.,48,1005-1023.
    Rogers, R. R., and M. K. Yau,1988:A Short Course in Cloud Physics. Pergamon Press,293.
    Sekhon, R. S. and R. C. Srivastava,1971:Doppler radar observations of drop-size distribution in a thunderstorm. J. Atmos. Sci.,28,983-994.
    Shupe, M. D., P. Kollias, M. Poellot, E. Eloranta,2004:Deriving Mixed-Phase Cloud Properties from Doppler Radar Spectra. J. Atmos. Oceanic. Tech.,65,1304-1322.
    Wang, Z., K. Sassen, D. N. Whiteman, and B. B. Demoz (2004), Studying altocumulus with ice virga using ground-based active and passive remote sensors, J. Appl. Meteorol.,43,449-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700