用户名: 密码: 验证码:
柔性基层沥青路面Top-Down开裂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对柔性基层沥青路面Top-Down裂缝,结合我国柔性基层沥青路面的工程实践,对轮胎-路面交互作用下的柔性基层沥青路面结构进行力学分析,研究其受力状况和温度状况,揭示沥青路面Top-Down开裂机理,探讨减缓Top-Down开裂的措施与方法。
     研究子午线轮胎的构造和传力机制,根据实际轮胎-路面接触应力,将接触区域简化为五个长度和宽度一定的矩形区域,结合子午线轮胎“泊松效应”,将轮胎-路面接触应力简化为垂直、横向和纵向接触应力,采用有限元软件ABAQUS,建立三维非线性轮胎-路面三向接触应力有限元模型,计算及分析表明:柔性基层沥青路面的受力机制导致其容易产生Top-Down开裂;面层厚度大于15cm,面层基层模量比大于4的路面结构,有助于减缓Top-Down开裂;轮组数量多、负载小、胎压介于0.6-0.8MPa的行车荷载,可以减缓Top-Down开裂的发生和发展;层间接触状况良好的路面结构,整体受力,有利于力的传递,可降低Top-Down开裂的几率,并运用数理统计方法,分析不同因素对Top-Down开裂影响的显著性。
     以柔性基层沥青路面的横断面作为研究对象,采用ABAQUS有限元程序,建立沥青面层预含不同深度Top-Down初始裂缝的二维有限元模型,研究不同降温幅度对沥青面层的力学影响,结果表明:轮胎-路面反复作用后存在微裂纹的沥青路面,在急剧的降温及升温循环过程中可能导致面层产生Top-Down裂缝;在降温过程中,路面结构不同深度处,路表应力最大,随着深度的增加,Mises应力和拉应力逐渐减小;初始裂缝深度越长,降温过程中应力强度因子KI越大,也就越容易开裂;随着降温幅度的增加,拉应力、应力强度因子KI均迅速增加,Top-Down裂缝的发展速度也就越快。
     综合轮胎-路面接触应力、温度、路面结构和材料特性,可以得出:荷载型裂缝开裂初期呈现V字形,裂缝竖直向下发展,这是路表拉应力反复作用下的第一阶段I型张开型疲劳裂缝。第二阶段,裂缝发展至路表下5-10cm左右后与竖直方向成一定角度斜向发展,这是由于剪应力随着深度的增加逐渐增加,在路表下5-10cm处出现最大值,这时剪应力成为Top-Down发展的主要诱因,所以第二阶段为II型剪切型裂缝;温度应力引发的是I型张开型裂缝。
Based on the structure of asphalt pavement with flexible base in china, the mechanical model of asphalt pavement structure influenced on tire-asphalt pavement interaction was set up to specify the mechanical response of Top-Down cracking and search for measures in prevention and cure Top-Down cracks.
     Based on the real tire-asphalt pavement contact stress, the structure and load transfer mechanisms of radial tire, tire- asphalt pavement contact area was partition to five rectangles. Based on the Poisson effect of the radial tire treads structure, tire- asphalt pavement contact stress was predigested to the vertical contact stress, the transverse contact stress(perpendicular to the tire traveling direction), the longitudinal contact stress(parallel to the tire traveling direction). Three-dimensional nonlinear models were set up in ABAQUS to simulate tire-asphalt interaction. The numerical analysis results show that the mechanical response result in Top-Down cracking in the structure of asphalt pavement with flexible base; If AC surface thickness exceed 15cm, the modulus ratios between AC surface and base less than 4, the pavement structure is beneficial to prevent Top-Down cracking; Small wheel load, more wheel number, inflation pressure between 0.6-0.8MPa and continuous interlayer Contact Conditions are advantage factors for prevention of Top-Down cracks. An exploration of relation between above parameters and Top-Down cracking with the mathematical statistics method is analyzed.
     Two-dimensional nonlinear models were set up in ABAQUS to simulate Top-Down low-temperature cracking of asphalt pavement with flexible base, Study on Top-Down crack fracture length and temperature drop range, The numerical analysis results show that after cooling process, asphalt pavement with microcracks cause Top-Down cracking; In cooling process, tensile stress at surface is the biggest in pavement; Mises stress and tensile stress gradually reduce with the depth increased. The longer the initial crack depth, the greater the stress intensity factor KI in cooling process, the easier Top-Down cracking. With increase cooling rate, stress intensity factor KI are rapidly increasing, Top-Down cracks develop will sooner.
     Based on tire-pavement contact stress, temperature, pavement structure and material properties, the numerical analysis results show that the initial of load-caused Top-Down cracks show V-Shape; Top-Down cracks which develop along Vertical direction, is fatigue cracks in the first step; In the second step, when Top-Down crack developed under the surface about 5-10cm, the direction of Top-Down cracks have a certain oblique angle with Vertical direction. At the depth of 5-10cm, Shear stress which achieve the greatest, turn into the major incentive; temperature crack is I-type crack.
引文
[1]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [2] Myers.L.A、Roque.R、B.E.Ruth.Mechanisms of Suface-Initiated Longitudinal Wheel Path Crack in High-Type Bituminous Pavements[J] Proceedings of the Association of Asphalt Paving Technologists, Volume67, 1998, 401-432
    [3] Molenaar.A.A.A.Fatigue and Reflective Cracking due toTraffic (With Discussion)[J]Proceedings of the Association of Asphalt Paving Technologists,Volume53,1984,440-474
    [4] Gerritsen.A.H,et al[J]Prediction and Prevention of Surface Cracking in Asphaltic Pavements, Proceeding of the 6th International Conference on Asphalt Pavement,Ann Arbor,1987,378-391
    [5] Uhlmeyer, J. S., Willoughby, K., Pierce, L. M. and Mahoney, J. P.[C]TOP-DOWN CRACKING IN WASHINGTON STATE ASPHALT CONCRETE WEARING COURSES, In: 79th Transportation Research Board Annual Meeting, Washington D.C.
    [6]孙立军等.沥青路面结构行为理论[M].北京:人民交通出版社,2005:98
    [7] Clark.S,M. Mechanics of Pneumatic Tires[M],U.S.Department of Transportation,National Highway Traffic Safety Administration,Washington,D.C,1981
    [8]沈金安、李福普、陈景.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交通出版社,2004:1-4
    [9]易昕.三维有限元方法分析沥青路面自上而下裂缝的扩展[D].[硕士论文] 2006
    [10] Tunwin Svasdisant.ANALYSES OF TOP-DOWN CRACKING IN RUBBLIZED AND FLEXIBLE PAVEMENT [D].Michigan Stste University 2003
    [11] Chadi Said El Mohtar. The effect of different axle configurations on the fatigue life of an asphalt concrete mixture [D] Michigan Stste University 2003
    [12] I.L.Al-Qadi、M.Elseifi、P.J.Yoo. Pavement Damage Due To Different Tires and Vehicle Configuratio [R].Michelin Americas Research and Development Corporation
    [13]徐欧明、郝培文.厚沥青路面Top-Down裂缝分析及对路面设计的启示[J].中外公路,2005 10(5)
    [14]杨为民.子午线轮胎的三维非线性有限元分析和性能仿真的研究[D].[博士论文] 1998
    [15]程钢.子午线轮胎力学行为仿真及试验方法研究[D].[博士论文] 2004
    [16]任旭春.轮胎有限元分析及优化中的若干问题研究[D].[博士论文] 2005
    [17]谢水友、郑传超.轮胎接触压力对沥青路面结构的影响[J].长安大学学报(自然科学版) 2004 1(24):12-16
    [18] M de Beer、C Fisher. Contact stresses of pneumatic tires measured with the Vehicle-Road Surface Pressure Transducer Array (VRSPTA) system for the University of California at Berkeley (UCB) and the Nevada Automotive Test Center (NATC) [R] TRB66.1997 7
    [19] Tony Wilson. Contact Pressure Distribution of All-Terrain Crane Tyres[R]. National Road Transport Commission, November 2003
    [20] Dae-Wook Park、Amy Epps Martin、A.M.ASCE、and Eyad Masad、A.M.ASCE. Effects of Nonuniform Tire Contact Stresseson Pavement Response [J] JOURNAL OF TRANSPORTATION ENGINEERING , ASCE , NOVEMBER 2005
    [21] H. H¨olscher , M. Tewes, N. Botkin, M. L¨ohndorf , K.-H. Ho_mann , and E. Quandt. Modeling of Pneumatic Tires by a Finite Element Model for the Development a Tire Friction Remote Sensor[J] Preprint submitted to Computers and Structures, 28 October 2004
    [22]黄晓明、高建立.不同路面结构的重载敏感性分析[J].公路交通科技2004,12(24)
    [23]高英、曹荣吉.超载交通荷载作用下沥青路面的应力分析[J].公路交通科技2001,12(18)
    [24]刘军立、王秉刚.动荷载下路面响应理论研究进展[J].公路交通科技.2002,7
    [25]魏翠玲、王复明、周晶.动荷载作用下的路表响应分析[J].工程力学.2001,8(18)
    [26]王金昌、陈页开.ABAQUS在土木工程中的应用[M].浙江大学出版社,2006,11
    [27]庄茁.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [28]胡小弟,孙立军.不同车型非均布轮载作用力对沥青路面结构应力影响的三维有限元分析[J].公路交通科技,2003,20(1):1-5
    [29]张文献、刘学岩、王述红.沥青混凝土局部应变模型及其数值分析[J].东北大学学报(自然科学版),2005,26(4):389-392
    [30]薛守义.弹塑性力学[M].北京:中国建材业出版社,2004
    [31] Xue Li.Investigation of the Fracture Resistance of Asphalt Mixtures at Low Temperatures with a Semi Circular Bend(SCB) Test[D].Minneapolis,University Of Minnesota,2005.
    [32]杨群、黄晓明.基层模量对路面性能的影响分析[J].东南大学学报(自然科学版),2001,31(4):81-83
    [33]毛成、邱延峻.结构层模量对路面结构力学响应得三维数值分析[J].交通运输工程学报,2003,3(1):35-39
    [34]倪富健、程万里、战高峰、胡国盛.轴限对路面厚度设计的影响[J].公路交通科技,2000,17(1)
    [35]朱向荣、王金昌.超载对公路复合地基工作性状影响的力学分析[J].公路交通科技,2004,21(2):22-25
    [36]王金昌、朱向荣.低温下沥青混凝土道路温度应力的新评价[J].公路,2004,2(2):60-63
    [37]吴赣昌.半刚性路面的温度应力分析[M].科学出版社,1995.
    [38]吴赣昌.层状路面结构温度应力分析[J].中国公路学报,1993,6(4)
    [39]吴赣昌、张淦生.沥青路面温缩应力强度分析[J].中国公路学报,1996,1(3).
    [40]黄志义、王金昌、朱向荣.动荷载下含反射裂缝沥青路面结构粘弹性分析[J].浙江大学学报(工学版),2007,41(1):114-119
    [41]郑健龙、周志刚、张起森.沥青路面抗裂设计原理与方法[M].北京:人民交通出版社,2003.
    [42]王金昌、赵颖华.含反射裂缝沥青路面的疲劳变温损伤分析[J].岩土工程学报,2001,23(6):669-671
    [43]王金昌、朱向荣.面层与基层建摩擦系数对应力强度因子影响的研究[J].岩土力学与工程学报,2005,24(15):2757-2764
    [44]顾凯锋、黄靖波、王金昌.温度变化对沥青混凝土路面裂缝的影响[J].中外公路,2004,24(5):41-44
    [45]林志宪.应用解析方法评估沥青混凝土之力学机制[D].[博士学问论文]国立成功大学,2003
    [46] Donna Harmelink, Tim Aschenbrener, Extent of top-down cracking in colorado[r] Colorado department of transportation research branch,2003,6
    [47] Leslie Ann Myers,Reynaldo Roque. Top-Down Crack Propagation in Bituminous Pavements and Implications For Pavement Management [J].AAPT,2008,3
    [48] Tunwin Svasdisant,Michael Schorsch,Gilbert Y. Baladi. Mechanistic analysis of top-down cracks in asphalt pavements [R]. Michigan State University,2001,7
    [49] Jeff S. Uhlmeyer, Kim Willoughby, Linda M. Pierce, Joe P. Mahoney. Top-down cracking in washington state asphalt concrete wearing courses[R]. 2000 TRB Annual Meeting,1997,7
    [50] Jill M. Holewinski, See-Chew Soon, Andrew Drescher, Henryk Stolarski. Investigation of Factors Related to Surface-Initiated Cracks in Flexible Pavements[R]. Minnesota Local Road Research Board,2003,7
    [51] L.B. Wang, L.A. Myers, L.N. Mohammad, Y.R Fu. A Micromechanics Study on Top-Down Cracking[A]. 82nd Transportation Research Board Annual Meeting [C]. Washington, D.C. January 12-16, 2003
    [52] Chieh-Min Chang, Gilbert Y. Baladi, Effects of Segregation on the Initiation and Propagation of Top-Down Cracks[A]. 82nd Transportation Research Board Annual Meeting [C]. Washington, D.C.January 12-16, 2003
    [53]李峰、孙立军.沥青路面Top-Down开裂成因的有限元分析[J].公路交通科技,2006,23(6):1-4
    [54]敖道朝.柔性基层沥青路面结构在渝湛高速公路中的应用[J].公路,2007,7(7)
    [55]李福普、陈景、严二虎.新型沥青路面结构在我国的应用研究[J].公路交通科技,2006,23(3):10-14
    [56]朱向荣、王金昌.ABAQUS软件中部分土模型简介及其工程应用[J].岩土力学,2004,25卷增刊
    [57]刘红坡.层间接触对半刚性沥青路面力学响应的影响[D][博士学位论文]西南交通大学,2006,5
    [58]戴震.沥青路面结构受力机理分析[D][硕士学位论文]东南大学,2004,4
    [59]沈金安沥青及沥青混合料路用性能[M].人民交通出版社,2001.1
    [60]陈平雁等.SPSS13.0统计软件应用教程[M].人民卫生出版社,2005,9
    [61]王慰军.基于ABAQUS的裂纹扩展仿真软件及应用[D][硕士学位论文]浙江大学,2006,5
    [62]陈玉.沥青路面低温缩裂分析[D][硕士学位论文]长安大学,2006,5
    [63]庄茁.ABAQUS非线性有限元分析与实例[M]北京:科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700