用户名: 密码: 验证码:
中高强度钢框架梁柱组合节点抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中高强度钢材逐渐应用在钢框架结构中,钢材强度的提高对梁柱组合节点抗震性能的影响成为研究者关注的焦点。在美国北岭地震和日本阪神地震中,钢框架梁柱节点的破坏大多是由于梁下翼缘与钢柱翼缘的对接焊缝断裂引起,而混凝土楼板的组合作用是该处发生应力集中很重要的原因。因此,在钢材强度提高后,组合节点承载力、刚度和延性以及混凝土楼板组合作用的具体变化需要进行相关的研究,但目前研究者对其受力性能和破坏机理的认识还很不足。为此,分析中高强度钢材梁柱组合节点在循环荷载作用下的受力特性具有重要的理论意义和工程实际应用价值。
     本文是在国家自然科学基金(50578083&50708051)的资助下完成的,主要研究了中高强度梁柱组合节点抗震性能,论文完成的工作及成果有:
     使用通用有限元软件ANSYS,建立了栓焊连接组合节点数值模型,对模型进行了弹塑性分析,研究了钢材强度、混凝土标号、楼板配筋率、楼板厚度等参数对节点承载力的影响。
     取混凝土楼板配筋率和加载方式为变量,进行了四个中高强度钢材组合节点的低周往复荷载破坏试验,分析了它们在循环荷载作用下的承载力、塑性变形能力、应力分布和破坏模式,总结了它们的延性特征和抗震性能,并与对应的普通钢材组合节点进行了比较,证明中高强度钢材组合节点可以在不降低延性的基础上显著提高节点承载力。
     通过对节点滞回曲线包络线进行分段线性模拟,建立了节点在循环荷载作用下的三线型恢复力模型。根据四个节点表现出的破坏模式,借鉴“组件法”,综合节点各组件计算方法得出节点承载力和初始刚度设计公式,全面考虑了包括钢梁柱屈曲、混凝土局部受压等因素的影响。与现有试验数据的对比说明,该方法可以比较准确地计算节点的抗弯承载力和初始转动刚度,总体精度可以达到工程设计的要求。
     本文所得数据、方法和结论均可为工程设计提供参考依据,也为在钢框架中进一步采用更高强度的钢材奠定了试验基础。
With the gradual application of middle-high strength steel in the steel frame structure, the improvement of the steel strength will has evidental impact on the seismic performance of the beam-to-column composite connection, which becomes the focus of the present researches. In the Northridge earthquake in USA and Kobe earthquake in Japan, it was found that most of the connection failures were due to the fracture at the weld between the bottom flange of the beam and the column flange, and the slab action is an innegligible reason of the stress concentration there. Thus, because of the increase of the steel strength, relevant researches about the specific change of the bearing capacity, stiffness, ductility and the slab effect of the connection in the steel frame structure are needed. But now the researchers have inadequate knowledge about its bearing capacity and failure mechanism. So the study on the performance of the beam-to-column composite connection with middle-high strength steel is significant for both theory and engineering practice.
     This dissertation, supported by the National Natural Science Foundation of China (No. 50578083 & 50708051), is concerned with the bearing capacity and seismic performance of the beam-to-column composite connection with middle-high strength steel. The main research and achievements of this thesis are as follows.
     In the help of the general-purpose finite element software ANSYS, the numerical model of the bolt-welded composite connection is founded and Elasto-plastic analyses are conducted. Using the models, some parameters such as the steel strength, the concrete grade, reinforcement ratio of the concrete slab and the slab thickness are analyzed to confirm their effect on the bearing capacity of the connection.
     Considering the impact of the reinforcement ratio and the loading mode, four middle-high strength specimens are tested under low-cycle reciprocal load. Their behaviors on the loading capacity, plastic deformation, stress distribution and failure mode are investigated, and the ductile characters and seismic performance are summarized, which is compared with corresponding ordinary steel composite connections. The results prove that the middle-high strength steel can improve the bearing strength of the connection without decreasing the ductility.
     By segmental linear fit method, the envelopes of the hysteretic curve are processed to derive the trilinear restoring force model of the connection. According to the failure modes of the four connections,“components method”is used for reference to combine the contribution of various components, and the design formula of connection strength and initial stiffness are derived. In this phase, the buckling of the steel beam and column, the local compression of the concrete are fully taken into account. The comparison with the available experiment data shows that the method can calculate the bearing capacity and the initial stiffness more accurately, and the overall accuracy can meet the requirements of the engineering design.
     The data, conclusion and method obtained from this paper can provide reference for the practice, and laid an experimental foundation for the further application of higher strength steel in the steel frame structures.
引文
[1] The US-Japan Seminar Report. Organization and Summary of Discussions at the US-Japan Seminar on Innovations in Stability Concepts and Methods for Seismic Design in Structural Steel. Engineering Structures, 1998, 20(4-6): 242~248
    [2] CEN. prEN 1994-1-1. Eurocode4: Design of Composite Steel and Concrete Structures, Part1.1: General Rules and Rules of Buildings. European Committee for Standardisation, 2004
    [3] Nethercot DA, Li TQ, Ahmed B. Unified Classification System for Beam-to-Column Connection. Journal of Constructional Steel Research, 1998,45(1):39~65.
    [4]中华人民共和国建设部,国家质量监督检验检疫总局. GB50017-2003.中华人民共和国国家标准-钢结构设计规范.北京:中国计划出版社,2003-12-01
    [5] Uy B. High Strength Steel-Concrete Composite Columns: Applications and Design. In: Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium, NewYork:2005,1~12
    [6] AISC. ANSI/AISC 341-02. Seismic Provisions for Structural Steel Buildings. Chicago, Illinois, USA: American Institute of Steel Construction, INC, 2002.05
    [7]苏迪.考虑组合效应的钢结构梁柱节点抗震性能研究:[硕士学位论文].北京:清华大学土木工程系,2005
    [8] Sim?es da Silva L, Sim?es Rui D, Cruz Paulo JS. Experimental Behaviour of End-plate Beam-to-column Composite Joints. Engineering Structures, 2001, 23(11):1383~1409.
    [9]孙飞飞,李国强,胡凌华.梁柱组合节点的试验研究新进展.建筑钢结构进展,2004,6(2):37~42.
    [10] Xiao Y, Choo BS, Nethercot DA. Composite Connections in Steel and Concrete—I. Experimental Behaviour of Composite Beam–column Connections. Journal of Constructional Steel Research, 1994, 31(1):3~30.
    [11] Anderson D, Najafi AA. Performance of Composite Connections: Major Axis End-plate Joints. Journal of Constructional Steel Research, 1994,31(1):31~57.
    [12] Li TQ, Nethercot DA, Choo BS. Behaviour of Flush End-plate Composite Connections with Unbalanced Moment and Variable Shear/Moment Ratios—I. Experimental Behaviour. Journal of Constructional Steel Research, 1996, 38(2):125~164.
    [13] Richard Liew JY, Teo TH, Shanmugam NE, Yu CH. Testing of Steel–concrete Composite Connections and Appraisal of Results, Journal of Constructional Steel Research,2000, 56 (2):117~150.
    [14] Calado L, Sim?es da Silva L, Sim?es Rui D. Cyclic Behavior of Steel and Composite Beam-to-column Joints. 2000:159~169.
    [15] Shanmugam NE, Ng YH, Richard Liew JY. Behaviour of Composite Haunched Beam Connection. Engineering Structures, 2002, 24:1451~1463.
    [16] Kim YJ, Oh SH, Moon TS. Seismic Behavior and Retrofit of Steel Moment Connections Considering Slab Effects. Engineering Structures, 2004, 26(13):1993~2005.
    [17] Richard Liew JY, Teo TH, Shanmugam NE. Composite Joints Subject to Reversal of Loading–Part 1:Experimental Study, Journal of Constructional Steel Research, 2004, 60(2):221~246
    [18]郑德胜.平齐式端板连接组合节点抗震性能的试验研究:[硕士学位论文].南京:南京工业大学土木工程系, 2005
    [19] Bursi OS, Sun FF, Postal S. Non-linear Analysis of Steel-concrete Composite Frames with Full and Partial Shear Connection Subjected to Seismic Loads. Journal of Constructional Steel Research, 2005,61(1):67~92.
    [20] Chen SJ, Chao YC. Effect of Composite Action on Seismic Performance of Steel Moment Connections with Reduced Beam Sections. Journal of Constructional Steel Research, 2001,57:417~434.
    [21] Loh HY, Uy B, Bradford MA. The Effects of Partial Shear Connection in Composite Flush End Plate Joints Part I—Experimental Study. Journal of Constructional Steel Research, 2006,62(4):378~390.
    [22] Fang LX, Chan SL, Wong YL. Numerical Analysis of Composite Frames with Partial Shear–stud Interaction by one Element per Member. Engineering Structures, 2000, 22: 1285~1300
    [23]宗周红,葛继平,杨强跃.反复荷载作用下方钢管混凝土柱与钢梁连接节点非线性有限元分析.建筑结构学报,2006,27(2):75~81.
    [24] Uy B. Strength of Short Concrete Filled High Strength Steel Box Columns. Journal of Structural Steel Research, 2001, 57(2): 113~134
    [25]颜东煌,刘小燕等.桥用高强混凝土的强度特性与本构关系研究.长沙交通学院学报,2004,20(4):38~44.
    [26]邱文亮,张哲,黄才良.钢-混凝土组合梁双层梁有限元分析方法.大连理工大学学报,2003,43(1):101~103.
    [27] Kattner M, Crisinel M. Finite Element Modelling of Semi-rigid Composite Joints. Engineering Structures, 2000, 78: 341~353.
    [28]江见鲸,陆新征,叶列平.混凝土结构有限元分析.北京:清华大学出版社,2005
    [29] Hajjar JF, Leon RT, Gustafson MA, Shield CK. Seismic Response of Composite Moment-Resisting Connections II: Behavior. Journal of Structural Engineering, 1998, 124(8): 877~885
    [30] Changbin Joh, Wai-Fah Chen. Seismic Behavior of Steel Moment Connections with Composite Slab. International Journal of Steel Structures, 2001, 1(3): 175~183
    [31] CEN:prEN1993-1-8. Eurocode 3: Design of Steel Structures, Part 1.8: Design of joints. European Committee for Standardisation, 2002
    [32] Leon RT. Semi-rigid Composite Connections. The Structural Engineer, 1992, 70(6): 21~25
    [33] Li TQ, Nethercot DA, Choo BS. Behaviour of Flush End-plate Composite Connections with Unbalanced Moment and Variable Shear/Moment Ratios—Ⅱ. Prediction of Moment Capacity. Journal of Constructional Steel Research, 1996, 38(2):125~164.
    [34] Xiao Y, Choo BS, Nethercot DA. Composite Connections in Steel and Concrete—Ⅱ. Moment Capacity of End Plate Bean to Column Connections. Journal of Constructional Steel Research, 1996, 37(1):63~90.
    [35]何天森,李国强,周宏宇,肖勇.钢结构建筑组合节点的分析模型.钢结构,2003,18(4):25~28.
    [36]胡夏闽,高华杰.组合结构在欧洲的新进展.工业建筑,2002, 32(6):72~73.
    [37] Loh HY, Uy B, Bradford MA. The Effects of Partial Shear Connection in Composite Flush End Plate Joints PartⅡ—Analytical Study and Design Appraisal. Journal of Constructional Steel Research, 2006,62(4):391~412.
    [38] Ahmed B, Nethercot DA. Prediction of Initial Stiffness and Available Rotation Capacity of Major Axis Composite Flush Endplate Connections. Journal of Constructional Steel Research, 1997,41(1):31~60.
    [39] Kemp AR, Nethercot DA. Required and Available Rotations in Continuous Composite Beams with Semi-rigid Connections. Journal of Constructional Steel Research, 2001,57(4):375~400.
    [40] Stelmack TW, Marley MJ, Gerstle KH. Analysis and Tests of Flexibly Connected Steel Frames, ASCE, ST7,1986.
    [41]李国强,沈祖炎.考虑节点剪切变形的钢框架弹塑性地震反应分析.同济大学学报,1990,(1).
    [42]赵大伟.高层钢结构节点抗震性能分析:[硕士学位论文].北京:清华大学土木工程系, 2000
    [43]李兆凡.钢结构梁柱节点抗震性能研究:[硕士学位论文].北京:清华大学土木工程系,2002
    [44] Swanson Analysis Systems. Basic Analysis Procedure Guide. SAS Inc.: Canonsburg USA, 1999
    [45] Swanson Analysis Systems, Modeling and Meshing Guide. SAS Inc.: Canonsburg USA, 1999
    [46]中华人民共和国建设部,国家质量监督检验检疫总局. GB50011-2001.中华人民共和国国家标准-建筑抗震设计规范.北京:中国建筑工业出版社,2001-7-20
    [47]中华人民共和国建设部,国家质量监督检验检疫总局. GB50010-2002.中华人民共和国国家标准-混凝土结构设计规范.北京:中国计划出版社,2002-04-01
    [48] Swanson Analysis Systems, Structural Analysis Guide. SAS Inc.: Canonsburg USA, 1999.
    [49]石永久,苏迪,王元清.混凝土楼板对钢框架梁柱节点抗震性能影响的试验研究.土木工程学报,2006,39(9):26~31.
    [50]叶列平.混凝土结构[M].北京:清华大学出版社,2002.
    [51]苏迪,石永久,王元清.组合效应对钢节点抗震性能的影响因素分析.青岛理工大学学报,2006,27(1):36-41
    [52]中华人民共和国建设部. JGJ 101-96.中华人民共和国行业标准-建筑抗震试验方法规程.北京:中国建筑工业出版社,1997-04-01
    [53]中华人民共和国国家质量技术监督局. GB/T2975-1998.中华人民共和国国家标准-钢及钢产品力学性能试验取样位置及试样制备.北京,1999-08-01
    [54]中华人民共和国国家质量监督检验检疫总局. GB/T228-2002.中华人民共和国国家标准-金属材料室温拉伸试验方法.北京,2002-07-01
    [55]中华人民共和国建设部,国家质量监督检验检疫总局. GB/T 50081-2002.中华人民共和国国家标准-普通混凝土力学性能试验方法标准.北京:中国建筑工业出版社,2003-06-01
    [56]宗周红,林于东,林杰.矩形钢管混凝土柱与钢梁半刚性节点的抗震性能试验研究.建筑结构学报,2004,25(6):29-36.
    [57]聂建国,刘明,叶列平.钢-混凝土组合结构,北京:中国建筑工业出版社, 2005.3
    [58]王娴明.建筑结构试验.北京:清华大学出版社,1988.
    [59] Meinheit DF, Jirsa JO. Shear strength of RC Beam-column Connections, Journal of Structural Engineering, Div.ASCE, 107, 1981:2227-2244.
    [60]唐九如.钢筋混凝土框架节点抗震.南京:东南大学出版社,1989,279~316
    [61]聂建国,秦凯,刘嵘.方钢管混凝土柱与钢-混凝土组合梁连接的内隔板式节点的抗震性能试验研究.建筑结构学报,2006,27(4):1-9.
    [62]中国工程建设标准化协会标准. CECS 43:92.钢筋混凝土装配整体式框架节点与连接设计规程.北京:北京市建筑设计研究院,1992-11-09.
    [63] Ahmed B, Nethercot DA. Effect of High Shear on the Moment Capacity of Composite Cruciform Endplate Connections. Journal of Constructional Steel Research, 1996,40(1):129~163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700