用户名: 密码: 验证码:
钢筋混凝土深梁的滞回性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢框架、钢框架内填剪力墙反映了框架结构刚度变化的两个端点值,刚度增幅是突变性质的。钢框架内填钢筋混凝土深梁可以满足两个端点刚度值之间的要求,实现了宽范围的刚度渐变调幅。钢筋混凝土深梁在框架结构中的位置与剪力墙相同,通过改变深梁截面宽度,可以得到不同的抗侧移刚度,满足各种刚度要求,加之采用不同钢筋级别、混凝土强度和配筋率和高宽比,可以获得不同的极限承载力、延性和耗能能力。
     灵活运用钢筋混凝土深梁作为结构的抗侧力构件可以改善钢框架内填构件抗侧力体系,且钢筋混凝土深梁采用装配式可以克服钢筋混凝土剪力墙震后不易修复的缺点。预制的钢筋混凝土深梁通过高强螺栓与钢框架上下两根钢梁刚性连接,使结构具有良好的抗震性能。
     本文分析了国内外深梁的研究现状,介绍了钢筋混凝土深梁的基本构成和工作机理,在此基础上,运用ANSYS有限元分析软件,综合考虑各种非线性因素,对钢筋混凝土深梁模型进行了往复荷载作用下有限元模拟,得出深梁高跨比变化、深梁厚度变化、混凝土强度变化,钢筋混凝土深梁水平配筋率、竖向配筋率的变化对钢筋混凝土深梁滞回性能的影响,得出了合理的参数范围。
Steel frame and steel frame filled with shear wall reflect two endpoints of the changes of the structural stiffness, and the increase of stiffness is mutation. Steel frame filled with steel– concrete composite deep beams can meet the requirements of two endpoints and can achieve a wide range of stiffness graded AM. Composite deep beams have the same placement with shear walls in frame structure. By changing width of the deep beam, we could have different resistance to lateral displacement stiffness to meet all kinds of stiffness requirements. When the steel class, concrete strength, reinforced rate and depth-width ratio is different, we could obtain different ultimate bearing capacity, ductility and energy dissipation capacity.
     Nimbly using the reinforced concrete deep beam as the structure anti-lateral force component that May improve steel frame syetem filled with the component ,While steel– concrete deep beams uses the assembly type, it can make up for shortage of the steel– concrete can’t repair after earthquake. Precast steel– concrete composite deep beams is connected rigidly through high strength friction grip bolt with up-down steel beam of steel frame to enable the structure to have the good earthquake resistance performance.
     analyzing the domestic and foreign deep beam research present situation, introduced the reinforced concrete deep beam's basic constitution and the work mechanism, based on this, This article to analyse the steel– concrete deep beams models under reciprocation load function using finite element software ANSYS. Synthesisly evaluation account all kinds of non– linear factors, and thougth the finite element simulate we can get influence of these variation that change of depth-span ratio、thickness、concrete strength、level reinforced rate and vertical reinforced rate of steel to hysteretic behavior of steel– concrete composite deep beams. obtaining the reasonable parameter area.
引文
[1]陈富生,邱国桦,范重.高层建筑钢结构设计(第二版) [M].中国建筑工业出版社.2004.7:102
    [2]徐永基,刘大海,钟锡根等.高层建筑钢结构设计[M].陕西科学技术出版社. 1998.10
    [3]李国强.高层建筑钢-混凝土混合结构分区耦合分析模型及开裂层位移参数分析[J].建筑结构.2002, 32(2):21~25
    [4]郭德发,梁昔明,王芳.钢筋混凝土深梁非线性有限元分析.西安交通大学学报,1997,31(6):84-88
    [5]龚克.单广义位移的深梁理论和中厚板理论.应用数学和力学,2000,21(9):984-990
    [6]赵军,高丹盈,朱海堂.钢筋钢纤维混凝土深梁受剪承载力塑性分析.郑州大学学报(理学版),2004,36(3):83-86
    [7]夏桂云,曾庆元,李传习.建立Timoshenko深梁单元的新方法.交通运输工程学报,2004, 4(2):27-32
    [8]黄侨,张连振,马桂军.基于塑性理论的钢筋砼简支深梁的抗剪强度研究(一).工程力学,2005,22(4):167-170,136
    [9] GB50010-2002,混凝土结构设计规范[S].北京:中国计划出版社,2004:57
    [10] Kahn LF, Hanson RD. Infilled walls for earthquake strengthening[J]. Journal of Structural Engineering, 1979, 105(ST4): 283~296
    [11] Kabele P, Takeuchi S, Inaba K et al. Performance of engineered cementitious composites in repair and retrofit: analytical estimates[A]. Reinhardt HW, Namaan A, Editors. High Perform -ance Fiber Reinforced Composites (HPFRCC 3) [C]. RILEM, 1999: 617~627
    [12] Horii H, Kabele P, Takeuchi S et al. On the prediction method for the structural performance of repaired/retrofitted structures[A]. Mihashi H, Rokugo K, Editors. Fracture Mechanics in Concrete Structures: Proceedings of FRAMCOS-3 1998; Volumn 3: 17~39
    [13] Kanda T, Watanabe S, Li VC. Application of pseudo strain hardening cementitious composit- es to shear resistant structural elements[A]. Mihashi H, Rokugo K, Editors. Fracture Mechan -ics in Concrete Structures: Proceedings of FRAMCOS-3 1998; Volumn 3: 1477~1490
    [14] Kesner KE. Development of seismic strengthening and retrofit strategies for critical facilities using engineered cementitious composite materials[D]. PhD Thesis. Cornell University, Ithaca, NY, 2003
    [15]陈亦,何勇毅,蒋欢军.剪力墙结构计算模型分析[J].四川建筑科学研究,2001,27(1):1-2.
    [16] Kabeyasawa, Shioara T. H. ,and Otani S. U. S. Japan Cooperative Research on R/C Full-scale Building Test-Part 5:Discussion on Dynamic Response System[A]. Procs. 8th WCEE[C], 1984, Vol. 6. pp. 627-634
    [17] Volcano A. , Bertero V. V. , and ColottiV. Analytical Modeling of R/C Structural Walls[A]. Procs. 9th WCEE[C], 1988,VI, pp. 41-46
    [18]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报,2004,25(5):40
    [19]汪梦甫,周锡元.钢筋混凝土单元非线性分析模型及其应用[J].力学季刊,2002,23(1):2.
    [20] Milev J. I. Two Dimensional Analytical Model of Reinforced Concrete Shear Walls[A]. Proc. 11th WCEE[C], 1996, Elsevier Science Ltd. , Paper No. 320
    [21]孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元[J].地震工程与工程振动, 2001, 21(2): 78-83.
    [22]蒋欢军,吕西林.用一种墙体单元模型分析剪力墙结构[J].地震工程与工程振动,1998,18(3):42-46
    [23] Vulcano A. , Bertero V. V. , and ColottiV. . Analytical Modeling of R/C Structural Walls[A]. Procs 9th WCEE[C], 1988,Vol. VI, pp. 41-46
    [24] Shiral N. , Sato T. . Inelastic Analysis of Reinforced Concrete Shear Wall Structures-Material Modeling of Reinforced Concrete[A]. IABSE Collo, uium, Delft, 1981, pp. 197-210
    [25]朱伯龙,董振祥.钢筋混凝土非线性分析[M].同济大学出版社, 1985. 11-17
    [26] SaatciogluM. , Takayanagi T. , and Derecho A. T. . Dynamic Response of Reinforced Concrete Wall Systems[A]. Proc. 7th WCEE[C], 1980, Vol. 5, pp. 49-56
    [27] ColottiV. . Shear Behavior of RC Structural Walls[J]. Journal of Structural Engineering, 1993, No. 3, pp. 728-746
    [28] Vecchio F. J. , Co llinsM. P. . The Modified Compression-field Theory for Reinforced Concrete Elements Subjected to Shear[J]. AC I Journal, 1986, No. 2, pp. 219-231
    [29]过镇海,时旭东.钢筋混凝土原理分析[M].北京:清华大学出版社,2003. 352-353
    [30]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2002
    [31]张洪武,关振群,李云鹏,等.有限元分析与CAE技术基础[M].北京:清华大学出版社,2004
    [32]李宽.有限元素法基础[M].山东:石油大学出版社,1996
    [33]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997
    [34]赵均海,王敏强,魏雪英.高等有限元[M].武汉:武汉理工大学出版社,2004
    [35]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1990
    [36]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1985
    [37]滕智明,邹离湘.反复荷载下钢筋混凝土构件非线性有限元分析[M].土木工程学报,1996,29(2):19-27
    [38]康清梁.钢筋混凝土有限元分析[M].北京:中国水利水电出版社,1996
    [39]李义墙,王新敏,陈士通.混凝土单轴应力-应变曲线比较[J].公路交通科技,2005,22(10),76-77
    [40]过镇海.混凝土的强度和变形—试验基础和本构关系[M].北京:清华大学出版社,1997
    [41]陈惠发,A.F.萨里普.混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004,15
    [42] Willam,K.J., and Warnke,E.D.,“Constitutive Model for the Triaxial Behavior of Concrete”[A],Proceedings, International Association for Bridge and structural Engineering[C], ISMES, Italy,1975,19:174
    [43] Neogi.P.k, Sen.J.R. Concrete-Filled Tubular Steel Columns under Eccentric Loading[J]. The Structural Engineering, 1969, 47(5): 56-64
    [44]中华人民共和国行业标准. JGJ101-96,建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997
    [45] ESSC-TWG 1.3:Recommended testing procedure for assessing the behavior of structural steel element under cyclic loads[A]. TCI,Seismic Design,ECCS pub, 1986,45
    [46]朱伯龙.结构抗震试验[M].北京:地震出版社,1989
    [47]沈在康.混凝土结构试验方法新标准应用讲评[M].北京:中国建筑出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700