用户名: 密码: 验证码:
铜铝双金属团簇电子性质及铜金属团簇吸附自由基CH_2和CH_3性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Theoretical Studies on Electron Properties of Copper and Aluminum Clusters and Adsorption Behavior of Radicals CH_2 and CH_3 on Cu Clusters
  • 作者:成西会
  • 论文级别:博士
  • 学科专业名称:原子与分子物理学
  • 学位年度:2008
  • 导师:丁大军 ; 金明星
  • 学科代码:070203
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-03-01
摘要
本文利用密度泛函理论方法,在B3LYP/LANL2DZ水平上研究了Cu掺杂Al团簇、Al掺杂Cu团簇及Cu和Al原子数目相同的双金属团簇的几何结构和电子性质。计算结果表明,Cu、Al组成的双金属团簇结构上也具有幻数效应的特征,Al_6Cu~-,Al_7Cu,Al_(13)Cu,Cu_5Al,(CuAl),(CuAl)_2及(CuAl)5都是具有满壳层电子排布的幻数结构团簇,而电子性质的计算也证明上述团簇具有较低的电子亲合能,较大的最高占据轨道与最低未占据轨道间的能隙和较高的电离势。
     利用密度泛函理论研究了CH_2和CH_3自由基在Cu_n(n=1-6)团簇上的吸附情况,计算了随着金属团簇尺寸的变化吸附体系的性质。计算和比较了CH_2和CH_3吸附在Cu团簇上的吸附能;分析了团簇中电荷转移情况;对C-H键的振动情况进行分析并与金属表面的频率进行比较;计算和比较了C-H对称伸缩频率的软化(红移)情况。
     利用PBE1PBE/LANL2DZ方法计算了AunAgm-(n+m=2-4)团簇的光电子光谱,计算得到的团簇DOS(Density of States)与实验测量的光电子光谱吻合得很好,说明优化得到的团簇结构是合理的。
Using density functional theory at B3LYP/LanL2DZ level, geometric structures and electronic properties of doped metal clusters were calculated. The optimizations were performed for copper doped aluminum (n=1-15) clusters and aluminum doped copper (n=1-12) clusters. Then, electron affinity, ionization potential, and Mulliken population analysis of doped atom Cu or Al, mean polarizability, polarizability anisotropy, dipole moments and highest occupied molecular orbital—lowest unoccupied molecular orbital (HOMO-LUMO) gaps are calculated. Results show that there is a magic number phenomenon in copper-doped aluminum clusters and the electronic characteristics depend strongly on the size of cluster. For n=13 cluster, the electron affinity and ionization potential changed more than 0.3 eV and 0.6 eV, respectively, compared with neighborhood clusters. Al_(13)Cu is a magic cluster with a closed shell of 40 electrons as described by the jellium model. By the HOMOs analysis, the HOMO mostly consists of 3s and 3p of Al atom. Furthmore in the HOMO of Al_6Cu and Al_7Cu, the concentration of s-like and p-like electrons are very close, which are 33.8%,33.3% for Al_6Cu and 44.2%,42.9% for Al_7Cu. It can be predicted that the Al atom exhits two valences in these clusters, comparing with Al cluster. In the same way, our studies suggest that magic number configuration also occurs in aluminum doped Cu_n (n=1-11) clusters. The electronic properties of these clusters exhibit an odd/even alternation with increasing cluster size. The electron affinity of Cu_5Al is small, while gap is higher than its neighbors, indicating that Cu_5Al is more stable, as predicated by the jellium model. In (CuAl)n (n=1-7) calculation, CuAl is regarded as a unit, which contains 4 valence electrons. According to the jellium model, we can predict that (CuAl)_2 and (CuAl)_5 should be more stable than others clusters. This is confirmed by our results of (CuAl)_5. Electronic properties of (CuAl)_5 exhibit more change, except the mean polarizability, the ionization potential increases, electron affinity plays down, polarizability anisotropy decreases, and HOMO-LUMO gap increases up to maximum in this series of clusters.
     Adsorption energy of CH_2 and CH_3 radicals adsorbed on Cu_n (n=1-6) clusters were calculated. The optimizations of their geometric structures show that all stable structures of these clusters are in a two-dimensional (2D), without accounting of H atoms. Because certain potentials need to be overcome when these 2D-structures change, Cu_n (n=1-6) clusters generally keep these structures even when CH_2 or CH_3 radical is adsorbed. The calculations show that the adsorption of CH_2 on Cu_n (n=1-6) is easier than that of CH_3, and the adsorption energy of CH_3 on the clusters exhibit odd/even alternation in which the energies with the odd number of Cu atom are larger than that with even number, suggesting easier adsorbing of CH_3 with odd number of Cu atom clusters. The NPA analysis elucidate that the charge is transferred from the metal cluster to hydrocarbon, and with increasing n, the charge transferred is more. A frequency analysis indicates that with increasing n the variation of the several vibrational modes of C-H bonding is different, but they all approach to the vibrational frequency of CH_2 and CH_3 adsorbing on Cu metal surfaces; and there is a redshift in symmetry C-H stretching mode, the bigger the cluster, the more the redshift.
     Photoelectron spectra of Ag_mAu_n~-(m+n=2-4) were calculated. In the generalized Koopman theorem (GKT), DOS (Density of States) is shifted by setting the HOMO energy as the negative vertical detachment energy (VDE), and in our works, the shifted is profermed by setting the electron affinity energies calculated as the vertical detachment energy. By comparing the calculated DOS with the photoelectron spectra reported, isomers with very small difference in energy can be distinguished, one can tell isomer from photoelectronic spectra and one can designate peaks in spectrum to the corresponding isomer.
引文
[1] 王广厚,团簇物理学,上海科技出版社,2003
    [2] G.D.Stein, Atoms and molecules in small aggregates, Phys.Teach. 1979, 17, 503
    [3] 阎守胜, 固体物理基础, 北京大学出版社, 第二版, 2003
    [4] A.W.Castleman Jr, K.H.Bowen Jr, Clusters, Structure, Energetics, and Dynamics of Intermediate States of Matter, J.Phys.Chem, 1996, 100, 12911
    [5] S.A.Ochs, R.E.Cote, P.Kusch, On the Radiofrequency Spectrumof the Components of a Sodium Chloride Beam.The Dimerization of the Alkali Halides, J.Chem.Phys, 1953, 21, 459
    [6] E.W.Becker, K.Bier, W.Henkes, Strahlen aus kondensierten Atomen und Molekeln im Hochvakuum, Z.Phys, 1956, 146, 333
    [7] P. G. Bentley, Chemical Engineering Polymers of Carbon Dioxode, Nature, 1961, 190, 432
    [8] G. Bawendi, M. L. Steigerwald, and L. E. Brus, The quantum mechanics of larger semiconductor clusters ("quantum dots") , Ann.Rev.Phys Chem. 1990, 41, 477
    [9] W. D.Knight, K.Clemenger, W. A.de Heer, W. A.Saunders, M. Y.Chou, and M. L.Cohen, Electronic Shell Structure and Abundances of Sodium Clusters, Phys.Rev.Lett., 1984, 52, 2141
    [10] W. D. Knight, W. A. de Heer, W. A. Saunders et al. Alkali metal clusters and the jellium model, Chem. Phys. Lett., 1987, 134(1), 1
    [11] 陈 莹 博士论文 《金属团簇的结构和固液转变的研究》山东大学,2004
    [12] Vojislav R. Stamenkovi?, Matthias Arenz, Christopher A. Lucas, Mark E. Gallagher,Philip N.Ross,and Nenad M.Markovi?, Surface Chemistry onBimetallic Alloy Surfaces: Adsorption of Anions and Oxidation of CO on Pt3Sn(111), J. AM. Chem. Soc. 2003, 125, 2736
    [13] M. Haruta, T. Kobayashi et al., Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far below 0℃, Chem. Lett. 1987, 4, 405
    [14] P.Schwerdtfege, Gold Goes Nano-From Small Clusters to Low- Dimensional Assemblies Angew.Chem.Int.Ed. 2003, 42, 1892
    [15] M.C.Daniel and D.Astruct,Gold Nanoparticles:Assembly,Supramolecular Chemistry,Quantum-Size-Related Properties,and Applications toward Biology,Catalysis,and Nanotechnology ,Chem.Rev.. 2004, 104, 293
    [16] H. Schwarz, Relativistic Effects in Gas-Phase Ion Chemistry: An Experimentalist's View, Angew.Chem. Int.Ed. 2003, 42, 4442
    [17] R.W.Siegel, Synthesis and properties of nanophase materials, Mater.Sci. Eng. A 1993, 168, 189
    [18] R.Uyeta, Studies of ultrafine particles in Japan: Crystallography.Methods of preparation and technological applications, Prog. Mater. Sci. 1991, 35, 96
    [19] M. H. Devoret, D. E. Steve, and C.Urbina, Nature, 1999, 360, 547
    [20] 王广厚,原子团簇的稳定结构和幻数,物理学进展,2000, 20, 52
    [21] W.A.de Heer, The physics of simple metal clusters: experimental aspects and simple models, Rev. Mod. Phys.1993, 65, 611
    [22] S. Bj?rnholm, and J. Borggreen, Electronic shell structure in clusters as reflected in mass abundance spectra, Philosophical Magazine B, 1999, 79, 1321
    [23] I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, H. Matsuda, Mass distributions of copper, silver and gold clusters and electronic shell structure, J. Mass Spectrum Ion Processes, 1985, 67, 229
    [24] I. Katakuse, T.Ichihara, Y. Fujita, T. Matsuo, T. Sakurai and H. Matsuda, Correlation between mass distributions of zinc, cadmium clusters andelectronic shell structure, J.Mass Spectrum Ion Processes, 1986, 69, 109
    [25] 霍华金等, 混合、掺杂团簇研究进展 物理学进展 1997, 2, 46
    [26] C.Baladron and J.A.Alonsa, Stability and magic numbers of hetero-atomic clusters of simple metals, Phys. B, 1988, 154, 73
    [27] M. P. Znguez, M. J. Lopez, J. A. Alouso and J. M. Soler, Z. phys. D, 1989, 11, 163
    [28] M. M. Kappes, M. Schur and E. Schumacher, Are Cluster Abundances Thermodynamic Properies? Observationof Lithium Enrichment in LixNan-x, n≤42, J.Phys.Chem.1987, 91, 658
    [29] K.Hashino, T.Naganuma, Y.Yamada, K.Watanabe and K.Kaya, Ionization potentials of cobalt–sodium bimetallic clusters (ConNam) J.Chem.Phys. 1993, 97, 3803
    [30] S.Nonose, Y.Sone, K.Onodera, S.Sudo and K.Kaya, Structure and reactivity of bimetallic cobalt-vanadium (ConVm) clusters, J.Phys.Chem. 1990, 94, 2744
    [31] T.Bergtnann, H.Limber and T.P.Martin, Evidence of electronic shell structure in Cs-O clusters, Phys.Rev.Lett. 1988, 60, 1767
    [32] M.Velegrakis and Ch.Luder, Formation and stability of singly and doubly charged MgArN clusters, Chem.Phys.Lett. 1994, 233, 139
    [33] T. P. Martin, N. Matinowski, V. Zimmermann, V. Naker and H. Schaber, Evidence of electronic shell structure in Cs-O clusters, J.Chem.Phys. 1993, 99, 4210
    [34] V. Zimmermann, N. Malinowski, V. Naher, S. Frank and T. P. Martin, Multilayer metal coverage of fullerene molecules, Phys. Rev. Lett., 1993, 72, 3542
    [35] A. Pramann, K. Koyasu, A. Nakajima, and K. Yaka, Anion Photoelectron Spectroscopy of Vanadium-Doped Cobalt Clusters, J.Phys.Chem.A, 2002, 106,2483
    [36] Martin Kupka, Transmission coefficient calculation using the derived inelastic transport analogy of the transmission matrix method; application to tunnelling into a marginal Fermi liquid, J. Phys.: Condens. Matter,1998, 10,327
    [37] K Yamamoto, M Jono and Y Matsuo, X-ray study of the electron density distributions for hexagonal Al5Co2 and Al10Mn3, J. Phys.: Condens. Matter 1999, 11, 1015
    [38] J. J. Zhao, J. L. Wang, G. H.Wang, A transferable nonorthogonal tight-binding model of germanium: application to small clusters, Physics Letter A, 2000, 275, 281
    [39] J. L. Wang, G. H. Wang, X. S. Chen, and J. J. Zhao, Structure and magnetic properties of Co-Cu bimetallic clusters, Phys. Rev. B, 2002, 66, 014419
    [40] J.L.Wang, F.Ding, W.F.Shen, T.X.Li, G.H.Wang and J.J.Zhao, Thermal behavior of Cu-Co bimetallic clusters, Solid State Commun,2001, 119, 13
    [41] P.A.Derosa, J.M.Seminario, P.B.Balbuera, Properties of Small Bimetallic Ni-Cu Clusters, J.Phys.Chem.A, 2001, 105, 7917
    [42] Dilip Kumar Saha, Kenji Koga and Harutoshi Takeo, Nanostructured Materials, 1997, 8, 1139
    [43] O. C. Thomas, W. J. Zheng and K. H. Bowen, Magic numbers in copper- doped aluminum cluster anions J. Chem .Phys. 2001, 114, 5514
    [44] R. R. Zope and T. Baruah, Conformers of Al13, Al12M, and Al13M (M=Cu, Ag, and Au) clusters and their energetics. Phys. Rev. A, 2001, 64, 053202
    [45] 徐光宪, 黎乐民,《量子化学基本原理和从头计算法》上册 科学出版社,北京,1981
    [46] J.A.波普尔,D.L.贝弗里奇,江元生译,《分子轨道近似方法理论》,科学出版社,1978
    [47] W. Koch, M. C. Holthausen, 《A Chemist’s Guide to Density Functional Theory》, Wiley-Vch Verlag Gmbh, Second Edition, 2001
    [48] Jeanne L. McHale, 《Molecular Spectroscopy 》, 科学出版社, 北京, 2003
    [49] M. J. S. Dewar, E. F. Healy, J. J. P. Stewart, Location of Transition States in Reaction Mechanisms, J. Chem. Soc., Faraday Trans., 1984, 80, 227.
    [50] 廖沐真,吴国是,《量子化学从头计算方法》清华大学出版社 1984
    [51] D.R. Hartree, Calculations of Atomic Structure, New York, Wiley 1957
    [52] W. Pauli, the Connection between Spin and Statistics, Phys.Rev, 1940, 58, 716
    [53] J. A. Pople, M. Head-Gordon, Quadratic Configuration Interaction: A General Technique for Determining Electron Correlation Energies, J. Chem. Phys., 1987, 87(10), 5968.
    [54] S.Aloisio, J.S.Francisco, the Photochemistry of Acetone in the Presence of Water, Chem. Phys. Lett., 2000, 329, 179
    [55] T.Gierczak, J.B.Burkholder, S.Bauerle, A.R.Ravishankare, Photochemistry of Acetone under Tropospheric Conditions, Chem. Phys., 1998, 231, 229.
    [56] G. A. Gaines, D.J.Donaldso, S.J.Strickler, V.Vaida, The n0-3s Rydberg State of Acetone: Absorption Spectroscopy of Jet-Cooled (CH3)2CO and (CD3)2CO, J. Phys. Chem, 1988, 92, 2762.
    [57] D. Liu, W. H. Fang, X.Y. Fu, An ab initio Study on Photodissociation of Acetone, Chem. Phys. Lett., 2000, 325, 86
    [58] R. S. Mulliken, Electronic Population Analysis on LCAO MO Molecular Wave Functions J. Chem.Phys. 1955, 23, 1833
    [59] J. E. Carpenter and F. Weinhold, Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure, J. Mol. Struct. (Theochem) 1988, 169, 41
    [60] J. E. Carpenter, Ph thesis, University of Wisconsin, Madison, WI, 1987
    [61] J. P. Foster and F. Weinhold, Natural hybrid orbitals, J. Am. Chem. Soc. 1980 102, 7211.
    [62] A. E. Reed and F. Weinhold, Natural bond orbital analysis of near-Hartree –Fock water dimmer, J. Chem. Phys. 1983, 78, 4066
    [63] A. E. Reed and F. Weinhold, Natural Localized Molecular Orbitals, J. Chem. Phys. 1985, 83, 1736
    [64] A.E.Reed, R.B.Weinstock, and F. Weinhold, Natural population analysis, J. Chem. Phys. 1985, 83, 735
    [65] A. E.Reed, L. A. Curtiss, and F.Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint ,Chem. Rev. 1988, 88, 899
    [66] F. Weinhold and J. E. Carpenter, the Structure of Small Molecules and Ions, Plenum 1988, pp.227
    [67] L. E. Chirlian and M. M. Francl, Atomic charges derived from electrostatic potentials: A detailed study, J. Comp. Chem. 1987, 8, 894
    [68] C. M. Breneman and K. B. Wiberg, Determining atom-centered monopoles frommolecular electrostatic potentials: The need for high sampling density in formamide conformational analysis, J. Comp. Chem. 1990, 11, 361
    [69] P. Hohenberg, and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B, 1964, 136, 864
    [70] W. Kohn and L. J. Sham, Quantum Density Oscillations in an Inhomog -eneous Electron Gas, Phys. Rev. A, 1965, 137, 1697
    [71] E. D. R. Salahub and M. C. Zerner, 《the Challenge of d and f Electrons》 ACS, Washington, D.C. 1989
    [72] R. G. Parr, and W.Yang, 《 Density-functional theory of atoms and molecules》 Oxford Univ. Press, Oxford 1989
    [73] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A, 1965, 140, 1133
    [74] J. C. Slater, Quantum Theory of Molecular and Solids, 4, McGraw-Hill, 1974
    [75] S.H.Vosko, L.Wilk, and M. Nusair, Accurate spin-dependent electronliquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 1980, 58, 1200
    [76] J. P. Perdew and Y.Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B,1992, 45,13244
    [77] R. M. Martin, 《Electronic Structure: Basic Theory and Practical Methods》 Canbridge University Press, London 2004
    [78] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 1988, 38, 3098
    [79] K.Burke, J.P.Perdew, and Y.Wang, Electronic Density Functional Theory: Recent Progress and New Directions, Ed. J. F. Dobson, G.Vignale, and M. P. Das, Plenum 1998
    [80] C. Adamo and V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, J. Chem. Phys. 1998, 108, 664
    [81] J. P. Perdew, K. Burke, and M.Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 1996, 77, 3865
    [82] J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 1986, 33, 8822
    [83] C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 1988, 37, 785
    [84] C.Filippi, C.J.Umrigar, and M.Taut, Comparison of exact and approximate density functionals for an exactly soluble model, J. Chem. Phys. 1994, 100, 1290
    [85] X. Xu and W. A. Goddard III, The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties, Proc. Natl. Acad. Sci. USA, 2004, 101, 2673
    [86] J. P. Perdew, S. Kurth et al., Accurate Density Functional with Correct Formal Properties: A Step beyond the Generalized Gradient Approximation, Phys. Rev. Lett. 1999, 82, 2544
    [87] J. Tao, J. P. Perdew et al., Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids, Phys. Rev. Lett., 2003, 91, 146401
    [88] A.D.Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98, 5648
    [89] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 1997, 78, 1396
    [90] W.Koch and M.C.Holthausen, 《A Chemist’s Guide to Density Functional Theory》Wiley-VCH Second Edition, 2001
    [91] M. Ernzerhof and G. E. Scuseria, Assessment of the Perdew–Burke– Ernzerh of exchange-correlation functional ,J. Chem. Phys. 1999, 110, 5029
    [92] 池贤兴,田善喜,庄友谊,徐克尊, 铝原子团簇Al5、Al5-和Al5+稳定结构的密度泛函理论研究,化学物理学报, 2002, 15(4), 269
    [93] V. I. Anisimov, J. Zaanen, and O.K.Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner, I Phys. Rev. B, 1991, 44, 943
    [94] I. Vignale, S. Ogut, and J. R.Chelikowsky, Density-functional theory in strong magnetic fields, Phys. Rev. Lett.1987, 59, 2360
    [95] A. K. Rajagopa and J. Callaway, Inhomogeneous Electron Gas, Phys.Rev. B, 1973, 7, 1912
    [96] S. Baroni, S.de Gironcoli et al., Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 2001,73, 515
    [97] 徐光宪, 黎乐民,《量子化学基本原理和从头计算法》上册 科学出版社,北京 1981
    [98] W. A, de Heer, The physics of simple metal clusters: experimental aspects and simple models, Rev. Modern Phys., 1993, 65(3), 611
    [99] M. Brack, The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches, Rev. Modern Phy., 1993, 65(3), 677
    [100] W.A.de Heer,Paolo Milani,and A.Chtelain,Nonjellium-to-jellium transition in aluminum cluster polarizabilities,Phys. Rev. Lett.,1989, 63(26), 2834
    [101] O. Echt, K. Sattler, E. Rechnagel, Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters, Phy.Rev. Lett., 1981, 47, 1121
    [102] W. Miehle,O. Kandler, T. Leisner et al., Mass spectrometric evidence for icosahedral structure in large rare gas clusters: Ar, Kr, Xe, J. Chem. Phys. 1989, 91, 5940
    [103] J. U. Reveles, S. N. Khanna, P. J. Roach, and A. W. Castleman, Jr, Multiple valence superatoms, Proceeding of National Academy of sciences of the United States of America, 2006,103,18405
    [104] F.Duque and A.Ma?anes, Stability and Electronic Properties of Aluminum Clusters, Eur. Phys. J. D, 1999, 9, 223
    [105] Li X, Wu H, Wang X B and Wang L S, s-p Hybridization and Electron Shell Structures in Aluminum Clusters:A Photoelectron Spectroscopy Study, Phys. Rev. Lett. 1998, 81, 1909
    [106] Gantef?r G, and Eberhardt W, Shell structure and s-p hybridization in small aluminum clusters, Chem. Phys. Lett., 1994, 217, 600
    [107] X.G. Gong, Structure and stability of cluster-assembled solid Al12C (Si): A first-principles study, Phys. Rev. B.1997, 56, 1091
    [108] Jaehoon Jung and Young-Kyu Han Structure and stability of Al13Hn(n=1–13) clusters: Exceptional stability of Al13H13, J.Chem. Phys. 2006, 125, 064306
    [109] B. K. Rao and P. Jena, Energetics and electronic structure of carbon doped aluminum clusters, J. Chem. Phys, 2001, 115, 778
    [110] Vijay Kumar, Satadeep Bhattacharjee and Yoshiyuki Kawazoe Silicon-doped icosahedral, cuboctahedral, and decahedral clusters of aluminum, Phys. Rev. B, 2000, 61, 8541
    [111] Jian wan and René Fournier, Why is Al11B2- not a magic number in TOF-MS? J. Chem. Phys, 2003, 119, 5949
    [112] Vijay Kumar and Yoshiyuki Kawazoe1,Hund’s rule in metal clusters: Prediction of high magnetic moment state of Al12Cu from first-principles calculations, Phys. Rev. B, 2001, 64,115405
    [113] S. N. Khanna, C. Ashman, B. K. Rao and P. Jena Geometry, electronic structure, and energetics of copper-doped aluminum clusters, J.Chem. Phys. 2001, 114, 9792
    [114] Fisch M.rucks G W, Schlegel H B et al., 2004 Gaussian03, Revision D.01, Gaussian, Inc., Pittsburgh, PA
    [115] T. Ziegler, Density Functional Methods in Chemistry, Spinger, New York, 1991, pp.101
    [116] P. Mlynarski, D. R. Salahub, Local and nonlocal Density Functional Study of Ni4 and Ni5 Cluster: Models for the Chemisorption of Hydrogen on (111) and (100) Nickel Surfaces, J. Chem. Phys., 1991, 95, 6050
    [117] G.Fitzgerald, J.Andzelm, Density Functional Study of a Highly Correlated Molecule, FOOF, J. Phys. Chem.1991, 95, 9197
    [118] 朱维良,蒋华良,陈建忠,顾健德,刘东祥,林茂伟,陈凯先,嵇汝运,石杉碱甲-ACHE 复合物中石杉碱甲的结构特征-量子化学研究,化学学报,1998,56, 233
    [119] A.D.Becke, Correlation Energy of an Inhomogeneous Electron Gas: A Coordinate-Space Model, J.Chem. Phys. 1988, 88, 1053
    [120] N. G. Mirkin,S.Krimm,ab initio Studies of the Conformation Dependence of the Stable Conformers of n-Pentane and n-Hexane, J. Phys. Chem.,1993, 97, 13887
    [121] P. J. Hay and W. R. Wadt, Ab initio effective core potentials for molecular calculations for the transition metal atoms Sc to Hg, J. Chem. Phys., 1985, 82, 270; W. R. Wadt and P. J. Hay, Ab initio effective core potentials for molecular calculations, potentials for main group elements Na to Bi, J. Chem. Phys., 1985, 82, 284; P. J. Hay and W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, 82, 299
    [122] P Fuentealba,H Preuss,H Stoll and L V Szentpaly A proper account of core-polarization with pseudopotentials:single valence-electron alkali compounds,Chem. Phys. Lett. 1982, 89, 418
    [123] L. V. Szentpaly, P. Fuentealba, H. Preuss and H. Stoll, Pseudopotential calculations on Rb+2, Cs+2, RbH+, CsH+ and the mixed alkali dimer ions, Chem. Phys. Lett., 1983, 95, 617
    [124] Li Xiao, Bethany Tollberg, Xiankui Hu, and Lichang Wanga, Structural study of gold clusters, J. Chem. Phys. 2006, 124, 114309
    [125] Xi-Bo L, Hong-Yan Wang, Xiang-Dong Yang, and Zheng-He Zhu, Size dependence of the structures and energetic and electronic properties of gold clusters, J. Chem. Phys. 2007, 126, 084505
    [126] Vlasta Bona?i?-Koutechy, Ji?í Pittner and Marc Boiron, An accurate relativistic effective core potential for excited states of Ag atom: an application for studying the absorption spectra of Agn and Agn+ clusters, J. Chem. Phys. 1999, 110, 3876
    [127] B. K. Rao and P. Jena, Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis, J. Chem.Phys.1999, 111, 1890;
    [128] K. E. Schriver, J. L. Persson, E. C. Honea, and R. L. Whetten, Electronic shell structure of group-IIIA metal atomic clusters, Phys. Rev. Lett. 1990, 64, 2539
    [129] B. K. Rao, S. N. Khanna, and P. Jena, Isomers of Al13 clusters and their interaction with alkali atoms, Phys. Rev. B, 2000, 62, 4666; A. Nakajima, K. Hoshina, T. Naganuma, Y. Sone, and K. Koya, Ionization potentials of aluminum–sodium bimetallic clusters (AlnNam), J. Chem. Phys., 991, 95, 7061
    [130] D .E. Bergeron, P. J.Roach, A.W.Castleman, Jr, N.O.Jones, S.N.Khanna, Al Cluster Superatoms as Halogens in Polyhalides and as Alkaline Earths in Iodide Salts, Science, 2005, 307, 231
    [131] K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky ,and R. E. Smalley, Ultraviolet photoelectron spectra of coinage metal clusters, J. Chem. Phys. 1992, 96, 3319
    [132] C.L.Pattiette, S.H.Yang, M.J.Craycraft, J.Conceicao, R.T.Laaksonen, O. Cheshnovshy, and R.E.Smalley, Ultraviolet photoelectron spectroscopy of copper clusters, J. Chem. Phys. 1988, 88, 5377
    [133] Patrizia Calaminici, Andreas M. K?ster, and Alberto Vela, Comparison of static polarizabilities of Cun, Nan, and Lin (n≤9) clusters J. Chem. Phys. 2000, 113, 2199
    [134] 王红艳,李喜波,唐永建,毛华平,朱正和, Cun、Agn和Aun ( n≤9)团簇的静电极化率 化学物理学报 2005, 18(1), 50
    [135] Wang Hong-Yan, Li Chao-yang, Tang Yong-Jian, and Zhu Zheng-He, geometry and electronic properties of Cun (n<9), Chines Physics, 2004,13(05), 677
    [136] 王顺, 刘志攀, 陆 靖, 范康年, 用密度泛函和遗传算法研究Cun(n<20)团簇的尺寸效应, 化学学报, 2007, 65, 1831
    [137] B. K. Rao, P. Jena, S. Burkart, G. Gantef?r and G. Seifert, AlH3 and Al2H6: Magic Clusters with Unmagical Properties, Phys. Rev. Lett. 2001, 86, 692
    [138] Jaehoon Jung and Young-Kyu Hana, Structure and stability of Al13Hn (n=1–13) clusters: Exceptional stability of Al13H13, J. Chem. Phys. 2006, 125, 064306
    [139] X.L. Ding, Z. Li, J. Yang, J. G. Hou, and Qingshi Zhu, Adsorption energies of molecular oxygen on Au clusters, J. Chem. Phys. 2004, 120(20), 9594
    [140] M. Moskovits and J. E. Hulse, The lnteraction of CO with Very Small Copper Clusters,J. Chem. Phys. 1977, 81( 21), 2005
    [141] Q. Y. Yang, K. J. Maynard, A. D. Johnson, and S. T. Ceyer, The structure and chemistry of CH3 and CH radicals adsorbed on Ni (111), J.Chem.Phys. 1995, 102, 7734
    [142] D. Post and E. J. Baerends Cluster studies of CO adsorption Ⅲ.CO on small Cu clusters,J. Chem. Phys. 1983, 78, 5663
    [143] F. M. Povedal, M. Sáchez and F. Ruette, MINDO/SR calculations for adsorption of hydrocarbon fragments CHn (n = 1, 2, 3) on a Nil4 cluster, J. Phys.: Condens. Matter, 1993, 5, A237
    [144] Y. L. Chan, Ping Chuang, T. J. Chuang, Vibrational study of CH2 and CH3 radicals on the Cu (111) surface by high resolution electron energy loss spectroscopy, J. Vac. Sci. Technol. A 1998, 16(3), 1023
    [145] Ch. W?ll, K. Weiss, P.S. Bagus, Saturated hydrocarbons on a Cu surface: a new type of chemical interaction? Chem. Phys. Lett. 2000, 332, 553
    [146] G. Rapenne, L. Grill, T. Zambelli, S.M. Stojkovic, F. Ample, F. Moresco, C. Joachim, Launching and landing single molecular wheelbarrows on a Cu(100) surface, Chem. Phys. Lett. 2006, 431, 219
    [147] A. Michaelides and P. Hu, Softened C–H modes of adsorbed methyl and their implicationsfor dehydrogenation: An ab initio study, J. Chem. Phys., 2001, 114, 2523
    [148] J. Robinson, D. P. Woodruff, The local adsorption geometry of CH3 and NH3 on Cu (111): a density functional theory study, Surf. Sci., 2002, 498, 203
    [149] S. F. Boys and F. Bernadi, The calculation of small molecular interactions by the differences of separate total energies: Some procedures with reduced errors, Mol. Phys. 1970, 19, 553
    [150] S.Simon, M.Duran, and J. J. Dannenberg, How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 1996, 105, 11024
    [151] E. D. Glendening, A. E. Reed et al. “NBO Version 3.1”, 1995
    [152] A.E.Reed, L.A.Cureiss, and F.Wenhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 1988, 88, 899
    [153] D. R. Alfonso, S. H. Yang, D. A. Drabold, Ab initio studied of hydrocarbon on stepped diamond surfaces, Phys. Rev. B 1994, 50(20), 15369
    [154] G. Psofogiannakis, A. St-Amant, and M. Ternan, Methane Oxidation Mechanism on Pt(111): A Cluster Model DFT Study, J. Phys. Chem., B 2006, 110, 24593
    [155] M. K. Oudenhuijzen, J. A. van Bokhoven, D. E. Ramaker, and D. C. Koningsberger, Theoretical Study on Pt Particle Adsorbate Bonding: Influence of Support Ionicity and Implications for Catalysis, J. Phys. Chem., B 2004, 108, 20247
    [156] M .R. Pederson, K. A. Jackson, and W. E. Pickett, Local-density-approxim ation-based simulation of hydrocarbon interactions with applicarions todiamond chemical vapoe deposition, Phys. Rev., B 1991, 44, 3891
    [157] K. Larsson, S. Lunell, and J. O. Carlsson, Adsorption of hydrocarbons on a diamond(111) surface: A ab initio quantum-mechanical study, Phys. Rev., B 1993, 48, 2666
    [158] A. P. Scott and L. Radom, Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, M?ller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem., 1996, 100, 16502
    [159] M. A. Henderson, P. L. Radloff, J. M. White and C. A. Mins, Surface chemistry of ketene on Ruthenium(001). 1. Surface structures, J. Phys. Chem., 1988, 92, 4111
    [160] Y. C. Ning, Structural Identification of Organic Compounds and Organic Spectroscopy,Second Edition, Science Press, Beijing, 2000
    [161] M. Witko, K. Hermann, D. Ricken, W. Stenzel, H. Conrad, A. M. Bradshaw, The electronic structure of the surface methoxy species on Cu(111), Chem. Phys, 1993, 177, 363
    [162] G. D. Stancu and J. R?Pcke, Line strengths and transition dipole moment of the ν2 fundamental band of the methyl radical, J. Chem. Phys., 2005, 122, 014306; P. L Holt,. K.E. McCurdy, R.B.Weisman, J.S. Adams,P.S. Engel, Transient CARS spectroscopu of the ν1 band of methyl radical, J. Chem. Phys., 1984, 81, 3349; Takamasa Momose, Masaaki Miki, Mikio Uchida, Takayuki Shimizu, Isamu Yoshizawa, and Tadamasa Shida, Infrared spectroscopic studies on photolysis of methyl iodide and its clusters in solid parahydrogen, J. Chem. Phys., 1995, 103, 1400; J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy, J. Chem. Phys., 1997, 107, 6196
    [163] G. Radhakrishnan, W. Stenzel, R. Hemmen, H. Conrad, and A. M. Bradshaw, The photon-induced reactions of chemisorbed CH3Br on Pt( 111), J. Chem. Phys., 1991, 95, 3930
    [164] Q. Y. Yang, K. J. Maynard, A. D. Johnson, and S. T. Ceyer, Vibrational study of CH2 and CH3 radicals on the Cu(111) surface by high resolution electron energy loss spectroscopy, J. Chem. Phys., 1995, 102, 7734
    [165] J. D. Head, Yu Shi, Characterization of Fermi Resonances in Adsorbate Vibrational Spectra Using Cluster Calculations: Methoxy Adsorption on Al(111)and Cu(111), Int. J. Quantum Chem., 1999, 75, 815
    [166] J. E. Demuth, H. Ibach, and S. Lehwald, CH Vibration Softening and the Dehydrogenation of Hydrocarbon Molecules on Ni(111) and Pt(111), Phys. Rev. Lett. 1978, 40, 1044
    [167] R. Raval and M. A. Chesters, The nature of the C-H… metal interaction in adsorbed cyclohexane and its role in reactivity, Surf. Sci. 1989, 219, L505
    [168] N. Sheppard and C. De La Cruz, Vibrational Spectra of Hydrocarbons Adsorbed on Metals Part II: Adsorbed Acyclic Alkynes and Alkanes, Cyclic Hydrocarbons Including Aromatics, and Surface Hydrocarbon Groups Derived from the Decomposition of Alkyl Halides, etc., Adv. Catal. 1998, 42, 181, and references therein
    [169] J. L. Lin and B. E. Bent, C?H vibrational mode-softening in alkyl groups bound to Cu (111), Chem. Phys. Lett. 1992, 194, 208
    [170] C. M.Chiang, T. H. Wentzlaff, and B. E. Bent, Iodomethane decomposition on Copper (110): surface reactions of C1 fragments, J. Phys. Chem., 1992, 96, 1836
    [171] M. Chen, C.M. Frienda, R.A. van Santen, The adsorption of methyl on Rh10 clusters: selective C-H bond weakening, Catalysis Today, 1999, 50, 621
    [172] W.X. Huang, Z.Q. Jiang, J.M. White, Mode-softening of C–H stretchvibration in alkyl groups on Ag (111) and the fluorination effect, Chem. Phys. Lett., 2006, 428, 293
    [173] R. ásmundsson and P. Uvdal, Fermi resonance coupling in a surface adsorbate: The C–H stretch in methoxy adsorbed on Cu(100) calculations and experiments, J. Chem. Phys., 2000, 112, 366
    [174] H. E. Newell, M. R. S. McCoustra, M. A. Chesters and C. De La Cruz, The thermal chemistry of adsorbed ethyl on the Pt(111) surface : infrared evidence for an ethylidene intermediate in the ethyl to ethylidyne conversion, J. Chem. Soc., Faraday T rans., 1998, 94, 369
    [175] H. Yang and J. L. Whitten, Ab Initio Chemisorption Studies of CH3 on Ni(ll1), J. Am. Chem. SOC. 1991, 113, 6442-
    [176] J.Schule, P.Siegbahn, U.Wahlgren, A theorrtical strudy of methyl chemisorption on Ni (111), J. Chem. Phys. 1988, 89, 6982
    [177] P.T. Chang, C.Y. Chen, J.L. Lin, Adsorption and geometry of 1,4-dioxane on Cu(100), Surf. Sci. Lett., 2003, 524, L96
    [178] U. Boesl, W. J. Knott, Negative ions, mass selection, and photoelectrons, Mass spectrometry Reviews, 1998, 17, 275
    [179] K.M. McHugh, J. G. Eaton, G. H. Lee, H. W. Sarkas, L. H. Kidder, J. T. Snodgrass, M.R. Manaa, and K. H. Bowen, Photoelectron spectra of the alkali metal cluster anions: Na-n=2-5, K-n=2-7, Rb-n=2-3 and Cs-n=2-3, J. Chem. Phys. 1998, 91,3792
    [180] D.Yu,Zubarev and A.I. Boldyrev, X. Li, L.F.Cui and L.S.Wang,Chemical Bonding in Si52- and NaSi5- via Photoelectron Spectroscopy and ab Initio Calculations, J. Phys. Chem. 2005, 109, 11385
    [181] M. Castro, S.R. Liu, H.J. Zhai, and L.S. Wang, Structural and electronic properties of small titanium clusters: A density functional theory and anion photoelectron spectroscopy study, J. Chem. Phys. 2003, 118, 2116
    [182] K. Koyasu, M. Mitsui, A. Nakajima , Koji Kaya, Photoelectron spectroscopy of palladium-doped gold cluster anions; AunPd-(n=1-4), Chem. Phys. Lett. 2002, 358, 224
    [183] Y. Negishi, Y. Nakamura, and A. Nakajima, Photoelectron spectroscopy of gold–silver binary cluster anions, J. Chem. Phys. 2001, 115, 3657
    [184] S. Sun,X. Xing,H. Liu, and Z. Tang, Phenyl-cionage Metal (Ag, Au) Complexes: An Anion Photoelectron Spectroscopy and Density Functional Study, J. Phys. Chem. 2005, 109, 11742
    [185] H. H?kkinen, B. Yoon, U. Landman, Xi Li, Hua-Jin Zhai, and Lai-Sheng Wang, On the Electronic and Atomic Structures of Small Aun-(n=4-14) cluster: A Photoelectron Spectroscopy and Density- Functional Study, J. Phys. Chem. A 2003, 107, 6168
    [186] S. Zhao, Z. H. Li, W.N. Wang, Z.P. Liu, and K.N. Fan, Yaoming Xie and Henry F. Schaefer, Is the uniform electron gas limit important for small Ag clusters? Assessment of different density functionals for Agn (n=2-4), J. Chem. Phys. 2006, 124, 184102
    [187] D. J. Tozer, N. C. Handy, The development of new exchange-correlation functionals, J. Chem. Phys. 1998, 108, 2545
    [188] C. W. Bauschlicher, Jr., S. R. Langhoff, and H. Partridge, Theoretical study of the structures and electron affinities of the dimers and trimers of group IB metals(Cu, Ag and Au), J. Chem. Phys., 1989, 91, 2412

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700